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Abstract

Background: There is extensive variation in gene expression among individuals within and between populations. Accurate
measures of the variation in mRNA expression using microarrays can be confounded by technical variation, which includes
variation in RNA isolation procedures, day of hybridization and methods used to amplify and dye label RNA for
hybridization.

Methodology/Principal Findings: In this manuscript we analyze the relationship between the amount of mRNA and the
fluorescent signal from the microarray hybridizations demonstrating that for a wide-range of mRNA concentrations the
fluorescent signal is a linear function of the amount of mRNA. Additionally, the separate isolation, labeling or hybridization
of RNA does not add significant amounts of variation in microarray measures of gene expression. However, single or double
rounds of amplification for labeling do have small but significant affects on 10% of genes, but this source of technical
variation is easy to avoid. To examine both technical and stochastic biological variation, mRNA expression was measured
from the same five individuals over a six-week time course.

Conclusion: There were few, if any, meaningful differences in gene expression among time points. Thus, microarray
measures using standard laboratory procedures can be precise and quantitative and are not subject to significant random
biological noise.
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Introduction

Microarrays simultaneously quantify several hundred to thou-

sands of genes on a single glass slide and their use has greatly

expanded the breadth of quantified gene expression [1–10]. Yet

the preparation of RNA affects the precision of microarray

measures and therefore the ability to accurately quantify the

content of an RNA sample [11]. Additionally, differences in

microarray platforms, laboratory procedures and post-quantifica-

tion analyses affect the precision among arrays [12–15]. Thus,

technical variation can substantially affect the interpretation of

microarrays.

For the teleost fish Fundulus heteroclitus variation among

individuals in mRNA expression is extensive: .60% of genes

have significant differences in expression among individuals within

a population [1,9,16,17]. Many of these differences in gene

expression are associated with variation in cardiac metabolism [9].

However, the accuracy and biological relevance of these

differences in expression depends on the technical variation

inherent to microarray processing [1].

Accurate microarray quantification is best realized when there is

a linear relationship between fluorescence and RNA concentra-

tion. This linear relationship fails when the dynamic range of

microarrays are exceeded. For any microarray, there are two

parameters that define its dynamic range: the range of

fluorescence that can be measured and the range of RNA

concentrations that can bind to a specific array feature. These two

components of the dynamic range reflect the two types of

saturation that can occur on a microarray: photomultiplier tube

(PMT) saturation and biological saturation. A linear relationship

between fluorescence and RNA concentration can only occur if

the cDNA on the microarray captures proportional amounts of

RNA and if the PMT is not saturated.

The PMT measures the number of photons from the

fluorescently labeled RNA that are excited by the lasers. PMT

saturation is a result of the photomultiplier tube becoming

oversaturated due to an overabundance of converted electrons

by the analog to digital (A/D) converter. The A/D converter can

only convert the PMT signal into a value less than or equal to 216-

1 or 65,535 and thus any fluorescent photons captured at this

value of 65,535 are not discernable [18]. This type of saturation

can be avoided by reducing the PMT voltage and laser power.

Alternatively, the specific activity of the mRNA (number of

fluorescent molecules per message) can be reduced. However, the

reduction of the PMT voltage, power of the lasers, or reduced

labeling, does not address the question of whether or not a

particular cDNA on a microarray is biologically saturated.

Biological saturation occurs when the amount of mRNA that

can hybridize to the DNA on a microarray reaches a maximum

binding capacity of the printed DNA. If biological saturation is

reached, then the amount of a mRNA will be underestimated and

differences among arrays or experiments can not be appropriately

determined. To avoid biological saturation, the amount of target

RNA must be present in quantities less than the amount that the
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cDNA on the microarray slide can bind. To determine the range

and linear response of increasing amounts of mRNA, we

hybridized a 500-fold concentration range of labeled RNA from

cardiac tissue to the F. heteroclitus 384 cDNA metabolic microarray.

Sources of technical variation, other than PMT and biological

saturation, come from methods used to fluorescently label the

mRNA, the day on which the RNA is processed and varying

amounts of available tissue [19,20]. One of the most common

approaches to fluorescently label mRNA for microarray studies is

to amplify the RNA by synthesizing cDNA with a T7 RNA

polymerase binding site. RNA is then synthesized in vivo by using

the T7 RNA polymerase to incorporate amino allyls followed by

covalent binding of fluorescent molecules to the incorporated

amino allyls [21]. For small amounts of starting mRNA, the

synthesis of RNA using T7 can be repeated to double the

amplification. To understand the effect of a single round versus a

double round of linear amplification we compared the quantifi-

cation of RNA using both methods.

The day and process used to isolate mRNA are two additional

sources of technical variation. Variation in the preparation of

mRNA could alter its quality affecting how well the RNA

amplifies, is fluorescently labeled, and the signal observed on the

microarray. The day on which a tissue is sampled is not strictly

technical but can introduce a second type of variation: biological

variation. That is, isolating tissues on different days could

introduce technical variation because of the precision of dissection

and the quality of tissue or RNA preparation. However, because

tissues are sampled on different days, the organisms may be

biologically different (under more or less stress, healthier, or just

one day older). To examine technical variation due only to RNA

isolation, a single blood sample was divided into four, RNA was

separately isolated from each sample and, gene expression was

quantified. Biological variation was examined in a separate

experiment where five fish were bled every two weeks for a total

of six weeks in order to collect four separate samples from each

individual. Gene expression was quantified for these four

temporally separate samples.

These experiments indicate that for a wide range of experi-

mental conditions, microarray experiments using the Fundulus

array are both accurate and precise.

Materials and Methods

Organism
Fundulus heteroclitus were caught from wild populations in

Wiscasset, Maine, USA (43u579410N, 69u429450W) by minnow

trap. Fish were transported to the Rosenstiel School of Marine and

Atmospheric Science at the University of Miami and acclimated to

20uC and 15ppt for approximately 6 months.

Blood Sampling. Fundulus heteroclitus (N = 20) were

anesthetized with MS222 (0.1 g?l21) and given tags with

subdermal latex markers. Whole blood samples from each fish

were taken every two weeks by caudal puncture using a 50 ml

Hamilton syringe rinsed with heparinzed saline (50 i.u. ?ml21).

Samples were immediately frozen in liquid N2 and stored at

280uC. Only individuals that had all four serial samples taken

(N = 5) were used in the present study.

RNA isolation and amino allyl labeling
Total RNA was isolated using 4.5 M guanidinium thiocyanate,

2% N-lauroylsarcosine, 50 mM EDTA, 25 mM Tris-HCl, 0.1 M

b-Mercaptoethanol and 2% Antifoam A. The extracted RNA was

further purified using a Qiagen RNeasy Mini kit in accordance

with the manufacturer’s protocols. The quantity and quality of the

RNA was determined using a spectrophotometer (Nanodrop, ND-

1000 V3.2.1) and a bioanalyzer (Agilent 2100). RNA was then

converted into amino allyl labeled RNA (aRNA) using the Ambion

Amino Allyl MessageAmp II aRNA Amplification kit. This

method converts poly-A RNA into cDNA with a T7 RNA

polymerase binding site; T7 is then used to synthesize new strands

of RNA (in vitro transcription)[22]. During this in vitro transcription

of aRNA, an amino allyl UTP (aaUTP) is incorporated into the

elongating strand. aaUTP incorporation allows for the coupling of

Cy3 or Cy5 dyes (GE biosciences) onto aRNA for microarray

hybridization.

Dye labeled aRNA aliquots for each hybridization (typically

30 pmol each of Cy3 and Cy5) were vacuum dried together and

resuspended in 15 ml hybridization buffer (final concentration of

each labeled sample = 2 pmol/ml). Hybridization buffer consisted

of 56SSPE, 1% SDS, 50% formamide, 1 mg/ml polyA, 1 mg/ml

sheared herring sperm carrier DNA, and 1 mg/ml BSA. Slides

were washed in sodium borohydride solution in order to reduce

autofluorescence. Following rinsing, slides were boiled for

2 minutes and spin-dried in a centrifuge at 800 rpm for 3 minutes.

Samples (15 ml) were heated to 90uC for 2 minutes, quick cooled

to 42uC, applied to the slide (hybridization zone area was

350 mm2), and covered with a cover slip. Slides were placed in

an airtight chamber humidified with paper soaked in 56 SSPE

and incubated 24–48 hours at 42uC.

Microarrays
mRNA expression was measured using microarrays where each

array had four spatially separated replicates per gene. The 384 F.

heteroclitus cDNA microarrays were printed using 55 control genes

and 329 cDNAs which encode essential proteins for cellular

metabolism (Table 1). The annotation of genes and related

pathways used FunnyBase [23] and these were manually compared

to KEGG pathway designations. Because many genes belong to

more than one pathway, central metabolic pathways were

preferentially used if the gene coded for a protein that was a

catabolic or anabolic enzyme (versus acting in a signaling pathway

that affected metabolism). Controls include DNA spots labeled

with Cy5 (positive control for position and gridding) and Ctenophore

cDNA as negative controls.

Microarrays were created by printing cDNAs amplified with

amine-linked primers onto 3-D Link Activated slides (Surmodics

Inc., Eden Prairie, MN) at the University of Miami’s microarray

facility. All printed cDNAs were re-sequenced from the same

source used for printing. The microarray slides were scanned using

ScanArray Express. The raw TIFF-image data was quantified

using Imagene (v5).

All experiments used a loop design for hybridization of dye

labeled aRNA [24,25]. In a loop design [24,25] each individual is

labeled with Cy3 and Cy5. Each dye labeled sample is then

hybridized on different arrays with another individual [26]. Thus,

each individual is hybridized to two arrays with four replicates per

array for a total of eight technical replicates per individual. This

experimental design is a more efficient use of resources, providing

more data per array and is thus statistically more powerful than a

reference design.

To test for the relationship between fluorescence and the

quantity of RNA, five concentrations of fluorescently labeled RNA

were used: 1.2 to 700 pmol of Cy3 or Cy5 labeled mRNA where

pmol are for the amount of incorporated dye (Table 2). A 15 ml

hybridization using the 384 cDNA array corresponds to 0.09 to

47 mM of Cy dye. Cy5 dye labeled RNA was used at

concentrations 18% less than Cy3 because the Cy5 dye is a more

efficient fluorophore (greater fluorescence per photon) than the

Microarray Variation
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Cy3 dye. The average of eight fluorescence values for each gene

was normalized to the original concentration of RNA added.

Criteria for Inclusion
For a gene to be included in an analysis, the average signal

among all arrays and dyes had to exceed background but not

exceed 95% of PMT saturation (65,535). Background signal was

determined as the amount of fluorescence in negative control

array elements. Not all genes met these criteria and therefore were

not included in the analysis.

Statistics
To adjust for systematic variation, gene expression values were

first sum normalized, log2 transformed, and then loess normalized

using Microarray Data Analysis System Software (MIDAS) [12,27]

and SAS JMP Genomics v.6.0.2. For every gene, eight fluorescence

values were captured; four Cy3 values and four Cy5 values. Analysis

of variance (ANOVA) was performed using SAS JMP Genomics

v.6.0.2. To look for differences between single and double rounds of

amplification the following ANOVA model was applied: yijkl =

m+Ai+Dj+k+Rl+eijkl where m is the sample mean, Ai is the effect of the

ith array (i = 1–18), Dj is the effect of the jth dye (Cy3 or Cy5), Tk is

the effect of the number of rounds of amplification (single or double,

k = 2), Rl is the effect of the day on which samples were prepared

(l = 3), and epsilon is stochastic effects. The number of rounds of

amplification (single or double) and channel variables were treated

as fixed effects and array, and day on which samples were prepared

were treated as random effects. Statistical analyses of replicate blood

samples or repetitive measures of the same five individuals were

applied to a separate ANOVA for each individual. The ANOVA

model for this comparison was as follows: ymnp =m+Am+Dn+Tp+emnp

where m is the sample mean, Am is the effect of the mth array (m = 1–

4 for both replicate and repetitive samples), Dn is the effect of the nth

dye (Cy3 or Cy5), Tp is the treatment effect and epsilon is stochastic

effects. Sample, representative of either one of four temporal

samples from an individual or one of four replicate blood samples,

and channel were treated as fixed effects. Array was treated as a

random effect. Significant differences were evaluated with a p-value

cut-off of 0.01.

Results

Biosaturation
The concentration of fluorescently labeled RNA (0.09 to 47 mM

of Cy dye) represents 0.16, 16, 56, 106, 506 the concentration

of RNA typically used on F. heteroclitus cDNA microarrays

[9,26,28–30] (Table 2, MIAME GSE12858). Among the 329

metabolic genes on the array, 212 of these genes met our criteria of

being less than 95% of the PMT saturation and more than two

standard deviations above the negative controls (Ctenophore cDNA

with no similarity to vertebrate genes).

The linear relationship between the amount of RNA and

relative fluorescence is shown in Figure 1. To remove the gene

specific differences in expression, the fluorescence at each

concentration was divided by the mean fluorescence for that

specific gene (Fig. 1). The linear relationship between the amount

of total fluorescent RNA added and the measures of gene specific

fluorescence was determined for each gene. Most genes (176/212

or 83%) had an R2.95% and 78 genes had a nearly perfect R2

(.0.995; Fig. 1B; Table 3). Examining the 18 genes with the

lowest R2 values (less than 0.8) revealed a non-linear relationship

that can be explained by an apparent saturation at the 506
concentration of RNA (Fig. 1C). The relationship disappears if the

fluorescence values for the 506 concentrations of RNA are

removed and the 0.1 to 106 are plotted (Fig 1D–F). In the 100-

fold range (0.1 to 106) only three genes (1.4%) had R2 values less

than 0.8 (Table 3). Examination of the higher concentrations (1.0

to 506) revealed 19 genes (9%) with R2 less than 0.8 (Table 3).

These data suggest that for most genes there is a linear relationship

for a 500-fold range of RNA, however some cDNAs on the

microarray will reach biological saturation at the highest RNA

concentration.

Variation in RNA preparation
To determine how RNA preparation affects variation, cardiac

RNA from three individuals were combined, and then evenly

divided and amino allyl and dye labeled on three separate days

using single and double rounds of amplification (MIAME,

GSE12858). Only 110 genes met our criteria for inclusion because

many genes were below the low cut-off (Ctenophore negative control

cDNAs). In this experiment fewer genes met our criteria of above

background and below saturation due to sample RNA being

Table 1. 384 Array Metabolic Pathways.

Amino acid metabolism 28

ATP synthesis 27

Blood group glycolipid biosynthesis 3

Channel 3

Citrate cycle (TCA cycle) 24

Fatty acid metabolism/transport 36

Fructose and mannose metabolism 4

Galactose metabolism 2

Glutamate metabolism 7

Glutathione metabolism 10

Glycerolipid metabolism 7

Glycolysis/Gluconeogenesis 27

Inositol phosphate metabolism 14

Ox-Phos-ATPsyn 64

Pentose phosphate pathway 6

Purine & Pyrimidine metabolism 9

Pyruvate metabolism 2

Signaling pathway 10

Starch and sucrose metabolism 2

Sterol biosynthesis 8

Synthesis and degrad. of ketone bodies 4

Tetrachloroethene degradation 3

Secondary 27

TOTAL METABOLIC GENES 329

doi:10.1371/journal.pone.0004486.t001

Table 2. Concentrations of Cy3 and Cy5 dye labeled RNA
used for hybridization.

506 106 56 16 .16

Cy 3 700 pmol 140 pmol 70 pmol 14 pmol 1.4 pmol

Cy 5 583.3 pmol 116.6 pmol 58.3 pmol 11.6 pmol 1.2 pmol

doi:10.1371/journal.pone.0004486.t002

Microarray Variation
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divided for separate labeling using either single and double rounds

of amplification. An ANOVA was performed to measure

differences between single and double rounds of amino allyl

labeled RNA amplification. Twelve of the 110 genes (11%) used in

this analysis were significantly different between single and double

rounds of amplification at p,0.01. The majority of genes (59%)

had a higher fluorescence signal when only one round of

amplification was performed.

Consistency of Quantitative Determination
In teleost fish, red blood cell (RBCs) nuclei are transcriptionally

active [31,32], and these cells can be sampled without sacrificing

the fish. Thus to assess the consistency of microarray determina-

tions, two experiments were performed on blood gene expression:

1) to examine technical variation a single sample of blood was

divided into four samples; RNA isolations, amino allyl and dye

labeling, hybridization and quantitative analyses were performed

on each sample and 2) to examine biological variation, RNA

isolated from blood from the five individuals were each sampled

four times over a 6 week period (two weeks between samples;

MIAME, TBA).

Figure 1. Linear relationship of RNA concentration to relative fluorescence. Graphs show linear relationship between concentrations of
RNA (0.1–506, A–C, and 0.1–106, D–F) and relative fluorescence. Relative fluorescence is a normalized measure of fluorescence divided by the gene
specific mean. 16RNA is equal to 0.9 pmol/ml. Shown are the RNA concentrations versus fluorescence for 0.1 to 506(A–C) and for 0.16to 106(D–F);
for all genes (A and D), for the 78 genes with the highest R2 values (B and E), and for the 18 with lowest R2 values (C and F).
doi:10.1371/journal.pone.0004486.g001

Table 3. Number of genes and corresponding R2 for various
ranges of RNA concentrations.

R2 0.1–506 0.1–106 1.0–506

.0.9 176 199 178

,0.8 18 3 19

doi:10.1371/journal.pone.0004486.t003

Microarray Variation
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A one-way ANOVA was used to test for the technical variation

in gene expression between the four RNA samples isolated from a

single blood sample (Fig. 2). Among all 252 genes (eight replicates

per gene per sample) only 6 genes were significantly different for

the four isolates at a critical p-value of 0.01. Three false-positives

are expected at a p-value of 0.01 and thus with only 6 significant

differences (Fig. 2) there is little evidence that separate RNA

isolation, labeling and hybridization has much affect on measures

of gene expression. The lack of differences is not due to high

technical variation: CV (standard deviation/mean) among the

eight replicates was 4% and, only three genes had a CV of .10%.

Nor was it due to the low p-value of 0.01 versus 0.05 (Fig. 2); the

number of significant differences simply reflects the p-values.

Random biological variation can contribute to differences in

expression. We tested for random biological variation by bleeding

the same five individuals four times with two weeks between

bleedings (Fig. 3, MIAME, TBA). For each of the 304 genes that

met our criteria, an ANOVA tested for differences in expression

among the four different time periods for each individual (four

sample periods with eight replicates per gene per sample period).

Among the four temporal samples, there were between one and

seven genes that had a significant difference in expression at a p-

value of 0.01 (Fig. 3). Only one individual had more than the

expected number of false positives at the critical p-value:

individual-00 had 7 (2%) significant genes at p-value 0.01 for

304 genes.

Discussion

Understanding sources of variation in gene expression is important

for determining the biological importance of measured differences in

mRNA expression. The analyses of technical variation in the

metabolic F. heteroclitus cDNA microarray suggest that measures of

gene expression using the F. heteroclitus 384 cDNA microarray are

quantitative and precise. This conclusion is based on the observation

that there is a linear increase in fluorescence with increasing mRNA

(Fig. 1), and that there is little additional variation due to RNA

processing (Fig. 2) or the day on which RNA is isolated (Fig. 3).

There is a linear increase in fluorescence with increasing mRNA

for 98.5% of genes between 0.16 to 106 concentrations

(0.09 pmol/ul to 9.3 pmol/ul) and 95% of genes between 0.16
to 506 (0.09 pmol/ul to 47 pmol/ul). The linear relationship

between RNA and fluorescence is quite strong for RNA

concentrations of 0.16 to 106 having average R2 values of

0.97, and most genes (88%) have R2 values greater than 0.95 for

these four concentrations. The genes most affected by biological

saturation do not have a high fluorescence; if anything, they are

less than the average (genes with R2,0.8 for 16 to 506 have a

mean that is 60% of the mean for all other genes). The two

possible explanations for biological saturation with low fluores-

cence are that the synthesis of amino allyl labeled RNA for these

genes is strongly truncated or that there is less DNA printed on the

array for these genes. Truncation of amino allyl labeling would

Figure 2. Gene expression for Single Blood isolate. Heat map for single blood isolate that was divided into four. RNA was purified, labeled and
hybridized separately for each sample. Red is greater and green is less than the average gene specific fluorescence. First column (P) is the p-value
from a one-way ANOVA. Only 6 genes (2.3%) out of 252 are significant at a critical p-value of 0.01. P-values (2log10) shown in the heat map are from
an ANOVA for significant differences among samples using the 8 replicates for each separate RNA isolation. Color bar gives fold difference for log2

gene expression (e.g., 2 = 46) and negative log10 p-value (e.g., 2 = p-value of 0.01).
doi:10.1371/journal.pone.0004486.g002
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produce many more short probes with few labels per probe. Thus,

to produce a similar fluorescence many more molecules would be

necessary and these would saturate the DNA on the array. These

problems can be avoided by using moderate amounts of probe

(,10 pmol/ul). We typically avoid this problem by using 0.7 to

2 pmol/ul. Using concentrations of RNA up to 506 (47 pmol/ul)

is feasible, but our data suggest that at this high of a concentration

some genes will biologically saturate the cDNA on the array and

therefore should be avoided.

If RNA samples are amino allyl labeled using one round of T7-

RNA synthesis [22] versus two rounds of T7-RNA synthesis, 11%

of genes have significant differences in fluorescence at a p-value of

0.01. Although this difference in gene expression for single versus

double labeling is not large, it may be unacceptably high. Thus, we

would suggest that for any one experiment that a researcher uses

only single or double labeling procedures but not both within an

individual experiment. Approximately half (59%) of genes with a

significant difference between single and double labeling were

greater for single labeling. The greater fluorescence for single

labeling than that for double labeling would occur if cDNA or

RNA synthesis was truncated with each round of labeling.

Truncation would occur if the synthesis of cDNA or RNA were

incomplete forming shorter nucleotide sequences with less

fluorescence per RNA.

We used blood to test the effect of different RNA isolations,

amino allyl labeling and hybridizations. The first experiment used

a single blood isolation that was divided into four equal samples.

There are few differences in expression, 2.4% at a p-value of 0.01

(i.e., six versus the expected three false positives). If a Bonferroni

correction was applied none of these genes would be significant.

Therefore, technical errors do not necessarily contribute signifi-

cant amounts of variation. Similar conclusions were made about

microarray results among laboratories: many different laboratories

yielded similar results using different varieties of platforms [13–

15,33–36]. However, a few laboratories yielded different results.

Together these data suggest that good experimental practice can

minimize the effect of technical variation.

In a separate experiment, five individuals were bled once every

two weeks during a six-week period, resulting in four serial blood

samples from each individual. Any differences in expression

among sampling times could be due to technical variation, of

which there is very little as shown by the previous experiment, or

biological variation. That is, although fish appeared healthy, had

normal blood glucose, and the stress hormone, cortisol, did not

vary significantly (p.0.1), gene expression could vary significantly

for unknown biological reasons. Yet, for the five individuals there

are few, if any, meaningful differences in gene expression (only one

individual had more than the expected number of false positives,

Fig. 3). These data confirm the observation that technical errors do

not necessarily affect microarray measures. Importantly, these

data also suggest that for a tissue or blood sample there is little

random stochastic variation in gene expression. These data are in

Figure 3. Individuals sampled over time. Heat map for one individual (00) sampled 4 times over a total of 6 weeks. Numbers above the heat
map are time points (0, 2, 4 & 6 weeks) and the ‘‘P’’ is for p-value (2log10). P-values are from the ANOVA that tested for differences among separate
blood isolations within an individual (4 isolations and 8 replicates per isolation). For gene expression, red is greater and green is lower expression
than the mean expression for each gene. Table provides number of significant genes and percent (rounded up) out of the total of 304. Color bar gives
fold difference for log2 gene expression (e.g., 2 = 46) and negative log10 p-value (e.g., 2 = p-value of 0.01).
doi:10.1371/journal.pone.0004486.g003
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contrast to other publications suggesting that mRNA expression is

noisy and has large stochastic variation [37,38]. The important

distinction is that for a single cell, transcription is pulsatile,

occurring in bursts [37,38], and for an individual cell this creates

large stochastic variation in mRNA expression. However, our

results demonstrate that for millions of cells, this variation is not

apparent across a 6-week time course. We suggest that if there is a

large stochastic variation in each cell, sampling of millions of cells

masks this variation such that the amount of expression from any

one gene is stable over time.

The microarrays used here have array elements for essential

metabolic genes (Table 1) and are similar to the array elements

used in previous work demonstrating larger inter-individual

variation in gene expression [1,9,16,17]. While the data presented

here addresses the sources of variation in many microarray

experiments, the lack of temporal variation in gene expression in

our study may only reflect the expression of the metabolic genes.

However, these results are similar to studies of gene expression in

humans where the same individuals were sampled over a time

period of 24 hours to four weeks [39–41]. These studies also found

relative stable expression of a more diverse set of genes when the

same individuals were sampled over time. Thus, although there

are good biochemical or molecular reasons to expect stochastic

variation in gene expression, this variation is not necessarily

observed using routine sampling methods.

Microarrays are a useful technology for observing differences in

gene expression and data extracted from microarrays can be

reliably reproduced. With reasonable care, any experiment

involving microarrays is capable of obtaining biological data that

is not masked by technical variation thereby providing a true

representation of the transcriptome under a particular set of

conditions. However, caution is required before making conclu-

sions about the biological nature of the data until the sources of

technical variation are understood.
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