
or genetical inhibition of polar auxin transport (PAT) leads to altered 
apical-basal patterning of the gynoecium. When PAT is inhibited, 
the style and stigma in the apical part, and the gynophore in the 
basal part of the gynoecium, elongate and the ovary size concomi-
tantly decrease. Based on these data Nemhauser et al.,5 suggested a 
model for apical-basal patterning of the gynoecium where an auxin 
gradient spans the gynoecial primordium. In this model high auxin 
levels in the apical region promote differentiation and proliferation 
of the style and stigma, intermediate levels specify the ovary and low 
levels in the basal region specify the gynophore. Inhibition of PAT 
is proposed to result in apical shifts in the boundaries between the 
different tissues because of high accumulation of auxin in the source 
tissues, hypothesised to be the most apical parts, and depletion of 
auxin in the basal tissues downstream of the transport. In agree-
ment with this model high intensity signal of the auxin response 
reporter constructs DR5::GUS/GFP was detected in the apical end 
of developing plant organs, including the gynoecia.6,7 Although the 
auxin gradient model fits well with experimental data there is, to our 
knowledge, no direct evidences that such a gradient exists. In a recent 
review Østergaard8 suggested that another morphogen, possibly 
cytokinin, having a maximum at the basal part of the gynoecium, 
might function in parallel with auxin to specify the different apical-
basal regions of the gynoecium. Future studies will hopefully shed 
more light on these possibilities.

Many different transcription factors regulate gynoecium devel-
opment and AINTEGUMENTA (ANT), CRABS CLAW (CRC), 
ETTIN (ETT), JAGGED (JAG), LEUNIG (LUG), SEUSS (SEU), 
SPATULA (SPT) and STYLISH1 (STY1) are all required for carpel 
fusion and correct style and stigma development.9-15 ETT, SPT, 
SEU, STY1 and LUG have all been suggested to mediate auxin 
related processes of the gynoecium. ETT encodes an auxin response 
factor that appears to specify abaxial fate in the gynoecium together 
with KANADI (KAN) genes, and ett mutant gynoecia have a split 
style, reduced ovary size and increased gynophore length.3,5,10,16 SPT 
is ectopically expressed in ett gynoecia suggesting ETT to repress SPT 
activity.17 SPT has been proposed to promote auxin signalling in the 
apical part of the gynoecium and in spt mutants the apical part or 
the carpels are unfused and they lack the internal transmitting tract 
in the septum.5,12,17

SEU has been suggested to promote gynoecium development 
by transcriptional regulation of auxin response genes together with 
ETT, and seu mutants develop gynoecia with severely distorted apical 
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In angiosperms, the gynoecium constitutes the female repro-
ductive organ that after fertilization develops into a fruit and in 
Arabidopsis thaliana the gynoecium is formed by the congenital 
fusion of two carpels. In the last few years many genes involved in 
female organ development have been identified and there have been 
several reports on the involvement of the plant hormone auxin in 
gynoecium patterning. An auxin gradient has been suggested to 
establish the apical-basal patterning of the gynoecium and recently 
it has been shown that elevated apical auxin levels can compen-
sate for the loss of several style-promoting factors but that auxin 
is dependent on their action in apical-basal patterning. Here we 
discuss the role of auxin and different upstream, downstream or 
parallel factors in the apical-basal patterning of the gynoecium. 
We focus specifically on the development of style and stigma and 
discuss the most recent findings.

The gynoecium is the female reproductive organ of the flower 
and in A. thaliana it consists of two congenitally fused carpels. In 
this species the style and stigma is formed by postgenital fusion of 
the apical parts of the carpels. The stigma, constituting one layer of 
papillar cells, mediates the adherence and germination of the pollen 
grains and a short solid style connects the stigma with the ovary. 
The ovary consists of the two fused carpels forming the valves, and 
the replum, which internally is connected to the septum that bisect 
the ovary. The most basal part of the gynoecium is the gynophore, 
a short stalk-like structure that connects the ovary to the base of the 
flower. Abaxial (outer) vs. adaxial (inner) domains and medial vs. 
lateral domains are specified early during development of the gynoe-
cium primordium whereas the apical-basal polarity is specified later 
when the primordium grows into a tube-shaped organ.

Auxin is a plant hormone with important roles in e.g., organ 
patterning and cell differentiation and its profound influence on the 
development of the gynoecium is demonstrated by the defects caused 
by disturbed auxin biosynthesis, transport or signalling.1-4 Chemical 
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loss of a large number of style-promoting factors and that auxin 
acts either downstream of, or in parallel with, these. To discriminate 
between these two possibilities further studies needs to be made. The 
style defects of sty1 sty2 plants can be restored also by application 
of auxin directly on the apical end of developing gynoecia, but not 
by spraying the whole plants with auxin, indicating that local auxin 
peaks mediated by auxin biosynthesis appear important for gynoe-
cium morphogenesis and that the PAT system cannot compensate 
for all defects in biosynthesis.21

Even though the effect of inhibition of PAT on style development 
is similar in different style mutants, they respond differently with 
respect to apical-basal patterning of the gynoecium. The responses 
can be divided into three categories: normal (as wild type), hyper-
sensitive and hyposensitive. The response of ant, jag and jag nub to 
inhibition of PAT is normal suggesting that the morphogenic effects 
of auxin distribution, or auxin distribution itself, are not affected 
by these mutations.21 Auxin biosynthesis (yuc1, yuc4) and response 
mutants (axr1, ett and tir1) are hypersensitive to inhibited PAT 
indicating that there is a connection between auxin levels or respon-
siveness and sensitivity to reduced PAT.5,21,32 Because mutations in 
SEU, LUG, STY1 and STY2 also cause hypersensitive responses these 
genes most likely also affect auxin signalling or homeostasis.20,21 crc 
and spt are hyposensitive suggesting that mutations in both these 
genes results in a compensatory ability to disturbed PAT that may be 
linked to increased auxin responsiveness or transport.5,21

The response of different mutants to inhibition of PAT suggests 
that auxin promotes style and stigma development generally and can 
act independently of ANT, CRC, JAG, LUG, SEU, SPT and STY1. 
The morphogenic role of auxin in apical-basal patterning of the 
gynoecium is however dependent on several of these genes indicating 
a different mode of action of auxin in this process.

By controlling YUCCA-mediated auxin biosynthesis the SHI/STY 
genes could be responsible for the formation of a high auxin level in 
the apical part of the developing gynoecium, specifying the style and 
stigma. The upstream gene LUG could be one factor determining 
the expression domain of the SHI/STY genes, possibly together with 
SEU. SPT, and related genes, might direct differentiation of style, 
stigma and transmitting tract by mediating the response to the high 
auxin levels and/or by regulating PAT and thereby participating 
in the formation of the auxin gradient. The ovary size could be 
established by ETT responding to the intermediate auxin levels and 
repressing the expression of SPT in this region. ETT could also be 
involved in restricting the differentiation of style and stigma to the 
apical part.

It will be interesting to see if future experiments will provide more 
direct evidence of the existence of an auxin gradient in the devel-
oping gynoecium. The possible involvement of cytokinin and the 
interactions between the different factors participating in patterning 
the gynoecium also need to be addressed further.
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