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Abstract
The clearance of apoptotic cells is a highly regulated mechanism, normally associated with anti-
inflammatory response. During early stages of apoptosis the cell is promptly recognized and engulfed
by professional phagocytes or tissue cells to avoid the outflow of intracellular content and limit the
immunological reaction against released antigens. However, increasing evidences suggest that
impairment in the uptake of apoptotic cell debris is linked to the development of autoimmunity. In
fact, autoantigens have been demonstrated to be content within apoptotic bodies and apoptotic cells
seems to be critical in the presentation of antigens, activation of innate immunity and regulation of
macrophage cytokine secretion.

We herein review the known mechanisms for regulating the uptake of the products of apoptosis in
the development of autoimmunity.
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INTRODUCTION
Apoptosis, the major mechanism of programmed cell death, is essential to regulate and
maintain tissue growth and maintain homeostasis. Dying cells undergo morphological
modifications including chromatin condensation, nuclear fragmentation and generation of
apoptotic bodies. Furthermore, they express so called “eat-me” signals on the cell surface that
allow macrophage recognition and phagocytosis [1]. Thus, apoptosis is no longer considered
a “trash disposal” mechanism as the clearance of apoptotic cells is a highly regulated process,
essential to avoid the outflow of intracellular content and limit the immunological response
against generated antigens. Within the immune system alone, it has been estimated that more
than 109 cells undergo apoptosis daily [2] and these are cleared rapidly by neighboring tissue
cells or professional phagocytes, normally without inciting an inflammatory reaction [3–5].
Indeed, the most significant difference between phagocytosis of pathogens and the uptake of
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apoptotic cells has been traditionally considered the immune response: a pro-inflammatory
reaction is often induced after phagocytosis whereas the secretion of anti-inflammatory
cytokines follows the engulfment of apoptotic cells [4,6,7].

Dysregulation of apoptosis has been associated with the pathogenesis of cancer [8,9],
neurodegeneration [10], cardiovascular disease [11,12], and other complex diseases. The
impact of apoptosis on immunity has been extensively investigated [2,13] and several reports
suggest a correlation between apoptosis and autoimmunity through an impairment of apoptosis
[14–16] or an ineffective removal of apoptotic cells [17–20]. Moreover, recent data have
demonstrated that autoantigens are found within apoptotic bodies [21] and that apoptotic cells
are critical in the presentation of antigens [22], activation of innate immunity and regulation
of macrophage cytokine secretion [23]. Apoptotic bodies have been also described as B cell
autoantigens [24]. This review article is intended to provide a critical overview of current
theories on the consequences of apoptosis and their connection to the breakdown of tolerance.

CLEARANCE OF APOPTOTIC CELLS AND PRODUCTS
The removal of apoptotic cells is mediated by professional phagocytes, i.e. macrophages and
immature dendritic cells (DC) [25,26], and by a wide variety of cells, such as endothelial cells
[27], mesenchymal cells [28], or cardiocytes [17]. Professional phagocytes can also ingest
opsonized bacteria or pathogens; however, the process and the consequences of these processes
are distinct. The most important difference between the up-take of apoptotic cells and the
phagocytosis of pathogens is the immune response, and the term engulfment is used to define
the uptake of apoptotic cells (Table 1) [1]. Differences in the mechanisms of uptake between
professional phagocytes and tissue cells have been reported [29]; these appear to reflect the
rates of uptake and the timing of digestion rather than unique uptake mechanisms, receptors
and signaling.

It is generally accepted that the uptake of apoptotic cells involves four essential steps (Figure
1): the release of “find me” signals that advise the phagocytes of the presence of apoptotic
cells; the expression of “eat me” signals and recognition of the apoptotic cells by the phagocyte;
the cytoskeletal reorganization and internalization of the target; and the degradation of the
ingested apoptotic cell.

At the earliest stages of apoptosis, dying cells release diffusible factors, known as ‘find-me’
signals, which facilitate the recruitment of phagocytes. Lauber et al demonstrated that the lipid
lysolysophosphatidylcholine (LPC), a factor released by apoptotic cells, can attract monocytes
[30]. The regulation of this signals and the response induced in the phagocytes are still
unknown. Apoptotic cells then express “eat me” signals on the cellular surface in the early
stages of apoptosis [13] to allow phagocytic recognition. Several receptors have been reported
to mediate the binding and uptake of dying cells, the most studied of these factors is
phosphatidylserine (PtdSer) [31,32]. In addition, the phagocytes express receptors that
recognize the “eat-me” signals, i.e. the PtdSer-specific receptor [33–35]. The expression of the
“eat-me” signals appears to be cell specific and to depend on the coexistence of multiple factors,
i.e. by which cell is being engulfed, the receptors that are expressed by the apoptotic cell, the
state of activation of the phagocyte [36,37]. There is also evidence that inhibitors (“don’t eat
me” signals) play a role in this process and in its regulation [38]. Finally, to be able to engulf
the apoptotic cell the phagocyte requires an actin-dependent cytoskeletal reorganization that
involves two signaling pathways: first, the RHO family GTPases, with a fine balance between
activating (i.e. RAC) and inhibiting factors (i.e. RHOA) [39]; the second pathway involves the
cell surface receptor proteins ABC1/CED-7 and CD-91/CED-1 [40]. After internalization,
actin is displaced from the phagosome and the phagosome matures by a series of fusion and
fission events with components of the endocytic pathway culminating in the mature
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phagolysosome. Phagosome trafficking occurs primarily in association with microtubules and
therefore requires the coordinated interaction of the actin- and tubulin-based cytoskeleton. The
final step of the engulfment of apoptotic cells is the digestion, and importantly, the
consequences that the process determines in the cytokine secretion.

The absence of pro-inflammatory response after ingestion of apoptotic cells is considered one
of the key points of the engulfment of dying cells [41]. In fact, it has been demonstrated that
monocyte secretion of IL-1β, IL-8, granulocyte macrophage colony-stimulating factor, and
TNF-α is inhibited after phagocytosis of apoptotic cells whereas the secretion of anti-
inflammatory cytokines such as TGF-β1 and IL-10 is increased [7,42]; interestingly these data
have been also confirmed in vivo [6]. However, it is well accepted that impaired clearance of
apoptotic cells is related to the development of autoimmunity and promote the secretion of pro-
inflammatory cytokines [43]. A recent study seems to clarify in part this paradox [17]. In
congenital heart block (CHB) in infants from anti-Ro positive mothers the opsonization of
apoptotic cells with maternal antibodies inhibits the clearance of apoptotic cells with
consequent accumulation and production of inflammatory cytokines.

In conclusion, the role of apoptotic cells in the development of autoimmunity seems to be in
part related to a defect in their clearance, with consequent impairment of the balance of signals
associated to the apoptotic cell ingestion, i.e “eat me” signals [13], the phagocytic cell itself
and how long the apoptotic cells persists before and after phagocytosis occurs (Figure 2).

THE ADAPTIVE IMMUNE RESPONSE TO APOPTOTIC CELLS
Antigen presentation

A key factor in the induction of immune responses is the ability of DCs to internalize antigens
and present antigen-derived peptides on major histocompatibility complex (MHC) molecules
for the recognition by T lymphocytes.

Albert et al reported that immature DC are capable of phagocytosis of apoptotic cells, although
not as efficiently as macrophages [25,44] and that they can cross-present viral, tumor, and self-
antigens to CD8+ T cells [45]. Moreover, it was recently suggested that apoptotic cells are able
to promote maturation of DCs by upregulating costimulatory molecules and inducing
proinflammatory cytokine release, while functioning as endogenous adjuvants for the induction
of specific T cell responses [46]. Further evidence supporting the presentation of neo-antigens
derived from apoptotic cells by DCs has been reported [47–49]. Nevertheless, the issue remains
unclear and it has also been demonstrated that the uptake of apoptotic cells by DC suppresses
the secretion of IL-12, a paracrine agent that alters the maturation of the DC, resulting in the
inability to activate T cells [13]. These discrepancies may be due to the type of apoptotic cell
being used, the variable effects of early and late stage apoptotic cells on DC maturation [50],
and cytokine secretion [51].

Interestingly, DCs have a limited capacity for lysosomal degradation, due to a poor content of
lysosomal protease [52] and apoptotic cells contained in DC phagosomes have been observed
in the afferent lymphatics of the intestine directed to the lymphonodes [53]. On this basis, it
has been suggested that the slow degradation of ingested apoptotic material by DC may allow
an extended period of time to sample the microenvironment for danger signals, which stimulate
DC to initiate an immune response [54]. Danger signals include those received through pattern
recognition receptors such as Toll-like receptors (TLR) but also necrotic cells [55].

T cells
The first report of antigens expressed by apoptotic cells that were presented to T cells [45,
56] was published almost ten years ago. At the same time, T cell proliferation in PBMC isolated
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from both healthy controls or patients with systemic lupus erythematosus (SLE) was induced
using either apoptotic cells or isolated antigens [57]; cloning of these T cells confirmed that
antoantigens typically found in SLE, i.e. histones, were targeted by some of these T cell clones.
Since then it has became generally accepted that antigens generated or exposed during
apoptosis can lead the production of autoreactive T cells [13,58]. It is known that the
engulfment of necrotic cells strongly stimulate DC to mature and activate T cells; intracellular
proteins also activate DC [59] suggesting that cells must lyse before they can promote an
immune response. It has been then hypothesized that the autoimmune response is a
consequence of the uptake of late apoptotic cells. In fact, phagocytosis of late apoptotic cells
by mouse macrophages leads to the production of proinflammatory cytokines [60]. However,
this theory is in contrast with the recent report that autoantigens are translocated into small
apoptotic bodies during the early stages of apoptosis [21].

B cells
It has been proposed that apoptotic bodies can be targeted by autoantibodies [24] and that B
cells with Ig receptors for apoptotic cells are positively selected [61]. Accordingly, B cells that
react with apoptotic cells may tip the balance from tolerance to autoimmunity (Figure 2).

THE CONSEQUENCES OF APOPTOSIS IN AUTOIMMUNE DISEASES
It has been demonstrated that dysregulated apoptosis or impaired clearance of dying cells is
related to the development of autoimmune diseases. However, most of the data on apoptosis
in these conditions derives from observations and the pathogenic role of apoptosis remains to
be established. Three different processes involving apoptotic cells have been demonstrated to
be related to the development of autoimmunity. First, apoptosis is the mode of cell killing by
immune processes e.g. cytotoxic T lymphocyte; it can make autoantigens available for self-
perpetuating disease. Second, apoptosis in excess can be a source of autoimunogenic
fragments, as discussed here in the context of neonatal lupus syndromes. Finally, genetic faults
in apoptosis pathways, prototypically Fas/FasL, can interfere with tolerogenic deletion of
lymphocytes and facilitate autoimmunity, a typical example of this is the autoimmune
lymphoproliferative syndrome.

Table 2 summarizes the available data about the consequences of apoptosis in autoimmune
diseases

Systemic Lupus Erythematosus (SLE)
The complement protein C1q has been a focus of attention in SLE for many years, since C1q
is consumed during acute phases of the disease [62]. In recent years, C1q has taken on greater
importance, since it has been implicated in the effective removal of apoptotic products [63].
Several experimental reports demonstrate the relationship between impaired clearance of
apoptotic cells and SLE, and especially the involvement of C1q defects in SLE [64]. Kalaaji
et al demonstrated that large chromatin fragments, derived from apoptotic cells, localize in the
intraglomerular membrane in murine and human SLE [65], and that those intra-glomerular
membrane-associated nucleosomes are targeted by anti-dsDNA autoantibodies in human lupus
nephritis [66].

Neonatal lupus syndromes (NLS) affect a variety of different organs; the most relevant
involvement is represented by the heart, but also disorders of the skin, liver, and blood elements
are all linked with anti-SSA/Ro-SSB/La antibodies in the maternal and fetal circulation [67,
68]. The CHB is a rare condition caused by inflammatory degeneration of the myocardic
conductive system in infants from anti-Ro positive mothers, with SLE or Sjögren syndrome.
This disease is of special interest for the understanding of the role of apoptosis in the
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development of autoimmune diseases. It has been demonstrated that maternal autoantibodies
pass through the placental filter and recognize antigens expressed within the blebs of apoptotic
cardiocytes. Interestingly, the opsonization of blebs with maternal autoantibodies inhibits the
macrophage clearance with consequent accumulation and production of inflammatory
cytokines [17,69,70].

Autoimmune lymphoproliferative syndrome (ALPS)
ALPS is a rare defect in lymphocyte apoptosis that alters immune homeostasis resulting in an
expansion of a normally rare circulating lymphocyte, the αβ double negative T cell. ALPS is
associated with inherited heterozygous mutations in the Fas gene that serves as a risk factor
for autoimmunity involving blood cells and the development of lymphoma [71].

Primary biliary cirrhosis (PBC)
A characteristic feature of PBC is the specificity of the immune damage on the small
intrahepatic bile ducts, despite the fact that the mitochondrial targets are ubiquitous proteins
expressed in all nucleated cells. About 90% of patients with PBC have serum antimitochondrial
antibodies (AMA) against the E2 subunit of the mitochondrial pyruvate dehydrogenase
complex (PDC-E2). An anomaly of apoptosis in biliary epithelial cells (BEC) has been
hypothesized as a source of antigens that could be responsible for activation of autoreactive T
cells. It is known that macrophage phagocytosis of opsonized apoptotic cells is delayed in PBC
[19] and that oxidative stress [16] induce apoptosis in BEC. However, how the mitochondrial
antigens ultimate become exposed to the immune system is still unknown. In apoptotic BECs
PDC-E2 is released not modified, whereas other cell types loose the antigenicity of PDC-E2
during apoptosis [72]; this seems to be related to lack of glutathiolation of PDC-E2 in BECs,
since glutathiolation prevents autoantibody recognition [72]. Furthemore, BECs have the
ability to phagocyte apoptotic BECS and to present novel mitochondrial self-peptides derived
from phagocytosed apoptotic BECs [18]. These data support the hypothesis that phagocytosis
of apoptotic cell by non-professional phagocytes may contribute to the tissue specificity of
autoimmune diseases. Finally, Shimoda el al have recently suggested that BECs are “innocent
victims” of autoimmune injury and that the proinflammatory activity of BECs in PBC is
secondary to the intervention of liver-infiltrating mononuclear cells [73].

CONCLUSIONS AND FUTURE DIRECTIONS
The clearance of apoptotic cells, initially seen as an uninteresting “waste disposal”, is now
accepted as a multipurpose process that is critical to the maintenance of tolerance; indeed, the
removal of cellular components potentially antigenic is generally immunologically silent. One
of the major issues in autoimmunity has been the intracellular localization of many autoantigens
and how these molecules may become exposed to the immune system. An impairment in the
clearance of apoptotic cells may resolve this issue. However, there are still contradictions to
resolve: how does the anti-inflammatory response that follows the uptake of apoptotic cells
become pro-inflammatory? What is the role of DC in the presentation of new antigens? How
can we reconcile DC’s suppressive response to ingested apoptotic cells with their role of antigen
presenting cells of neoantigens? What are the genetic and environmental factors that regulate
apoptosis and antigen cleavage?

Nevertheless, we recognize the exciting prospect that the molecular identification of the factors
that promote the initiation and the maintenance of normal apoptosis could provide novel tools
for effective and possibly less toxic therapeutic interventions in patients with autoimmune
diseases.
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ABBREVIATIONS
DC  

dendritic cells

MHC  
major histocompatibility complex

SLE  
systemic lupus erythematosus

CHB  
congenital heart block

ALPS  
autoimmune lymphoproliferative syndrome

LN  
lupus nephritis
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Figure 1. Phagocytosis of apoptotic cells
At the early stages of apoptosis the dying cell releases the “find-me” signals that facilitate the
recruitment of phagocytes, it is generally accepted that multiple find-me signals work together
in this process but only data about lipid lysophodphatidylcholine (LPC) are found. Apoptotic
cells then express membrane eat-me signals which are recognized by phagocyte receptors;
phosphatidylserine (PtdSer) is the key receptor in this process and binds mainly the
Phosphatidylserine-receptor on the phagocyte. The PtdSercan also be expressed by the
apoptotic cell conjugated to milk fat globule EGF factor 8 protein (MFGE8) or growth-arrest-
specific 6 (GAS6), which in turn can be recognized by the phagocyte receptors αv β3-integrin
and MER. The cytoskeletal reorganization involves RHO family GTPases (i.e. RAC), ELMO1
(engulfment and cell motility 1), DOCK180 proteins represent one mode of activation. Other
modes of activation may also exist (not shown). After internalization, actin is shed from the
phagosome and the phagosome matures by a series of fusion and fission events with
components of the endocytic pathway culminating in the mature phagolysosome
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Figure 2.
Consequences of the engulfment of apoptotic cells in the immune system. The uptake of dying
cells is usually followed by an anti-inflammatory response and not associated with loss of
tolerance. However, an ineffective removal of apoptotic cells is related to generation of “neo-
antigensf that, presented to the T cells by mature DC can stimulate the production of
autoantibodies. Ag: antigen; Ab: antibody; DC: dendritic cell
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Table 1
Characteristics of the immune response induced after cell phagocytosis. AA: arachidonic acid, LPS: lipopolysaccharide

Necrotic cells Apoptotic cells

Cytokines • - Proinflammatory cytokine secretion • - Inhibition of pro-inflammatory cytokine gene
transcription

• - Anti-inflammatory cytokine secretion: TGF-
β, IL-10, IL-13

Inflammation • - Activation of thromboxane and NO
synthase

• - Activation by LPS

• - CD40L and CD40 up regulation

• - Induction of AA release and prostaglandine
synthase expression

• - Inhibition of thromboxane and NO synthase

• - CD40L and CD40 down-regulation

Dendritic Cells • - Presentation of exogen antigens to
CD4+ and CD8+ T cells

• - Immune tolerance: silencing CD4+ and
CD8+ T cells
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