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Summary
Recently there has been an increasing interest in using spectral searching as an alternative to
traditional database sequence searching methods for peptide identification from tandem mass
spectrometry. In spectral searching, the query spectrum is compared to a carefully compiled library
of previously observed and identified spectra; high spectral similarity signals positive identification.
We have previously developed an open-source software toolkit, SpectraST, to enable proteomics
researchers to integrate spectral searching into their data analysis pipeline. Here we report an
additional module to SpectraST that provides the functionality of spectral library building, allowing
users to build custom libraries when public spectral libraries do not adequately meet their needs. A
consensus creation algorithm was developed to coalesce replicate spectra identified to the same
peptide ion. Various quality filters were implemented to remove questionable and low-quality spectra
from the library. To validate the methodology, we first compiled a spectral library from the 1.3 million
SEQUEST-identified spectra (29,109 distinct peptide ions) among the publicly released datasets in
the Human Plasma PeptideAtlas, a collection of 40 contributed, heterogeneous shotgun proteomics
datasets, and verified the effectiveness of the library building algorithm to generate high-quality,
representative consensus spectra and to remove questionable spectra. We then re-searched the same
datasets by SpectraST against this spectral library filtered at different quality levels, and used the
performance as a benchmark to evaluate our library building methods and to determine key
parameters for high-quality library building. We demonstrated the importance of library quality on
the performance of spectral searching. The ready-to-deploy software allows individual researchers
to easily condense their raw data into specialized spectral libraries, summarizing useful information
about their observed proteomes into a concise and retrievable format for future data analyses.

Introduction
The inference of the peptide sequence from the tandem mass (MS/MS) spectra of fragmented
peptide ions is a critical step in mass-spectrometry based proteomics workflows. In most
proteomics application, this step is achieved by sequence database searching. In this approach,
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a target protein (or translated DNA) sequence database is used as a reference to generate all
possible putative peptide sequences by in silico digestion. The sequence search engine then
uses various rules to predict the theoretical fragmentation pattern of each of these putative
peptides, and compare the experimentally observed MS/MS spectra to these theoretical spectra
one-by-one for the best match (1–4). Unfortunately, due to the enormous search space and to
the computationally expensive spectral processing and similarity scoring algorithms, sequence
searching is time-consuming, and often requires substantial computational resources. With the
advent of more powerful mass spectrometers that are capable of generating spectra at even
faster rates, coupled with the increased interest in applying proteomics techniques to more
sophisticated experiments that require larger amounts of data, this problem is expected to get
worse in time. In addition, because of the uncertainty of the theoretical fragmentation pattern
predictions, the similarity scoring in sequence searching is suboptimal and often error-prone.
It is therefore important to devise methods that are more efficient and accurate than traditional
sequence database searching for identifying peptide MS/MS spectra (5,6).

Spectral library searching has been proposed as a useful complement, and in some cases, a
promising alternative to sequence database searching (7). In this approach, the peptide
identification is made by comparing the query MS/MS spectrum to a library of reference spectra
for which the identifications are known. This method has been commonly practiced for mass
spectrometric analysis of small molecules (8–10). Recently, thanks to the rapid accumulation
of shotgun proteomics data from which spectral libraries could be compiled, spectral searching
has become a reality for proteomics applications, with some preliminary demonstration of
success (11–14). As discussed in these reports, the advantages of spectral library searching
over traditional sequence searching are manifold. First, because the search space is confined
to previously observed and identified peptides, the search engine does not waste computational
time attempting to match the query spectra with putative peptide sequences that are never
observed in practice. This results in a drastic increase in search speed and selectivity. Second,
similarity scoring in spectral searching is more precise, in that one is comparing experimental
spectra to experimental spectra, and not to simplistic theoretical spectra constructed from
peptide sequences. Consequently, spectral searching is able to take full advantage of all spectral
features, including actual peak intensities and the presence of uncommon fragment ions, to
determine the best match. Therefore, the discriminating power of spectral searching is often
much greater, resulting in improved sensitivity and false discovery rates. Third, spectral
libraries can be condensed from identifications made by multiple methods (e.g., different
sequence search engines), allowing the strengths of each method to complement each other
and yield the best coverage possible. Consequently, by spectral searching against such a library,
one can reap the benefit of combining multiple methods, but without the additional time and
cost (11).

Of course, the availability of suitable spectral libraries is the prerequisite for the successful
implementation of spectral searching. In the context of proteomics, where the sheer number of
observable peptides makes it impractical to generate every reference spectrum from a purified
peptide, spectral libraries are typically compiled from peptide MS/MS spectra that are obtained
from the analysis of complex biological samples and identified confidently by traditional
sequence database searching. Recently, the National Institute of Standards and Technology
(NIST) has taken the steps to extend their mass spectral reference library, previously consisting
of small molecules, to include peptides from various organisms. Drawing from public shotgun
proteomics data available in various data repositories, they have compiled consensus spectral
libraries for 4 organisms, totaling about 90,000 spectra (15). Other smaller publicly available
libraries include those from X!Hunter (12) and from BiblioSpec (13). At the same time, we
have developed SpectraST, an open-source spectral search engine, to utilize these libraries for
peptide identification (11).
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However, despite the emergence of these public spectral libraries, there remains an acute need
for a ready-to-deploy software tool to create custom spectral libraries. The variety of biological
systems studied by mass spectrometry-based proteomics techniques is simply too great for a
centralized effort like NIST’s to tackle. Most likely, only the most popular model organisms
will have corresponding public spectral libraries. Even for these organisms, specialized
libraries covering subproteomes of interest are likely more useful than generic ones released
by NIST. Besides, there may also be needs for specialized libraries due to differences in
experimental practice (e.g., specialized peptide derivatization for enrichment or quantification
purposes), instrumentation and data acquisition parameter settings. Futhermore, due to various
constraints, some proteomics data are proprietary and cannot be released to the public domain
for centralized library building. A research group focused on a biological system not covered
by a suitable public spectral library can only resort to building their own custom spectral library.

To meet the needs discussed above, we have developed a ready-to-deploy library building tool
for use with proteomics data. Specifically, we have extended SpectraST, an open-source
spectral library search engine described above, to enable users to build their own spectral
libraries from sequence search results from several popular search engines. In the remainder
of this paper, we describe the library building features of this software tool. We also compared
various library building strategies proposed previously in the literature.

Experimental Procedures
Software Development

SpectraST is written in C++ and compiled on a Linux platform, although a Windows-
compatible version is made available together with the Trans Proteomic Pipeline (TPP)
software suite (16). The open-source, readily extensible software is designed to work efficiently
on modest computational resources, and requires no relational database backend or other
sophisticated computational infrastructure.

The spectral searching component of SpectraST has been previously described (11). To enable
users to build their own libraries from sequence search results, SpectraST has been extended
to accept sequence search results as input in the open pepXML format (16), and to perform
various library building functions, including consensus creation, best replicate selection, and
quality filters. Currently, search results from the sequence search engines SEQUEST (4),
Mascot (17), X!Tandem (18), Phenyx (19) and ProbID (20) can be written to pepXML formats
through the use of the Trans Proteomic Pipeline (TPP) software suite (16), and can all be used
in library building by SpectraST. It also provides other useful features, such as import of other
public library formats (NIST, X!Hunter and BiblioSpec), operations on libraries (union,
intersection, filters, etc.), and visualization of library spectra. The various library building
functionalities of SpectraST are depicted in Figure 1. Due to the open-source nature, users are
empowered to further explore strategies of library building within the framework of SpectraST.

We have also made SpectraST part of the TPP, which provides full workflow support, including
raw data file conversion to the open mzXML (21) format, automatic validation by
PeptideProphet (22), quantification, and data visualization, among others. This unique
advantage of SpectraST should enable users to switch over to the new workflow based on
spectral searching with minimal effort. The software is freely available to the community
(23).

Generation of Peptide MS/MS Spectra
In this study, we make use of the 40 publicly released (out of 61 total) datasets comprising the
current build of the Human Plasma PeptideAtlas (Build 2007-04). PeptideAtlas is a
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compendium of confidently identified peptides derived from a large number of contributed,
heterogeneous experiments processed through a uniform pipeline with validation (24–26).
Brief information about the sample preparation and instrumentation procedures employed in
these datasets is listed in Table 1; detailed information can be found in their respective
references. All samples are prepared from human serum or plasma, and digested with trypsin.
Sample depletion and fractionation methods vary from dataset to dataset. All the datasets used
in this study are from various models of ion-trap instruments. All of the datasets are available
as raw files, mzXML files, and SEQUEST search results on the data repository of PeptideAtlas
(http://www.peptideatlas.org/repository/).

Identifications of MS/MS Spectra by Sequence Searching
A total of about 16 million MS/MS spectra are acquired in the 40 datasets used in this study.
The raw data files are converted to mzXML 2.0 format using converters available with the
Trans Proteomic Pipeline (16). SEQUEST (version 27) is employed to identify the query
spectra by searching against a human IPI protein sequence database (31) (see Table 1), with
the following search parameters: +/− 3 Da parent average mass window, at least 1 tryptic
terminus, up to 5 missed internal tryptic cleavage sites, and variable methionine oxidation
(+16.0 Da). If applicable, cysteine alkylation modifications are also specified, depending on
the sample preparation of each individual dataset. A deamidation modification (−1 Da) on
asparagine is also specified for glyco-capture datasets. Exact search parameters used are
available alongside the datasets in the PeptideAtlas repository.

The SEQUEST search results of each dataset are analyzed through the Trans Proteomic
Pipeline. Mainly, PeptideProphet is used to validate the identifications and assign probabilities
to them, and ProteinProphet (32) is used to infer the set of proteins present in the samples based
on peptide identifications. A PeptideProphet probability above 0.9 is required for a peptide
identification to be included in the PeptideAtlas. A total of 1.3 million spectra are identified
with PeptideProphet probability above 0.9. The PeptideProphet-estimated false discovery rate
for these 1.3 million identifications is 1.2%. The data are available for download and browsing
as Human Plasma PeptideAtlas Build 2007-04 at http://www.peptideatlas.org/.

Library Building
A. Extraction of Experimental Spectra—The SEQUEST-searched, and PeptideProphet-
processed results of all 40 datasets are filtered by SpectraST for confident identifications. A
default PeptideProphet probability cutoff of 0.9 is used in this study, yielding a total of 1.3
million identifications. For each of these confident identifications, SpectraST extracts the
corresponding MS/MS spectrum, and imports it into a raw spectral library. Each spectrum is
normalized such that the base peak (most intense peak) has an intensity of 10000.0. Each library
entry contains the identification (peptide sequence, charge state, modifications if any), the
parent mass-to-charge ratio, the peak list of the experimental spectrum, and measures of
confidence such as sequence search scores and PeptideProphet probabilities. The isotopically
averaged parent mass-to-charge ratio of the library entry is calculated based on the peptide
sequence.

B. Creation of Consensus Spectra—The raw spectral library generated as described in
the previous section contains non-unique entries resulting from multiple observations of the
same peptide ion. Spectra with the same peptide identification are termed replicates. Where
available, replicates are combined to create a “consensus” spectrum that is representative of
the peptide ion through a series of steps:

1. Remove dissimilar replicates – Pairwise dot products among replicates are calculated,
and replicates that do not resemble the rest of the replicates are discarded.
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2. Rank the remaining replicates by quality -- The remaining replicates are then ranked
by their signal-to-noise ratio (defined here as the average intensity of the 2nd to 6th

highest peaks divided by the median intensity).

3. Align the replicates -- For each replicate, alignment is performed for each peak,
starting from the base peak, by looking for matching peaks in all other replicate spectra
within an adaptive m/z tolerance that is inversely proportional to the intensity rank of
the matched peak (+/− 0.8 Th at maximum). This helps limit the undesirable matching
of noise peaks while allowing significant peaks to be aligned easily. This process is
repeated for each replicate, starting from the top-ranked (highest signal-to-noise
ratio), and for each remaining unaligned peak.

4. Remove noise peaks -- A peak “voting” scheme is adopted, whereby the aligned peak
will be included in the final consensus spectrum if and only if it is present in more
than 60% of the replicate spectra. In other words, the resulting consensus spectrum
only contains peaks that are consistently present in a majority of the replicates, and
therefore should be largely devoid of random noise or spurious impurity peaks.

5. Average peak m/z and intensities -- The consensus m/z and intensity values are
calculated as weighted averages of the respective values of the corresponding peaks
in the replicates. The weight used is the signal-to-noise ratio of the replicate, so that
the consensus spectrum resembles the higher-quality replicates more than the lower-
quality ones.

6. Perform book-keeping – Various types of information, including the sample sources
and sequence searching scores are combined and copied over to the consensus library
entry, such that valuable information of the originating datasets is preserved for future
reference.

It should be noted that the above procedure for creating the consensus spectrum is devised in
the hope that it will work reasonably well under less than ideal circumstances, such as when
the number of replicates is small or when some replicates are of poor quality. The details of
the methodology were developed by trail-and-error and manual inspection of many consensus
spectra created with different methods and parameters, and were found to be effective. Due to
the open-source nature of the software, the user is encouraged and empowered to further
optimize the method as needed in different circumstances.

C. Quality filters—Even with a stringent probability cutoff and a deliberate and conservative
approach in creating consensus spectra, the resulting consensus spectral library still contains
occasional false positive identifications and low-quality spectra. To ensure that one does not
propagate the error made in the initial identification by sequence searching, or induce rampant
false positive matches to noisy spectra, the library is then subjected to various quality filters.
Three different quality filters were implemented in SpectraST, and are described below. The
user can select the desired quality level by turning on or off these qualiy filters. In this study,
the same spectral library is filtered at different quality levels and the results compared in the
Results and Discussion Section.

1. Impure spectra -- Impure spectra refer to spectra having an abnormally high number
of intense but unexplained peaks given the peptide identification. These are
determined by first attempting to annotate all the peaks as common fragment ions
from the peptide identified, and then calculating the fraction of intensity that remains
unannotated. SpectraST annotates each library spectrum using a comprehensive list
of fragment ion types, including neutral losses from the parent ion, b-, and y-type ions
and their neutral losses, a-type ions, and frequently observed fragments from alkylated
cysteines. For each possible fragment ion, the spectrum is scanned for the most intense
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peak within +/− 0.8 Th of the theoretical monoisotopic m/z value of that fragment
ion. If found, the peak is assigned the respective fragment ion annotation, and any
present higher isotopic peaks (up to +2 Da from the monoisotopic peak) are also
annotated as such. All remaining peaks are considered unannotated. We found that
the quality filter is most effective if it only considers the 20 most intense peaks of a
spectrum. The intensities of the unannotated peaks among the top 20 peaks are
summed, and if this sum exceeds a default threshold of 40% of the total intensity of
the top 20 peaks, the spectrum is considered impure and removed from the library.
Note that since the annotation information is not used when creating the consensus
spectra, no bias is introduced, and so the information can therefore be safely used for
quality filter purposes.

2. Similar spectra having conflicting identifications -- Due to the presence of noise and
other experimental artifacts, sequence searching can sometimes assign completely
different identifications to highly similar spectra. Our experience suggests that one
of the conflicting identifications is likely false. SpectraST detects these conflicting
identifications by searching the library spectra against itself, and spotting any spectral
matches (above a default dot product cutoff of 0.7) that do not occur between pairs
of identical or homologous library entries. SpectraST will then decide which of the
two identifications is more likely correct by comparing the number of replicates,
whereby the identification made more times is favored. In case of a tie, the
identification with the higher PeptideProphet probability is favored. The other
spectrum with the conflicting identification is then removed from the library.

3. Singly observed spectra -- These spectra stem from peptide ions that are observed and
identified only once among millions of identifications, and are often the result of false
positive identifications by the sequence search engine. In SpectraST, the user can
select whether to remove all singly observed spectra from the library, or to remove
only the subset of singly observed spectra for which the identifications are
unconfirmed by other library entries. To be considered confirmed, the identified
sequence must either be identical to that of another library entry (but with a different
charge state or modification), or share a sub-sequence with that of another library
entry (e.g., a semitryptic peptide that is part of a tryptic peptide).

Library Evaluation by Spectral Searching
In order to test the libraries built as described above, the 40 datasets used to generate the spectral
libraries are re-searched by spectral searching against the libraries using SpectraST. The search
algorithm has been previously described (11). A precursor m/z tolerance of +/− 3.0 Th was
used. In spectral searching, all candidate library spectra within the m/z tolerance, irrespective
of the number of tryptic termini, charge state or modifications, are considered for each query
spectrum. To compare library building strategies, we performed the same searches against 6
spectral libraries built from the same 40 datasets, as listed in Table 2.

The search result of each dataset was then run through the Trans Proteomic Pipeline.
Specifically, PeptideProphet was employed to assign probabilities to the top-scoring hit of each
query spectrum. The probability threshold, above which the search results were considered
positive, was selected separately for each dataset to yield a dataset-wide false discovery rate
of 1%, as modeled by PeptideProphet. The same analysis was performed for search results of
each of the 6 spectral libraries. Receiver operator characteristics (ROC) curves were generated
by aggregating the PeptideProphet model statistics across all 40 datatsets.
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Results
Creation of Consensus Spectra

The consensus spectrum creation process is illustrated in an example in Figure 2 A peptide
ion, SITLFVQEDR (charge +2), was observed 6 times (Figure 2a through 2f), with various
quality measures listed in Table 3. As can be seen, 5 of the 6 replicate spectra (Figures 2a
through 2e) are largely similar, but differ a great deal in quality. Figure 2a is probably the
highest quality spectrum, with the best signal-to-noise ratio, and Figure 2e is the worst.
Considering the peak intensities, large peaks are generally large across the board, but there are
significant variations in the actual intensities among the replicates. Figure 2f, on the other hand,
is an anomaly; it does not quite resemble the other 5 replicates at all, but was nevertheless
assigned to the same peptide ion, by SEQUEST. From our experience, this degree of variation
among replicate spectra is fairly typical.

The consensus spectrum generated by SpectraST is shown in Figure 2g. Several features of
the consensus creation process are worth noting. First, the variation among replicate data can
be rather large, and a successful consensus building strategy must effectively deal with this
variability. This is true even for data acquired in the same instrument (ThermoFinnigan LTQ)
in the same experiment (HUPOPPP34/HUPO34_b1-SERUM) as in this example. SpectraST
was able to detect and remove the spectrum in Figure 2f from consideration, an extreme but
not uncommon example of this inherent variability. On average, about 8% of replicate spectra
are removed in this manner.

Second, the consensus spectrum (Figure 2g) is clearly much less noisy than any of the
replicates, with significantly fewer unannotated peaks. This can be attributed largely to the
peak voting scheme that selectively retains annotated peaks, even those within the noise regime,
by virtue of their consistent presence in multiple observations. Figure 3 illustrates the noise
reduction effect of the consensus creation process. Even for peptide ions with as few as 2 or 3
replicates, the number of peaks in the consensus spectrum is only about a quarter of those in
the individual replicates; at the same time, the fraction of annotated peaks is much higher in
the consensus spectrum (69%) than that in the individual replicates (42%). As more replicates
are available, the peak reduction ratio increases until it plateaus at about 6, and the fraction of
assigned peaks plateaus at about 86%. Therefore, it appears that the availability of more
replicates improves the quality of the consensus spectrum, but the incremental increase is
minimal after about 20 replicates. This is to be expected, as once a reliably representative
consensus can be formed, introducing additional replicates to it should not add much
information.

Third, the overall appearance of the consensus spectrum resembles the higher-quality
replicates, properly reflecting the difference in confidence in the accuracy of the observations.
Quantitatively this can be seen in the second-to-last column of Table 3. This desirable effect
is achieved by weighted-averaging the aligned peak intensities by a measure of replicate
quality. Intuitively, uneven weighting is especially important in cases when only a handful of
replicates are available, and some are of poor quality, as in the example shown in Figure 2.

In summary, building a consensus spectrum is analogous to the scientific practice of averaging
multiple measurements of a quantity of interest, in order to obtain a reliable measurement closer
to the truth by minimizing experimental noise and artifacts. Therefore, the consensus spectrum
is not only a better representation of the expected fragmentation pattern of the peptide ion, but
is often of higher quality than the individual observed spectra, as demonstrated.
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Quality Control of the Spectral Library
In this study, the spectral library generated is subject to careful quality control. The motivation
for this step is two-fold. First, because the spectral libraries are derived from sequence search
results, one must be cognizant of the fact that some of the identifications are incorrect. Including
these misidentified spectra in spectral libraries can potentially propagate the error of the
sequence search engines and generate false positives in the spectral searching step. Second,
even with the noise filtering mechanisms employed, some low-quality spectra still remain.
These spectra may have been identified correctly by the sequence search engine, but are not
likely to be representative of the peptide ion. The signal-to-noise ratio may be very poor, such
that future matches to a spectrum are as likely to result from matching signals as from matching
noise. Or there may be significant contamination due to coeluting peptides or other impurities,
such that some intense peaks in the spectra do not come from the peptide ion identified. It is
important to note that when creating a spectral library, the correctness of the identifications is
essential, but not sufficient. The library spectra must also be high-quality and truly
representative observations of the originating peptide ions in a relatively pure form, so that one
can be confident that future matches to these library spectra necessarily imply the observations
of the same peptide ions in the sample. Therefore special care must be taken to ensure the
accuracy and quality of the library spectra.

We implemented three different quality filters for SpectraST to achieve the goal of pinpointing
questionable spectra and removing them from our libraries. First, impure spectra, in which
there are numerous intense unannotated peaks, for which no straightforward explanation can
be found given the peptide identification, are detected and removed. In addition to weeding
out many false positives, this also filters out extremely noisy spectra and spectra from highly
contaminated peptide ions. Second, SpectraST also detects highly similar spectra which are
assigned completely different identifications by the sequence search engine. Our experience
suggests that one of the two conflicting identifications is likely a false positive, usually caused
by the presence of noise that confuses the search engine. If these questionable spectra are
allowed to remain in the library, they will not only propagate the false positives in spectral
searching, but also cause false negatives when the questionable library spectra come up as
high-scoring second hits, due to high spectral similarity to the corresponding correctly
identified spectra. In this case, the top scoring hit will be erroneously considered insignificant
and discarded, leading to false negatives. Third, as a conservative and simple approach,
SpectraST also allows the user to remove all singly observed spectra. In a large enough body
of data such as the Human Plasma PeptideAtlas, the odds are against observing a certain peptide
ion only once among millions of acquired MS/MS spectra. On the other hand, false positive
identifications, which can be thought of as randomly distributed in the search space, often end
up being singly observed. In fact, removing all the so-called “one-hit wonders” from the set of
identifications is a popular method to reduce the false discovery rates in large datasets.
Moreover, in the context of spectral library building, the singly observed spectra should be
treated with special caution, since no additional replicate is available to help remove random
noise and ascertain the peak intensities. They are therefore of lower quality and less likely to
be truly representative of their respective peptide ions.

Some statistics of the consensus spectral libraries created from the Human Plasma PeptideAtlas
datasets (Table 1) are presented in Table 4. The three columns represent the spectral libraries
at different quality levels: Q0 (no quality control; all spectra are included), Q1 (intermediate
quality level; impure spectra and spectra having spectrally similar counterparts with conflicting
identifications are removed) and Q2 (high quality level; singly observed spectra are also
removed in addition to those removed at Q1). As shown, the quality filters reduced the size of
the library by 18% at the intermediate quality level, and 43% at the high quality level.
Importantly, considering the breakdown by probability of correct identification (as estimated
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by PeptideProphet), the lower the probability, the more likely the spectrum will be removed
by the quality filters. In addition, among the spectra removed at Q1, 86% are singly observed
spectra, and 95% are observed in only one dataset. This is in line with the expectation that a
good majority of the removed spectra should be false positives and thus should have lower
probabilities and be more likely to be singly observed and only found in one dataset. This can
also be seen in Figure 4, a Venn diagram of the 3 categories of questionable spectra determined
by SpectraST. As shown, there is considerable overlap among the 3 groups, suggesting that
many questionable spectra fail multiple filters, providing some cross-validation among the
three filters based on different criteria. Manual inspection of many of the removed spectra
confirmed that most of them are either misidentified or of poor quality.

Library Evaluation by Spectral Searching
One of the outstanding challenges in developing a method for spectral library building is the
difficulty of assessing the quality of the resulting libraries, which are often too big for manual
inspection. We propose that the quality of the libraries can be evaluated by the following two-
step strategy. First, libraries are built from the sequence search results of a predefined set of
datasets, employing different strategies such as those outlined above. Second, the same datasets
are searched against the spectral libraries, and the spectral search results compared. The metric
we use is the number of spectra identified at fixed false discovery rates. Given that all the
identifiable peptide ions in those datasets are represented in the library, the performance of the
spectral searches will be solely determined by the effectiveness of library building methods,
free from the influence of incomplete library coverage. Naturally, a “better” library would
allow the spectral search engine to better discriminate the correct and incorrect hits, resulting
in a greater number of spectra identified at fixed false discovery rates. We therefore compare
the search results against the 6 spectral libraries in Table 2 and summarize the results below.

A. Effect of Quality Level—We observe a strong dependence on the quality level of the
library. As shown in Figure 5, at a constant false discovery rate of 1%, the more stringent the
quality level, the higher number of identified spectra, although the difference between quality
levels Q1 and Q2 is very small. At first glance this may be counterintuitive, since the unfiltered
library Q0 has the maximum coverage, and so should be able to match more spectra. However,
if one factors in the confidence of the spectral match, the larger number of noisy and impure
spectra in Q0 contributes to a higher background similarity score due to matching of noise
peaks, resulting in diminished discriminating power.

While we obtained the best performance with the most stringently filtered library Q2, we feel
that a better balance between discriminating power and coverage can be found at the
intermediate quality level Q1, which performs only slightly worse than Q2. In fact, removing
all the singly observed spectra is perhaps too conservative, as this reduces the library size by
over 40% and results in a significant loss of coverage. One can determine, by manual
inspection, that a significant number of the singly observed spectra are actually correctly
identified, and are observed only once probably due to the rarity of the peptide in the samples.
The quality filters of SpectraST, therefore, allow the user to selectively retain these potentially
interesting spectra while maintaining similar level of performance and discriminating power.

B. Consensus vs Best-Replicate—The use of so-called best-replicate libraries are
previously proposed (13). This has the advantage of simplicity over consensus approaches. We
therefore sought to compare the search results against the consensus spectral library (at quality
level Q2) and those against the corresponding best-replicate library (Q2-BR). The two libraries
contain exactly the same peptide ions; the former contains consensus spectra, and the latter the
highest-quality (with highest signal-to-noise ratio) spectrum among the replicates observed for
each peptide ion.
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As shown in Figure 5, the sensitivity and false discovery rate of the search against Q2-BR is
significantly inferior to that against Q2. This is in fact not surprising in light of the last two
columns of Table 3, which show that the non-best individual replicates are generally more
similar to the consensus spectrum than to the best replicate. In other words, the consensus
spectrum is a truer representation of the characteristic fragmentation pattern of the peptide ion
than the best replicate, which is still subject to experimental variations and other random
artifacts. This is especially true when the number of replicates is small and none of them is of
particularly good quality. Combining mediocre replicates to form a consensus spectrum, which
removes noise and averages out experimental variations, is a much more robust strategy than
selecting any of the replicates to include in the library.

C. Full versus Reduced Consensus Spectra—It has been proposed in previous attempts
in spectral library building that the library spectra be simplified by retaining only a fixed
maximum number of peaks (12). This has the benefits of smaller library size and quicker
searches; however, some information that can potentially be used to aid discrimination will be
lost. To study the effect of number of peaks retained, reduced libraries Q2-20p and Q2-50p
from the consensus library Q2 are created by retaining the most intense 20 and 50 peaks,
respectively, in each spectrum, and their performances in spectral searching compared.

Figure 6 shows the proportion of total scaled intensity retained at different peak number cutoff,
for the consensus library Q2. Because, in principle, all peaks included in the consensus
spectrum are present in a majority of replicates, and there is no singly observed spectrum in
Q2, one can assume that most, if not all, of the peaks included represent useful information
about the expected fragmentation of the peptide ion. As shown, only about 50% of the total
intensity is retained if 20 peaks are kept, and about 80% is retained if 50 peaks are kept. It takes
about 100 peaks to retain over 95% of the total intensity. Therefore one expects some loss of
discriminating power if we simplify spectra in this manner, and the question is if the loss is
significant enough to cause a noticeable drop in performance.

Figure 7 shows the ROC curves for the spectral searches against the libraries Q2, Q2-20p and
Q2-50p. It is clear that Q2-20p suffers from a significant drop in performance, whereas Q2 and
Q2-50p offer largely similar performance except at very stringent FDR cutoff. In examining
the score histograms (not shown), we observed decreasing separation between the positive and
negative distributions modeled by PeptideProphet for the search against Q2-20p. Therefore, it
appears that reducing library spectra to only the top 20 peaks is an over-aggressive
simplification. Keeping the top 50 peaks, on the other hand, seems to be acceptable for spectral
searching purposes under the conditions studied. However, as with the NIST public libraries,
we would still advocate maintaining the full spectra for the sake of completeness. In fact, the
computational cost of using the full spectra is minimal, as we do not observe a significant speed
gain with the reduced libraries, probably because reading and processing the library spectra is
only performed once and represents a small fraction of the total search time.

Discussion
We believe that spectral searching, with its many advantages already discussed elsewhere, is
primed to take a prominent role in proteomics data analysis, especially in larger-scale studies
of many repeated samplings, and targeted approaches in which is the researcher is actively
looking for known targets in the sample. For these increasingly popular experiments, where
discovery of novel peptides is not the goal, it makes sense to learn from the past. Spectral
library building and searching is a straightforward and logical approach to take advantage of
previous experiments to improve the efficiency and sensitivity of future data analyses.
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We have developed an easy-to-deploy, open-source software toolkit, SpectraST, to enable
proteomics researchers to integrate spectral library building and searching into their data
analysis pipeline. SpectraST is an open-source program that allows the user to build spectral
libraries in a variety of ways, and to utilize them to identify newly acquired spectra by spectral
searching. We then proceeded to evaluate several library building strategies by a re-analysis
of the Human Plasma PeptideAtlas datasets, totaling over 16 million spectra in 40 datasets,
contributed by researchers from all over the world. Among our key findings is the importance
of quality control, a critical aspect of spectral library building that, we believe, can be easily
overlooked, for the naïve goal of the library builder is often to make the libraries as
comprehensive as possible.

Lastly, we would like to emphasize again that while there are ongoing and rapidly progressing
endeavors to build public, comprehensive spectral libraries, library building need not and
should not be restricted to the experts. Because SpectraST, unlike competing tools for library
building, takes special care to preserve the linkage between the library and the originating
datasets, a spectral library built in this manner is simply a concise summary of previous
experiments and their data analyses, and is a much more accessible and useful resource than
the raw data files themselves. The easy-to-use software presented in this paper should enable
smaller and more specialized research effort to build their own spectral libraries, and in doing
so, better organize and condense huge amounts of largely unusable raw data into an easily
retrievable manner for future reference and data analysis.
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Figure 1.
A schematic diagram showing the various library building functionalites of SpectraST.
Pertinent file formats are given in parentheses.
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Figure 2.
An example of consensus spectrum building. (a–f) Raw replicate spectra assigned to the same
peptide ion SITLFVQEDR (charge +2) by SEQUEST at probabilities above 0.9. (g) Resulting
consensus spectrum created for this peptide ion by SpectraST. Solid lines: annotated peaks
(annotations shown for common ions); Dotted lines: unannotated peaks. Various quality
measures of the replicates are listed in Table 2. All 6 replicates are from the same dataset
HUPOPPP34/HUPO34_b1-SERUM, acquired on a ThermoFinnigan LTQ at a collision energy
of 25.
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Figure 3.
Reduction of noise after consensus creation, by the number of replicates used. The average
peak reduction factor (bars, left axis) is the average, over all library entries in that bin, of the
peak reduction factor, which is defined as the average number of peaks in the replicate spectra
divided by that in the consensus spectrum. The average fraction of peaks annotated in consensus
(line, right axis) is the average, over all library entries in that bin, of the fraction of peaks that
are annotated in the consensus spectrum. Note also that the average fraction of annotated peaks
in the raw replicate spectra is about 42% (not shown in the figure).
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Figure 4.
Venn diagram of quality-filtered spectra. The three categories of questionable spectra (Impure,
Conflicting ID, and Single) as determined by SpectraST are described in the Experimental
Procedure Section.

Lam et al. Page 20

Nat Methods. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Receiver operator characteristic (ROC) curves for SpectraST searches against consensus
spectral libraries of three different quality levels – Q0 (squares), Q1 (triangles), Q2 (circles,
solid curve) and against a best-replicate spectral library Q2-BR (circles, dotted curve), of all
40 datasets used in the study, as estimated by PeptideProphet.
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Figure 6.
Average fraction of scaled intensity retained at different maximum number of peaks retained
per library spectrum, across all spectra in the Q2 library. Scaled intensity is defined as the
square root of the raw intensity; it is the measure used to calculate dot products during spectral
searching (Ref 11). Error bars represent one standard deviation of values calculated for all
spectra in the Q2 library.
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Figure 7.
Receiver operating characteristic (ROC) curves for the 3 SpectraST searches illustrating the
effect of library spectrum simplification, against consensus spectral libraries at three maximum
number of peaks retained – Q2 (full spectra retained, circles), Q2-20p (top 20 peaks retained,
diamonds), Q2-50p (top 50 peaks retained, triangles), of all 40 datasets used in the study, as
estimated by PeptideProphet.
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Table 2
Spectral libraries created from the 40 datasets listed in Table 1, and evaluated in this study.

Library Consensus/Best Replicate a Removed by Quality Filter b Max # Peaks
c

# Spectra

Q0 Consensus No Filter Full 29109

Q1 Consensus Impure, Conflicting ID Full 23841

Q2 Consensus Impure, Conflicting ID, Singletons Full 16669

Q2-BR Best Replicate Impure, Conflicting ID, Singletons Full 16669

Q2-20p Consensus Impure, Conflicting ID, Singletons Top 20 16669

Q2-50p Consensus Impure, Conflicting ID, Singletons Top 50 16669

a
Consensus (described in Section x) or Best-Replicate spectral libraries; in the latter, the replicate with the highest signal-to-noise ratio is selected as best

for each peptide ion.

b
Types of spectra removed by the quality filters described in Section x.

c
Spectrum simplification: Full = no simplication; Top N = keeping only the N most intense peaks in each consensus spectrum.
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Table 4
Statistics of Consensus Spectral Libraries at different quality levels.

Spectral library quality levels a Q0 Q1 (% decrease from Q0) Q2 (% decrease from Q0)

Total number of spectra 29109 23841 (18%) 16669 (43%)

By peptide termini

Tryptic 18265 14234 (22%) 10448 (43%)

Semitryptic 10844 9607 (11%) 6221 (43%)

By charge state

+1 1841 1818 (1%) 1152 (37%)

+2 18023 14237 (21%) 10175 (44%)

+3 9245 7786 (16%) 5342 (42%)

By probability b

>0.9999 9129 8973 (2%) 8195 (10%)

0.999–0.9999 3821 3648 (5%) 2965 (22%)

0.99–0.999 5432 4811 (11%) 3291 (39%)

0.9–0.99 10727 6409 (40%) 2218 (79%)

By number of replicates

1 11682 7172 (39%) 0 (100%)

2–3 4973 4493 (10%) 4493 (10%)

4–9 4663 4470 (4%) 4470 (4%)

10–19 2477 2441 (1%) 2441 (1%)

20+ 5314 5265 (1%) 5265 (1%)

By number of originating datasets

1 17980 12992 (28%) 5820 (68%)

2–3 6590 6329 (4%) 6329 (4%)

4–9 3442 3424 (1%) 3424 (1%)

10–19 930 929 (0%) 929 (0%)

20+ 167 167 (0%) 167 (0%)

a
Definition of the quality levels: Q0 = no filter; Q1 = impure spectra and spectra having similar counterparts with conflicting identifications are removed;

Q2 = spectra from only one observation are also removed in addition to those removed at Q1.

b
Maximum probability among the originating replicates as estimated by PeptideProphet.
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