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Abstract

Embryos of most fish develop externally and are exposed to an aquatic environment full of potential pathogens, whereas
they have little or only limited ability to mount an efficient and protective response. How fish embryos survive pathogenic
attacks remains poorly defined. Here we demonstrate that the maternal immunization of female zebrafish with formalin-
killed Aeromonas hydrophila causes a significant increase in C3 and Bf contents in the mother, a corresponding rise in the
offspring, and induces a remarkable increase in the hemolytic activities in both the mother and offspring. In addition, the
embryos derived from the immunized mother are significantly more tolerant to A. hydrophila challenge than those from the
unimmunized fish, and blocking C3 and Bf activities by injection of the antibodies against C3 and Bf into the embryos
render them more susceptible to A. hydrophila. These results clearly show that the protection of zebrafish embryos against
A. hydrophila can be achieved by the maternally-transferred immunity of the complement system operating via the
alternative pathway. This appears to be the first report providing in vivo evidences for the protective role of the alternative
complement components in the early embryos of zebrafish, paving the way for insights into the in vivo function of other
maternally-transferred factors in fish.
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Introduction

Eggs of most fish are released and fertilized externally, and the

resulting embryos and larvae are therefore exposed to an aquatic

environment full of potential pathogens capable of causing various

types of diseases. During the early stages of development, fish

embryos and larvae have little or only limited ability to synthesize

immune-relevant molecules endogenously and their lymphoid

organs are not yet fully matured [1,2]. How they survive the

pathogenic attacks in such a hostile environment is one of the key

issues for reproductive and developmental immunology, however,

information as such remains rudimentary to date.

Previous studies on several fish species have shown that

maternal IgM is able to be transferred from mother to offspring

[3–12]. Likewise, maternal transfer of innate immune factors

including the complement component C3 [13–17], lectins [18–

20], protease inhibitors [21,22] and lysozymes [23,24] to offspring

has also been reported in different teleost species. Moreover,

immunization of parents results in a significant increase in IgM

levels [6,11] and anti-protease and lysozyme activities [6] in their

eggs compared to controls. These transferred maternal molecules

have been proposed to be involved in the early defense against

pathogens in developing fish embryos and larvae. For example,

Wang et al. [16] have recently demonstrated by an in vitro assay

system of complement activity that the the protection of early

embryos of zebrafish Danio rerio against microbial attack can be

attributed to maternal complement components operating via the

alternative pathway (AP). However, it remains unknown whether

these alternative complement components function in vivo during

the early developmental stages. Therefore, the objectives of this

study were to examine if the maternal alternative complement

components are transferred from the immunized female D. rerio to

offspring, and if so, to test if these components transferred affect

the offspring immunity.

Results

Increase in C3 and Bf in immunized fish and eggs
The protein contents of the whole body homogenates (WBHs)

and egg extracts ranged from 13.1 to15.3 mg/ml, and from 15.7

to 18.6 mg/ml, respectively. Our previous study showed that the

key components, complement component 3 (C3) and factor B (Bf),

functioning in the AP, are present in the early embryos of D. rerio,

and the complement system operating via the AP is largely

attributable to the bacteriolytic activity in the early embryos,

therefore the contents of C3 and Bf were determined and

compared between the WBHs and egg extracts. Injection of PBS

into female D. rerio resulted in little changes in C3 and Bf contents

in both the WBHs and egg extracts (Fig. 1). In contrast, the

immunization with formalin-killed Aeromonas hydrophila induced a

significant increase in C3 and Bf levels in both the WBHs and egg

extracts. The C3 and Bf levels in the WBHs peaked at week 2 and

week 1, respectively, following the primary immunization; they

both decreased slightly and then increased significantly after the

secondary immunization (Fig. 1A and C). Interestingly, the

maternal immunization also caused a marked corresponding rise

in C3 and Bf levels in the egg extracts, and the fluctuation profile
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of the C3 and Bf contents in the egg extracts generally coincided

with that in the WBHs (Fig. 1B and D). This indicated that the

maternal immunization induced a significant increase of C3 and

Bf levels in the mothers, which in turn resulted in a marked

increase in C3 and Bf levels in their eggs. Moreover, the statistical

analysis revealed a significant difference between the peak values

of C3 and Bf amounts in both the WBHs and egg extracts after the

primary and secondary immunizations, suggesting that the

secondary immunization caused a significant increase in these

factors in the mothers as well as in the offspring.

Increase in hemolytic activity in immunized fish and eggs
The haemolytic activity driven by the AP was assayed, and the

reciprocal of the WBH or egg extract dilution causing 50% lysis of

the rabbit red blood cells (RaRBC) was designated as the ACH50.

Injection with PBS did not exert any influence on ACH50 in both

the WBHs and egg extracts, while the maternal immunization

resulted in a marked increase in ACH50 in both the WBHs and

egg extracts (Fig. 2A and B). Notably, the change in ACH50 in

the egg extracts had a fluctuation profile resembling exactly that

observed in the WBHs. Specifically, the ACH50 in both the WBHs

Figure 1. Influence of maternal immunization on C3 and Bf levels in the WBHs and egg extracts. Three immunized female D. rerio and
three control females as well as their released eggs were sampled every 7 days after the primary immunization. Whole body homogenates (WBHs)
and egg extracts were prepared, and used for the measurement of complement component levels. The complement component contents are
presented as percentages of total protein of the WBHs and egg extracts. The symbol * represents a significant difference (p,0.05).
doi:10.1371/journal.pone.0004498.g001

Figure 2. Influence of maternal immunization on the ACH50 in the WBHs and egg extracts. Three immunized female D. rerio and three
control females as well as their released eggs were sampled every 7 days after the primary immunization. WBHs and egg extracts were prepared, and
used for the measurement of hemolytic activities. The symbol * represents a significant difference (p,0.05) between the time-points indicated and
day 0 post the primary immunization.
doi:10.1371/journal.pone.0004498.g002
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and egg extracts increased moderately after the first week, peaked

after the second week, and decreased to the control level after the

third week post primary immunization; following the secondary

immunization, the ACH50 in both the WBHs and egg extracts

increased significantly at the first week time point (fourth week

since the primary immunization), peaked at the second week time

point (fifth week since the primary immunization), and remained

significantly higher after three weeks (sixth week since the primary

immunization). This suggested that, the innate immunity exem-

plified by the hemolytic activity in the immunized mothers was

also transferred to their offspring.

To correlate the increased hemolytic activity with elevated

values of C3 and Bf, female D. rerio were injected first with

formalin-killed A. hydrophila, and then 6 days later with anti-C3

antibody or anti-Bf antibody to inactivate the complement

component. The fish were sampled 24 h after the injection of

anti-C3 antibodies or anti-Bf antibodies, the WBHs were prepared

and the ACH50 was measured. As expected (see Fig. 2 above), the

ACH50 in the WBHs was slightly increased by immunizing D. rerio

with A. hydrophila when compared to the control (PBS-injected

group), but the ACH50 was remarkably reduced by the pre-

injection of anti-C3 and anti-Bf antibodies (Fig. 3). This provided

additional support for the previous observations that the hemolytic

activity was correlated with the levels of complement components

[30–32].

Increase in anti-infection activity in immunized eggs
Fig. 4 shows the cumulative percent mortalities of the embryos

obtained from both the unimmunized and immunized mother fish

at 24 h after the injection with live A. hydrophila. The percent

mortality of the embryos from the immunized D. rerio was

approximately 57%, whereas the mortality of the embryos from

the unimmunized D. rerio was about 76%. The mortality of the

embryos from the immunized mother was significantly lower than

that of the embryos from the unimmunized mother (p,0.05),

suggesting that the maternal immunization rendered the offspring

more tolerant to the challenge with A. hydrophila.

To further verify the killing of live A. hydrophila by the embryos,

PCR analysis was performed using a primer set (sense primer, 59-

AATACCGCATACGCCCTAC-39; anti-sense primer, 59-

AACCCAACATCTCACGACAC-39) amplifying a specific region

of A. hydrophila 16S rRNA gene. As shown in Fig. 5, no band was

observed in the control sample, but intense bands were seen in the

embryos collected soon after the bacterial injection (0 h), and the

band intensities apparently decreased with time (at 12 h and 24 h),

suggesting the lysis of the bacterium by the embryos.

Involvement of C3 and Bf in anti-infection activity in eggs
To test if the key components of the AP, C3 and Bf, are involved

in the protection of the embryos against the bacterial attack in vivo,

antibodies against C3 and Bf were microinjectedinto the embryos

to block C3 and Bf actions, respectively. It was found that the

microinjection of the antibodies against C3 and Bf both resulted in

a significant increase in the mortality of the embryos challenged

with live A. hydrophila, with cumulative mortalities of ,94% and

Figure 3. Effects of anti-C3 and anti-Bf antibodies on the
hemolytic activity. The fish were injected first with the formalin-killed
A. hydrophila, and , 6 days later with anti-C3 antibodies and anti-Bf
antibodies, respectively.. The WBHs were prepared at 24 h after the
injection of anti-C3 antibody or anti-Bf antibody, and the ACH50 was
examined. Ah: A. hydrophila.
doi:10.1371/journal.pone.0004498.g003

Figure 4. Influence of maternal immunization on the anti-
infection activity of D. rerio embryos. The embryos from the
immunized and control females were both challenged by injection of
live A. hydrophila 24–28 h post fertilization, and the cumulative
mortalities at 24 h after injection were counted. The symbol *
represents a significant difference (p,0.05) between the time-points
indicated and day 0 post the primary immunization.
doi:10.1371/journal.pone.0004498.g004

Figure 5. PCR analysis of A. hydrophila 16S rRNA gene in the
embryos. (A) A total of 10 embryos were collected each time at 0, 12
and 24 h post the bacterial injection, respectively, and DNAs were
isolated and used to amplify the specific region of A. hydrophila 16S
rRNA gene. (B) A single embryo was collected each time at 0, 12 and
24 h post the bacterial injection, respectively, and DNAs were isolated
and used to amplify the specific region of A. hydrophila 16S rRNA gene.
The PCR products were electrophoresed in 1% agarose and the bands
were recorded using the gel imaging system. M: Marker; C: Control.
doi:10.1371/journal.pone.0004498.g005
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,87%, respectively, contrasting to that of ,77% in control

(Fig. 6). It was clear that both C3 and Bf were involved in the

antibacterial activity in the developing embryos, indicating that

the complement system operating via the AP was one of the most

important factors associated with the protection of the embryos in

vivo.

Discussion

Due to lack of immune competence at the early stages, how the

piscine embryos survive pathogenic attacks remains poorly

defined. Previously, passive transfer of both IgM and IgM-related

immunity into offspring by immunizing mother has been reported

in several teleostean fish including tilapia [25,26], rainbow trout

[27], salmon [28], sea bream [29], and carp [11]. In contrast,

similar studies focussing on innate immune factors are much more

limited. In this study, we first demonstrate that the immunization

of female D. rerio with the formalin-killed A. hydrophila results in a

significant increase in C3 and Bf contents in the mother and a

corresponding rise in the offspring (Fig. 1), confirming the

presence of C3 and Bf in the eggs of D. rerio as reported by Wang

et al. [16]. To test if the innate immunity bestowed by C3 and Bf is

transferred, we determined the hemolytic activities exemplified by

ACH50 in the WBHs and egg extracts, which correlate well with

the protein levels of complement contents [30–32]. It was found

that the maternal immunization also causes a remarkable increase

in the hemolytic activity in the mother and a corresponding

increase in the offspring (Figs. 2 and 3). Furthermore, the

developing embryos derived from the immunized D. rerio are

significantly more tolerant than those from the unimmunized

mother upon challenge with A. hydrophila (Figs. 4 and 5).

Moreover, abrogation of C3 and Bf activities by injection of the

antibodies against C3 and Bf into the developing embryos to block

the AP, followed by the challenge with A. hydrophila, leads to a

significantly increased mortality in the target embryos (Fig. 6).

Taken together, these data clearly show that not only C3 and Bf

are able to be transferred from the immunized female D. rerio to

offspring, but these factors are also able to confer protection to the

offspring as well. This appears the first report elucidating the

protective role in vivo of maternally-transferred alternative

complement components in the developing embryos of non-

mammalian vertebrates.

Complement is a sophisticated proteolysis system which plays

two major roles in humoral immunity: one is to lyse pathogenic

cells directly; and the other is to opsonize pathogens for

phagocytosis and to recruit immunocytes to the reaction focus.

The present study clearly shows the presence of C3 and Bf inside

the eggs/embryos. As the macrophages are not observed in D. rerio

embryos younger than 2-day-old larvae [33,34], the key

components C3 and Bf functioning in the AP may exert their

antibacterial activity by interacting with and destabilizing the

invading pathogens, leading to the pathogenic cell lysis (Fig. 5). In

agreement, the maternally transferred IgM stored in the yolk sac

in D. rerio embryos is also able to retain the capability to bind

antigens [3,25,26,29]. When the macrophages occur later in the

embryos, C3 and Bf may also function in opsonizing the

pathogenic cells for phagocytosis.

It is of note that after the secondary immunization, both C3 and

Bf contents are significantly elevated in the mother and offspring

(Fig. 1). Similarly, the hemolytic activities are also markedly

enhanced in the mother and offspring following the secondary

immunization (Fig. 2). These suggest that repeated maternal

immunizations are able to strengthen the maternal immunity of

the offspring, which can be potentially applied to protect fish too

young to mount an immune response of their own. Additional

studies will be required, however, to determine if this transferred

immunity can be maintained for an extended period of time.

To summarize, we have shown for the first time that the in vivo

protection of zebrafish embryos against A. hydrophila can be

achieved by the maternally-transferred immunity of the comple-

ment system operating via the AP. As the maternal transfer of

complement components to piscine offspring appears widespread,

the complement-mediated maternal immunity may be a general

route for protecting fish embryos and larvae from pathogenic

attacks. It will be of interest in the future to study if the maternal

IgM transferred can aid activation of the AP in the developing fish

embryos.

Materials and Methods

Reagents and solutions
Ethylenediaminetetraacetic acid (EDTA), ethyleneglycol-bis (B-

aminoethyl ether)-N, N, N9-tetraacetic acid (EGTA), bovine serum

albumin (BSA), gelatin, O-phenylenediamine dihydrochloride

(OPD), 3-aminobenzoic acid methyl ester (MS222), dichloro-

diphenyl-trichloroethane (DDT) and Triton X-100 were pur-

chased from Sigma (USA). Tryptic soy broth (TSB) was procured

from OXOID (UK), and complement C3 and Bf standards were

from ADL (USA), rabbit anti-human C3 antibody from Abcam

(UK), goat anti-human Bf antibody from R&D (USA), and

horseradish peroxidase (HRP)-labeled rabbit anti-goat IgG and

goat anti-rabbit IgG from Boster (China). All the other chemicals

used were analytical reagents.

The buffers used in the experiment for the alternative

complement activity (ACH50) assay were: gelatin verona1 buffer

(GVB), isotonic veronal-buffered saline (pH 7.3) containing 5 mM

sodium bartiturate, 446 mM NaCl and 0.1% gelatin; EDTA-

GVB, GVB containing 10 mM EDTA; and Mg2+-EGTA-GVB,

GVB containing 10 mM Mg2+ and 10 mM EGTA (Sunyer and

Tort, 1995).

Figure 6. Influence of anti-C3 and anti-Bf antibodies on the
anti-infection activity of D. rerio embryos. The embryos were first
microinjected at 24–28 h post fertilization with antibodies against C3 or
Bf, and then challenged by injection of live A. hydrophila 1 h later. The
cumulative mortalities were counted at 24 h following the bacterial
injection. The symbol * means a significant difference (p,0.05).
doi:10.1371/journal.pone.0004498.g006
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Preparation of bacterium Aeromonas hydrophila
The bacterium Aeromonas hydrophila LSA 20, pathogenic to D.

rerio, was a gift of Dr. Z. L. Mo in the Institute of Oceanology,

Chinese Academy of Sciences. It was grown at 28uC in TSB for

16 h. After enumerating with a blood cell counter, the bacterial

cells were washed three times with sterile PBS, re-suspended at a

density of 1.336108 cells/ml, and used for the bacterial challenge

experiments. Also, the bacterial cells were inactivated by the

fixation with 0.4% formalin at 28uC for 24 h, harvested by

centrifugation at 3000 g for 10 min at 4uC, re-suspended in PBS

at 2.56109 cells/ml, and used for the immunization experiments.

Preparation of rabbit red blood cells (RaRBC)
Blood was collected from the ear artery of a New Zealand male

rabbit, mixed immediately with an equal volume of Alsever’s

solution and centrifuged at 500 g for 5 min. The pelleted RaRBCs

were washed three times with Mg2+-EGTA-GVB, adjusted to

2.56108 cells/ml with the same buffer, stored at 4uC and used

within a week [35].

Fish immunization, sample collection and preparation
In total, 60 sexually-mature female D. rerio at age of 6 months

old were divided into two groups. Fish of the experimental group

were anaesthetized with Tris-buffered MS222 (168 mg/ml),

injected intramuscularly with 20 ml of A. hydrophila suspension,

and followed by a secondary immunization after 3 weeks to

strengthen the immune effects as shown in Fig. 7. Similarly, fish of

the control group were injected with 20 ml of sterile PBS.

Immunized and control (unimmunized) fish were maintained in

separate tanks with well-aerated tap water at 2661uC.

Immunized and control female fish were mated with normal

male D. rereio at a female to male ratio of 2:1 prior to the primary

immunization and every 7 days post the primary immunization

(zebrafish reproduce eggs weekly in appropriate conditions).

Naturally fertilized eggs, which were usually at 4- to 8-cell stage,

were collected, washed three times with sterile PBS, and

homogenized. The homogenates were centrifuged at 15 000 g

for 30 min at 4uC, and the supernatants called egg extracts were

pooled and stored at 270uC until used. For the fertilized eggs

collected on the 35th days post the primary immunization (i.e., at

the second week post the secondary immunization), about 100

eggs were taken from each group, and cultured for the following

bacterial challenge experiment.

Immediately after spawning, three female D. rerio were each

sampled prior to the primary immunization and every 7 days post

the primary immunization. As the serum is rather difficult to

collect from zebrafish because of its small size, the whole body

homogenates (WBHs) were therefore prepared by the method of

Holbech et al. [36] and used to measure the complement

component levels and hemolytic activity. The fish sampled were

crushed in a mortar filled with liquid nitrogen, mixed with 2

volume of the body weight of ice-cold PBS (w/v), and centrifuged

at 15 000 g for 30 min at 4uC. The supernatants were pooled and

stored at 270uC until used.

Another 24 female D. rerio were divided into 4 groups, A, B, C

and D. The fish in groups A, B and C were anaesthetized and

injected with 20 ml of A. hydrophila suspension at 2.56109 cells/ml,

and the fish in group D were injected with the same volume of

sterile PBS as control. Six days later, the fish in groups A and B

were injected with 20 ml of anti-C3 antibody solution at 100 mg/

ml or 20 ml of anti-Bf antibody solution at 100 mg/ml, and the

fish in groups C and D injected with 20 ml of sterile PBS. The fish

in each group were collected 24 h later, and the WBHs were

prepared as described above.

The protein concentrations were determined by the method of

Bradford [37] with BSA as standard.

Enzyme-inked immunosorbent assay (ELISA)
Our previous work [16] has shown that the rabbit anti-human

C3 antibody and goat anti-human Bf antibody can react with

zebrafish C3 and Bf, respectively, therefore, these antibodies were

selected to measure the contents of C3 and Bf in the WBHs and

egg extracts by ELISA. In brief, the wells in 96-well microtiter

plates (Costar) were each coated with 100 ml of C3 and Bf

standards, WHBs, and egg extracts, respectively, and placed at

4uC overnight. After washing 5 times with PBST (PBS containg

0.1% Tween-20), the wells were each blocked with 100 ml of 3%

BSA at 32uC for 1 h, followed by addition of 100 ml of rabbit

anti-human C3 antibody diluted at 1:1000 with PBS or goat anti-

human Bf antibody diluted at 1:400 with PBS into each well and

incubation at 32uC for 1 h. The wells were washed with PBST,

added with 100 ml of HRP-labeled anti-rabbit IgG diluted at

1:1000 with PBS or anti-goat IgG diluted at 1:1000 with PBS,

and incubated at 37uC for 1 h. Subsequently, an aliquot of 75 ml

of 0.4 mg/ml OPD in 51.4 mM Na2HPO4, 24.3 mM citric acid

and 0.045% H2O2 (pH 5.0) was added to each well, and

incubated at 37uC for 20 min in dark. To terminate the reactions,

25 ml of 2 M H2SO4 was added into each well, and absorbance at

492 nm was monitored by a microplate reader (GENios Plus,

Tecan).

Hemolytic activity assay
The haemolytic activity driven by the AP was assayed as

described by Sunyer and Tort [38]. The assay was carried out in

Eppendorff tubes. A volume of 25 ml of RaRBC suspension was

mixed with 100 ml of WBHs or egg extracts that were both diluted

Figure 7. A schematic diagram of the experiment.
doi:10.1371/journal.pone.0004498.g007
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2-fold serially in Mg2+-EGTA-GVB. The tubes were incubated at

25uC for 100 min, with gentle shaking. The reactions were

stopped by addition of 1 ml of cold EDTA-GVB. The tubes were

then centrifuged at 1600 g for 5 min and the extent of haemolysis

was determined by measuring the OD of the supernatants at

414 nm. Total (100%) hemolysis was given by the optical reading

of the supernatant obtained by centrifuging the mixture of 25 ml of

the RaRBC suspension plus 1100 ml of distilled water. The

reciprocal of the WBH or egg extract dilution causing 50% lysis of

the RaRBC was designated as the ACH50. The results were

normalized by the protein contents of the WBHs or egg extracts

and presented as U/mg.

Bacterial challenge assay
To test if the embryos derived from the immunized females

were more resistant to bacterial challenge, the pharyngula stage

embryos (24 to 28 h post fertilization) developed from the fertilized

eggs collected from the immunized and control females on the 35th

days post the primary immunization were dechorionated,

anaesthetized with 0.02% MS222 and microinjected in the yolk

sac with ,6 nl (,400 cells) of live A. hydrophila suspension. The

cumulative mortalities were counted and calculated at 24 h after

the bacterial injection.

To verify the killing of A. hydrophila by the embryos, another 100

healthy embryos derived from the control females were dechor-

ionated, and microinjected with live A. hydrophila as described

above. A total of 10 embryos as well as a single embryo were

collected each time at 0, 12 and 24 h post the bacterial injection,

respectively. Normal (untreated) embryos were also collected to

serve as controls. DNAs were isolated from the embryos according

to the method of Li et al. [39]. Briefly, the embryos were washed 3

times with sterile H2O, lysed with 50 ml of sterile alkaline embryo

lysis (200 mmol/L NaOH, 50 mmol/L DDT and 1% Triton X-

100), incubated at 65–70uC for 20 min and then cooled on ice

immediately. An aliquot of 3 ml of the lysates was sampled and

used as DNA template. The PCR was carried out under the

following conditions: 95uC for 10 min, followed by 38 cycles of

95uC for 30 s, 55.5uC for 30 s, and 72uC for 1 min and one cycle

of 72uC for 7 min. The PCR primers used were the sense primer

59- AATACCGCATACGCCCTAC-39 and anti-sense primer 59-

AACCCAACATCTCACGACAC-39, which were designed on

the basis of A. hydrophila 16S rRNA sequence (GenBank accession

no. DQ207728) and were able to amplify a specific region of A.

hydrophila 16S rRNA gene.

To assay if the complement system operating via the AP is

associated with the protection in vivo of the embryos, 300

pharyngula stage embryos derived from the non-immunized

females were dechorionated, anaesthetized, and divided into three

groups A, B and C. The embryos in group A were individually

microinjected in the yolk sac with ,6 nl of rabbit anti-human C3

antibody (,0.28 ng), the embryos in group B were each injected

with ,6 nl of goat anti-human Bf antibody (,0.24 ng), and the

embryos in group C injected with ,6 nl of sterile PBS (control).

All the embryos in the three groups were then each microinjected

in the yolk sac with ,6 nl of live A. hydrophila (,400 cells) at 1 h

later. The cumulative mortalities were accounted at 24 h after the

bacterial injection.

Statistical analysis
All experiments were performed in triplicate, and repeated at

least three times. Data were subjected to statistical evaluation with

one-way analysis of variance, and difference at p,0.05 was

considered significant. All data were expressed as mean6standard

deviation (SD).
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