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Abstract

Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The
presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein
assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel
quantitative metabolomic approach based on stable isotope dilution to compare the complement of siderophores
produced by Escherichia coli strains associated with intestinal colonization or urinary tract disease. Because uropathogenic E.
coli are believed to reside in the gut microbiome prior to infection, we compared siderophore production between urinary
and rectal isolates within individual patients with recurrent UTI. While all strains produced enterobactin, strong preferential
expression of the siderophores yersiniabactin and salmochelin was observed among urinary strains. Conventional PCR
genotyping of siderophore receptors was often insensitive to these differences. A linearized enterobactin siderophore was
also identified as a product of strains with an active salmochelin gene cluster. These findings argue that qualitative and
quantitative epi-genetic optimization occurs in the E. coli secondary metabolome among human uropathogens. Because
the virulence-associated biosynthetic pathways are distinct from those associated with rectal colonization, these results
suggest strategies for virulence-targeted therapies.
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Introduction

Urinary tract infection (UTI) is a highly prevalent infectious

disease with a well-known female predilection and a high

incidence of recurrence [1]. E. coli is responsible for up to 85%

of community-acquired UTI, and previous studies suggest that the

same E. coli strain can cause recurrent UTI’s despite initial

antibiotic treatment [2,3,4]. UTI has classically been considered to

follow inoculation of the bladder through urethral ascension of

rectal flora [5]. Urethral ascension to the bladder is considered to

be more common in women due to their shorter urethral length

and facilitated by mechanical effects on the urethra during

intercourse, which is a major risk factor for UTI. The events

preceding clinical UTI where colonization progresses to symp-

tomatic bacteriuria are poorly understood and difficult to study.

Whether selection of UTI-associated strains from gut E. coli

populations is stochastic or the result of intrinsic strain properties

has been the subject of multiple investigations. Genes involved

with iron acquisition routinely emerge as correlates of urinary

pathogenesis in these studies. In one such study, a genome-wide

search in the model uropathogen UTI89 revealed extensive

selection of 29 genes including those involved in synthesis of the

siderophore enterobactin [6]. These siderophore genes were also

subject to increased transcription during experimental urinary

tract infection [7]. Finally, PCR-based studies of candidate

virulence factor genes have identified high frequencies of side-

rophore receptor genes among urinary isolates although expres-

sion of the corresponding siderophores was not determined [8,9].

Siderophores are a chemically diverse family of small molecules

that are produced by a wide variety of pathogenic and non-

pathogenic bacteria to scavenge ferric iron (Fe3+) [10]. During iron

scarcity, these bacteria synthesize and secrete siderophores, which

avidly bind ferric iron and become internalized. Siderophores

effectively compete with mammalian iron storage proteins and

may be of particular importance in acquiring this critical nutrient

during infection [11]. Additional horizontally-acquired genes

facilitating siderophore biosynthesis may confer new or enhanced

properties that may render a bacterium more virulent. To date,

genes for various combinations of four genetically distinct

siderophore systems have been described in clinical E. coli isolates
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with enterobactin being the only system conserved in all isolates

(Table 1). Among the non-conserved siderophores, the synthesis of

salmochelin is encoded in the iroA gene cluster, involving the IroB-

mediated glucosylation and IroE-mediated linearization of enter-

obactin. The Yersinia high pathogenicity island (HPI) encodes the

genes necessary for the synthesis and uptake of yersiniabactin.

Aerobactin biogenesis is encoded in the iucABCD cluster of genes.

In this study we have used a quantitative metabolomics

approach together with microbiologic, genomic, and clinical

strategies to uncover a preferential metabolic signature among

E. coli isolates from the urines of women with recurrent UTI

(urinary E. coli). Comparisons of coincident urinary and rectal

strains from patients with recurrent UTI revealed that urinary

strains exhibited significantly higher production of yersiniabactin

and salmochelin, even amongst genotype-positive strains, but not

enterobactin and aerobactin. Also, the siderophore receptor

genotype did not always correspond to production of the

associated siderophore, in contrast to previous assumptions

[8,12,13]. Thus, a quantitative metabolomic approach revealed

important differences in siderophore production not detectable by

genotyping alone. Our analysis of the metabolomic network

necessary for siderophore biosynthesis revealed that in addition to

its role in salmochelin biogenesis, IroE also converts a conserved

siderophore (enterobactin) into a more virulent one (linearized

enterobactin) better suited to the infectious microenvironment.

These studies demonstrate that E. coli strains associated with

recurrent urinary tract infection have a preferred metabolomic

profile involving a complex metabolic network.

Results

The secreted metabolome among clinical E. coli isolates
contains multiple siderophores

Siderophore production in 18 previously characterized UPEC

strains [14] isolated from the urine of women with UTI was

examined. To determine what siderophores are expressed by these

E. coli isolates, we compared culture supernatants from strains

grown for 18 hours in iron-poor and iron-rich minimal media

(Fig. 1, Table 2). Comparison of full scan LC-MS profiles from

each growth condition revealed a more abundant metabolite

signature in iron-poor cultures, consistent with induction of

siderophore expression during iron scarcity.

rUTI2 was chosen as a model strain to develop a quantitative

metabolomic approach because it produced all four known E. coli

siderophores. Thus, in iron-poor culture supernatants of strain

rUTI2 we identified chromatography peaks corresponding to the

[M+H]+ ions of aerobactin (14), salmochelin (15), and enter-

obactin (16), and the [M22H+Fe(III)]+ ion of ferric yersiniabactin

(17). These siderophore peaks elute from a reversed phase column

in the order reported previously (19). Confirmatory structural

information was available by comparing the m/z difference

between the [M+H]+ of salmochelin and its precursor, enter-

obactin. The salmochelin [M+H]+ is 342 m/z units greater (Fig. 2),

consistent with enterobactin di-C-glucosylation and trilactone

hydrolysis catalyzed by IroB and IroE, respectively (20, 21).

To further confirm the identity of presumptive siderophore ions,

rUTI2 was grown in defined minimal media in which 13C3-glycerol

or 15N-ammonium sulfate were substituted for the unlabeled

compounds. This heavy isotope labeling strategy resulted in mass

shifts for each ion peak based on the number of carbons or nitrogens

in their empiric formulae (Fig. 2). Labeling efficiency was high and

no unlabeled siderophores or M+1 or M+2 carbon isotope

distributions were observed for the most abundant 13C-labeled

enterobactin, salmochelin, and aerobactin ions. The prominent

M+1 and M+2 ions uniquely present in the 13C-labeled ferric

yersiniabactin spectrum are consistent with the presence of iron and

sulfur in this species. In this sample, the presence of a monoisotopic
13C ion clearly differentiates the M+1 ion from 57Fe (base peak

contains 56Fe) and the M+2 ion from 34S (base peak contains 32S).

After mixing labeled and unlabeled supernatants, the labeled and

unlabeled siderophore ions all co-eluted, consistent with their

expected identical structures. This isotope labeling technique

provides both structural confirmation and a source of stable isotope

labeled internal standards for MS-based quantification.

MS/MS fragmentations were also studied for further structural

confirmation using strain rUTI2 (Table S1). The enterobactin

[M+H]+ at m/z 670 fragmented predominantly at the ester bonds

to yield dihydroxybenzoyl serine monomer (m/z 224) and dimer

Author Summary

Urinary tract infections (UTIs) are among the most
common bacterial infections treated by physicians world-
wide. Although symptoms of acute infection are often
resolved with a course of antibiotics, the same bacterial
strain often causes subsequent bouts of symptomatic
infection. Escherichia coli are the most common bacteria
causing UTI and the infecting strains are widely believed to
originate from the gastrointestinal tract where multiple E.
coli strains reside. Here, we use a novel mass spectrometric
technique in a population of patients with recurrent UTI to
identify how strains that cause UTI differ from other strains
that were present in the gastrointestinal tract at the same
time. We found that urinary E. coli strains preferentially
expressed two small molecules called yersiniabactin and
salmochelin. These molecules are called siderophores,
meaning they are able to scavenge iron to support
bacterial survival and growth. Synthesis and transport of
these small molecules requires a coordinated network of
proteins encoded by a collection of different genes. These
findings suggest that new antibiotics directed against
yersiniabactin or salmochelin-producing E. coli strains may
be an improved, and more targeted, strategy to prevent
recurrent UTIs.

Table 1. Siderophores described among E. coli strains used in this study.

enterobactin salmochelin yersiniabactin aerobactin

type catecholate catecholate thiazoline hydroxamate

synthesis entABCDEF [17,40] iroB,E [19,28,41] ybtSETU, irp1, irp2 [18,42] iucABCD [43]

receptor fepA [44] iron [41] fyuA [45] iutA [43]

doi:10.1371/journal.ppat.1000305.t001

E. coli Metabolome in UTI
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(m/z 446) as previously reported [15]. In contrast, MS/MS spectra

of salmochelin gave the distinct lower molecular weight species

expected from fragmentation within the glucose moieties, a finding

supported by unchanged neutral losses from 15N-labeled products.

Consistent with the hallmark C-glucosylation in salmochelin, we

observed no loss of glucose (neutral loss of m/z 162) as is typically

seen with O- or N-linked sugars. The aerobactin [M+H]+ at m/z

565 fragmented to give the neutral losses of water (m/z 547) and

HCOOH (m/z 519) of a multiply hydroxylated and carboxylated

compound. MS/MS of ferric yersiniabactin [M22H+Fe(III)]+

gave a complex spectrum, as expected from a heterocyclic

compound, that included the prominent m/z 489 peak observed

in previous MALDI spectra [16]. Together, these ion fragmen-

tation patterns were consistent with the known structures of the

corresponding siderophores. These MS/MS fragmentations were

used to quantify siderophores in a multiplexed LC-MS/MS assay.

Effect of mutations in siderophore biosynthetic genes on
metabolomic profile

The sequenced model uropathogen UTI89 was observed to

produce enterobactin, salmochelin, and yersiniabactin. To vali-

date the stable isotope dilution LC-MS/MS metabolomic assay,

we analyzed UTI89 strains with deletion mutations in selected

siderophore biosynthetic genes (Fig. 3A). Ions corresponding to the

catecholate siderophores enterobactin and salmochelin were

absent in an entB [17] mutant while yersiniabactin production

was preserved. Conversely, the ybtS [18] mutant produced

enterobactin and salmochelin but not yersiniabactin. Because ybtS

encodes a salicylate synthase, yersiniabactin expression could be

restored in UTI89DybtS by growth in the presence of exogenous

0.3 mM sodium salicylate (data not shown). Selective loss of

salmochelin was observed with deletion of iroB, which forms C-

glucose bonds with enterobactin [19]. These findings show that

metabolomic profiling is sensitive to alterations in siderophore

biosynthetic pathways.

Table 2. Siderophore production in previously sequenced or genotyped strains.

strain enterobactin salmochelin yersiniabactin aerobactin

MS MS MS fyuA MS iutA

MG1655 + 2 2 2 2 2

UTI89 + + + + 2 2

CFT073 + + 2 + + +

ASB1 + + + + 2 2

ASB2 + + + + 2 2

ASB3 + + + + + +

ASB4 + 2 2 2 2 2

ASB5 + + + + 2 2

acute1 + + + + + +

acute2 + 2 2 2 2 2

acute3 + + + + 2 2

acute4 + + + + 2 2

rUTI1 + 2 2 2 2 2

rUTI2 + + + + + +

rUTI3 + + + + 2 2

rUTI4 + 2 + + 2 +

rUTI5 + + + + + +

pyelo1 + 2 2 + 2 2

pyelo2 + 2 2 2 2 2

pyelo3 + 2 2 + 2 +

pyelo4 + + + + + +

The presence or absence of siderophore production as determined by mass spectrometry (MS) is indicated with the presence or absence of the corresponding
siderophore receptor genotype.
doi:10.1371/journal.ppat.1000305.t002

Figure 1. LC-MS metabolite profiling reveals differential
product formation based on media iron content. Depicted are
total ion chromatograms of conditioned culture media following
18 hour culture of E. coli strain rUTI2 in M63 media containing 1 mM
(‘‘iron poor’’, top trace) or 100 mM ferric chloride (‘‘iron rich’’, top trace).
Mass spectrometric analysis confirms that the majority of differentially
expressed peaks in the iron poor supernatant derive from siderophores.
doi:10.1371/journal.ppat.1000305.g001

E. coli Metabolome in UTI
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Accountability of total siderophore activity using
genetics and metabolomics

Single deletion mutants in the siderophore biosynthetic

pathways described above (entB, ybtS, iroB) remained positive for

siderophore production by the chrome azurol S plate assay based

on blue-to-yellow transformation surrounding streaked colonies

[20] (Fig. 3B). To determine whether enterobactin, salmochelin,

and yersiniabactin together correspond to the total siderophore

activity expressed by UTI89, we constructed a UTI89DentBDybtS

double mutant which was predicted to selectively abolish synthesis

Figure 2. Identity of E. coli siderophore peaks is confirmed by stable isotope substitution. E. coli strain rUTI2 was grown in M63 media
(top trace), with 15N-ammonium as the nitrogen source (middle trace), and with 13C-glycerol as the carbon source (bottom trace). The 13C-labeled
forms are used as internal standards for mass spectrometric quantification in this study.
doi:10.1371/journal.ppat.1000305.g002

E. coli Metabolome in UTI
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of all known siderophores in UTI89. Metabolomic profiling of

UTI89DentBDybtS confirmed the absence of all three siderophores

in this mutant and the chrome azurol S assay revealed unchanged

colony growth without siderophore production. Thus, for UTI89,

total siderophore activity is accountable using this metabolomic

analysis as confirmed using a combined biochemical, genetic, and

chemical approach. Unlike the K12 E. coli strains described

previously [21,22], a single mutation within the enterobactin gene

cluster is insufficient to abolish siderophore production from

UTI89.

Siderophore receptor genotype does not predict
expression of the corresponding siderophore

To compare siderophore expression phenotype to bacterial

genotype, we examined siderophore production by three fully

sequenced E. coli strains MG1655 [23], UTI89 [6], and CFT073

[24] and in our panel of 18 previously genotyped clinical E. coli

urinary isolates [14] described above (Table 2). The yersiniabactin

receptor (fyuA) and aerobactin receptor (iutA) genotypes were

known for all 21 strains. Of the 16 fyuA-positive strains, three

pyelonephritic strains, CFT073, pyelo1, and pyelo3 produced no

detectable yersiniabactin despite producing other siderophores. Of

the 8 iutA-positive strains, two, rUTI4 and pyelo3, produced no

detectable aerobactin while still producing other siderophores.

The inability of CFT073 to synthesize yersiniabactin is presum-

ably due to mutations that have been identified within essential

yersiniabactin biosynthetic genes in this strain [25]. Thus, receptor

genotype does not consistently predict the cohort of siderophores

that are presented by an organism in response to low-iron

conditions.

Recovery of same-patient rectal-urinary E. coli strain pairs
To determine whether urinary E. coli strains exhibited

preferential siderophore expression when compared to distinct,

coincident rectal strains, we collected a new set of E. coli strains

from 18 recurrent UTI patients and we PFGE-typed the isolates

(this is a distinct set of isolates from those described in Table 2).

From this collection, we identified 13 patients in whom distinct,

coincident urinary and rectal PFGE types associated with a UTI

were recovered. Clinical characteristics of these 13 patients are

described in Table 3. Coincident rectal strains were defined as

those isolated from rectal swabs obtained up to one month prior to

isolation of a distinct urinary PFGE type. Thus, for this study 14

urinary and 16 rectal PFGE types were chosen from this set of 13

patients. Similarity analysis based on PFGE typing revealed

marked diversity (Fig. S1). Two patients yielded isolates with the

same PFGE type (Patients 34 and 50, Table 4), one from urine and

the other from the rectum. All 30 urinary and rectal strains from

these 13 patients exhibited similar growth patterns under iron-

limited, minimal media conditions [mean difference 0.007; 2-

tailed p = 0.8273], indicating that observed metabolite differences

were not related to differences in growth density.

Differences in siderophore production between same-
patient rectal and urinary strains

To determine if quantitative and qualitative differences in the

siderophore metabolome distinguish urinary from rectal isolates in

this set of 13 patients, we used quantitative metabolomic profiling

and then compared these results to a genotypic analysis. In the

Figure 3. Siderophore production by the model uropathogen UTI89 and selected mutants. A) MS/MS chromatograms showing
siderophore production in wild type UTI89 and strains with deletions in specific siderophore biosynthesis genes (DentB, DiroB, DybtS, DentB/DybtS).
Chromatograms are shown at the retention times for enterobactin (m/z 670), salmochelin (m/z 1012), and ferric yersiniabactin (m/z 535). For each
column, the vertical scale is a fixed fraction of the corresponding 13C internal standard peak height, allowing comparison between samples. B)
Chrome azurol S (CAS) plate upon which UTI89 strains have been streaked for overnight growth. A yellow halo is produced around siderophore-
secreting bacteria. In UTI89, a double mutant (DentB/DybtS) is required to specifically abolish siderophore production.
doi:10.1371/journal.ppat.1000305.g003

Table 3. Patient characteristics for paired strain study.

Variable Case-Patients

(n = 13)

Age, %

18–30 y 85%

31–49 y 15%

Mean age6SE, y 24.261.5

Previous UTIs, %

0 0%

1–4 46%

$5 54%

#UTIs during study

1 1

2 7

3 5

doi:10.1371/journal.ppat.1000305.t003

E. coli Metabolome in UTI
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metabolomic analysis, we measured differences between coinci-

dent urinary and rectal strains within individual patients. For each

patient, the quantity of each siderophore produced by rectal

strains was subtracted from the quantity produced by the

coincident urinary strains to yield a difference (Fig. 4). In the

four patients from whom multiple coincident urinary and rectal

strains were recovered, the mean difference in siderophore

production is reported. This analysis revealed significantly

(p,0.05) higher salmochelin and yersiniabactin production among

urinary strains. It was also notable that we found no instances in

which the rectal-only strain produced yersiniabactin or salmoche-

lin while the urine strain did not. Furthermore, urinary strains

always produced more salmochelin, even when non-urinary strains

also expressed salmochelin (n = 3) suggesting that salmochelin

biosynthesis was more active in urinary strains. Among all urinary

strains in this study, prevalence was in the order enterobactin

(100%), yersiniabactin (71%), salmochelin (50%) and aerobactin

(14%). These data show that, while all strains made enterobactin, a

biosynthetically active Yersinia HPI and iroA cassette were common

among urinary isolates in this population and that production of

these siderophores may have a clinically evident impact on UTI

recurrence.

Comparison between siderophore expression and
siderophore receptor genotype

The siderophore expression analysis of the rectal and urinary

strains from the 13 patients described above was compared to

PCR genotyping using established PCR primers for siderophore

receptor genes (fyuA for yersiniabactin, iroN for salmochelin, iutA

for aerobactin) [8,26] (Table 4). Previous genotypic data

Table 4. Patient PFGE types, siderophore expression, and genotypes related to source and UTI event.

patient # mst # source UTI # yersiniabactin salmochelin aerobactin

MS fyuA PCR MS iroN PCR MS iutA PCR

2 0288 U 1 2 2 + + 2 2

3103 R 1 2 2 2 2 2 2

11 0380 U 1 2 2 2 2 2 2

1343 R 1 2 2 2 2 2 2

1995 R 1 2 2 2 2 2 2

13 0355 U 1,2,3 + + + + 2 2

10727 R 1,2,3 + + + + 2 2

17 0349 U 1 + + 2 2 2 +

0396 R 1 2 2 2 2 2 2

2355 R 1 2 2 2 2 2 +

34 6746 U 1 + + + + 2 2

8047 R 1 + + + + 2 2

35 6747 U 1 + + + + 2 2

10760 R 1 + + 2 2 2 2

50 8049 U 1 + + + + 2 2

6746 R 1 + + + + 2 2

54 1109 U 1,2,3 + + 2 2 2 2

10917 R 1,2 2 2 2 2 2 2

10920 R 3 2 2 2 2 2 2

10921 R 3 + + 2 2 2 2

56 1126 U 1,2 + + + + 2 +

1110 R 1,2 2 + 2 2 + +

68 6748 U 1 + + + + + +

10932 R 1 2 2 2 2 2 +

72 6745 U 1,2 2 2 2 2 2 2

10775 R 1,2 2 2 2 2 2 2

94 5790 U 1 + + 2 + 2 2

9282 R 1 2 + 2 2 + +

9282 U 2 2 + 2 2 + +

13579 R 2 2 2 2 2 2 2

110 0378a U 1 + + 2 2 2 +

13590 R 1 + + 2 2 + +

The presence or absence of siderophore production as determined by mass spectrometry (MS) is indicated with the presence or absence of the corresponding
siderophore receptor genotype as determined by PCR.
mst, multilocus sequence type; R, rectal; U, urinary; UTI, urinary tract infection; MS, mass spectrometry.
doi:10.1371/journal.ppat.1000305.t004

E. coli Metabolome in UTI
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suggesting that enterobactin genes are conserved among E. coli was

supported by product analysis, which revealed enterobactin

production by all patient isolates. For yersiniabactin and

salmochelin, the siderophore receptor genotyping analysis had

the limitation of being unable to discern strain differences when

both a rectal and urinary strain pair were genotype positive. This

was a frequent occurrence. In the ten patients from whom at least

one fyuA+ strain was recovered, product analysis revealed rectal-

urinary differences in yersiniabactin production in all ten, while

genotyping predicted differences in four. Similarly, in the eight

patients from whom at least one iroN+ strain was recovered,

product analysis revealed differential yersiniabactin production in

seven, while genotype predicted differential expression in four.

Among fyuA2 or iroN-positive strain pairs, mean and median

yersiniabactin or salmochelin production remained higher among

the urinary strains.

For aerobactin, differences between iutA PCR and product

analysis were even more striking. Aerobactin production was only

detected in four of nine iutA+ strains. As a result, differences in

siderophore production predicted by genotype were changed by

product analysis in four patients. Agreement between the two

methods occurred in one patient with an iutA+ strain and in the

seven patients with iutA2 strains that produced no detectable

aerobactin. These data comparing PCR genotyping to product

analysis demonstrate that differences in biosynthetic activity are

not solely a reflection of the presence or absence of siderophore

gene loci.

Salmochelin and yersiniabactin expression are correlated
Yersiniabactin was the most prevelant non-enterobactin side-

rophore and strikingly, was co-expressed in 90% of the strains that

expressed salmochelin. This was the most frequent co-association

of any of the non-enterobactin siderophores (p = 0.006) and was

mirrored by a significant association between fyuA and iroN

positivity (p = 0.008). Salmochelin and yersiniabactin co-expression

was seen more often among patient urinary (6/13 (46%)) than

rectal (3/13 (23%)) strains, although this trend did not reach

statistical significance (p = 0.18). Thus, salmochelin expression

tended to occur in addition to yersiniabactin expression and co-

expression was a common feature among urinary strains in this

population. These data raise the possibility that these two

siderophore types exhibit complementary activities.

Figure 4. Differences in siderophore production between single-patient urinary and rectal isolates. Each data point is the difference in
siderophore production between coincident urinary and rectal strains recovered from an individual with UTI. These differences were determined by
stable isotope dilution mass spectrometry and expressed in reference strain equivalents. The median and interquartile range is depicted for each
siderophore. *Medians differs significantly (p,0.05) from zero.
doi:10.1371/journal.ppat.1000305.g004

E. coli Metabolome in UTI
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Enterobactin linearization is an additional virulence
activity of strains with an active iroA cassette and is
consistent with IroE esterase activity

Clinical isolates were noted to produce varying amounts of

linearized enterobactin, which is distinguished by a distinct

retention time and an ion at m/z 688, consistent with hydrolysis

(+18 amu) of a single ester bond (Fig. 5A). While somewhat slower

at scavenging iron than enterobactin, it has been proposed that

linear enterobactin is better suited to avoid sequestration by

hydrophobic surfaces [27]. Enterobactin linearization was quan-

tified by the precursor/product relation:

linearization~ linear enterobactin½ �= enterobactin½ �

Salmochelin expressors exhibited over threefold higher enter-

obactin linearization than non-expressor strains (Fig. 5B). To

explore genetic correlates of this relationship, we examined

enterobactin linearization among mutants in the iroA gene cluster

in UTI89 (Fig. 5C). Mutants containing a deletion of the iroA gene

cluster were unable to express salmochelin and exhibited a

decrease in enterobactin linearization compared to the wild type

control. Similar low levels of linear enterobactin were observed in

clinical isolates that did not express salmochelin. To determine

whether this linearizing activity was attributable to the esterase

IroE [28], we examined enterobactin linearization in an iroE

mutant. Linearization by the iroE mutant was decreased to the

same levels as in the K12 strain MG1655, which lacks all of the

iroA genes. The remaining baseline level of linear enterobactin in

the absence of the iroA genes has been observed previously and

may derive from premature release during biosynthesis [29],

cleavage of ferric enterobactin by the enterobactin esterase Fes, or

spontaneous ester bond hydrolysis. Together, these data show that,

in addition to synthesizing salmochelin, iroA also directs enter-

obactin linearization through the action of the esterase IroE to

produce linear enterobactin, a siderophore that may be better

suited to iron-scavenging during infection.

Discussion

We have used a combined chemical, genetic, and patient-

oriented approach to examine clinical correlates of siderophore

production among human E. coli isolates associated with recurrent

urinary tract infection. Development of a quantitative metabo-

lomic approach allowed assessment of the complex multiprotein

biosynthetic pathways for siderophores rather than inferring these

activities from genotype or transcription analysis alone. PCR

genotyping of a single siderophore system gene was not an efficient

predictor of siderophore production during iron-restricted growth.

Thus, the quantitative metabolomic approach was used to

determine whether successful uropathogens exhibit systematic

differences from coexisting rectal and urinary strains in individual

patients. Rather than comparing strains across a population, we

examined strain differences within individual patients in order to

compare each urinary strain to a more valid reference population.

This study compares siderophore production between coexist-

ing bacterial strains associated with urinary disease and gut

colonization. Since uropathogens are thought to arise from the gut

flora, comparison of these populations should represent the most

Figure 5. In addition to directing salmochelin biosynthesis, the iroA cluster also increases production of linear enterobactin, a
candidate virulence-associated siderophore. A) Cyclic enterobactin is converted into a linear form by ester bond hydrolysis. B) Clinical isolates
that produce salmochelin (+salmochelin) exhibit greater enterobactin linearization than salmochelin nonproducers (-salmochelin). C) Removal of the
entire iroA cluster (iroBCDEN) significantly reduced enterobactin linearization. A similar reduction in enterobactin linearization is seen in an iroE
mutant. Enterobactin linearization in MG1655, a K12 strain without the iroA cluster, was comparable to that seen in these mutants. These findings
support the esterase IroE as an enterobactin linearizing enzyme in vivo.
doi:10.1371/journal.ppat.1000305.g005
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valid study design. The dichotomy between commensalism and

pathogenicity is a common theme among bacteria and is

particularly compelling in the case of E. coli urinary tract

infections. Siderophore expression has been linked to virulence

and here we show that yersiniabactin and salmochelin were the

most common non-enterobactin siderophores associated with UTI

recurrence in this typical young female population. Notably,

yersiniabactin synthesis was observed in almost all strains that

expressed salmochelin. In this study population of young women

with recurrent UTI, urinary strains produced greater amounts of

two siderophores, yersiniabactin and salmochelin and co-expres-

sion of both of these siderophores was common.

In this study, quantitative product analysis provided information

beyond conventional siderophore receptor genotyping in two

circumstances: 1) when a genotype-positive strain was unable to

produce detectable levels of the corresponding siderophore and 2)

when siderophore production differed significantly between

genotype-positive strain pairs. Ten of the thirteen patients in this

study yielded at least one strain pair in which either or both of

these circumstances was operative. Deficient or enhanced side-

rophore biosynthesis may arise in multiple environmental

contexts. Pathogenic bacteria may benefit from increased

production of siderophores that are better adapted to the infection

microenvironment, as may be the case with salmochelin and

yersiniabactin. Alternatively, bacterial strains in polymicrobial

communities may benefit from inactivated siderophore production

if they retain the ability to ‘‘steal’’ ferric siderophores produced by

a neighbor, thereby avoiding the metabolic cost of siderophore

biosynthesis [30,31]. Thus, extrapolation of siderophore receptor

genotype to biosynthetic phenotype is inefficient, often inaccurate

and suggests that optimization of siderophore biosynthesis may

occur in pathogenic strains.

Enterobactin or aerobactin production was not preferentially

associated with urinary strains in this population. The lack of

increased enterobactin production among urinary strains suggests

that qualitative shifts in siderophore type may be more conducive

to uropathogenesis than a quantitative shift in enterobactin

production. Although iutA positivity among pathogenic strains is

often used to conclude that aerobactin is an important virulence

factor, we did not observe preferential expression of this

siderophore when urinary and rectal isolates were compared.

The sample size may not have allowed us to discern preferential

aerobactin production in this population. Alternatively, iutA-

positive clinical isolates might exhibit urinary virulence properties

that are unrelated to aerobactin production.

These results suggest that yersiniabactin and salmochelin

expression may facilitate infection of the human urinary tract.

This effect is not absolute, as there are urinary strains in this study

that express neither siderophore. Although rectal isolates in this

and other studies [32] have been observed to produce yersinia-

bactin and/or salmochelin, the impact of these siderophores upon

fitness for gut colonization is unclear. The relatively high

prevalence of yersiniabactin and salmochelin expression among

urinary pathogens (Table 5), makes these nonessential metabolic

pathways intriguing prospects for virulence-targeted therapies.

Interestingly, the yersiniabactin and salmochelin biosynthetic

pathways converge at chorismic acid, where each pathway uses

related enzymes to synthesize the aromatic precursors 2-hydro-

xybenzoic (salicylic) acid and 2,3-dihydroxybenzoic acid (Fig. 6).

Targeting either or both of these initial points in siderophore

biosynthesis may represent a promising target for anti-virulence

drug discovery or design.

Materials and Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Institutional Review Board of the University of Washington. All

patients provided written informed consent for the collection of

samples and subsequent analysis.

Bacterial strains and cultivation
To examine siderophore production in liquid culture, previously

published conditions were used [33]. 3 hour cultures of E. coli

grown in LB broth were diluted 1:100 into M63 medium

containing 0.2% glycerol and 10 mg/mL niacin and incubated

for 18 h at 37 C in a rotary shaker.

Deletion strain construction
Deletion mutations were made using the red recombinase

method, as previously described, using pKD4 or pKD13 as a

template and the primers as listed in Table S2. [34,35] PCR was

performed with flanking primers to confirm the appropriate

Figure 6. Biosynthesis of siderophores associated with recurrent UTI depends on chorismic acid utilization.
doi:10.1371/journal.ppat.1000305.g006

Table 5. Prevalence of detectable siderophore expression
among different PFGE types in this study according to source.

siderophore
expressed

urinary source
(n = 14)

rectal source
(n = 16)

enterobactin 100% (14) 100% (14)

yersiniabactin 71% (10) 31% (5)

salmochelin 50% (7) 13% (2)

aerobactin 14% (2) 25% (4)

The number of strains in each category is indicated in parentheses.
doi:10.1371/journal.ppat.1000305.t005

E. coli Metabolome in UTI

PLoS Pathogens | www.plospathogens.org 9 February 2009 | Volume 5 | Issue 2 | e1000305



deletions. Antibiotic insertions were removed by transforming the

mutant strains with pCP20 [36] expressing the FLP recombinase.

The resultant strains subsequently had no additional antibiotic

resistance compared with the parental wt strain.

Liquid chromatography-mass spectrometry (LC-MS)
The mass spectrometer used for the studies was a Thermo-

Finnigan LCQ Deca (San Jose, CA) coupled to a Waters CapLC

(Waters MA) equipped with a Vydac C18 MS column

(0.36150 mm). The flow rate was 6 ul/min with a gradient as

follows: Solvent A (0.1% formic acid) was held constant at 95%

and solvent B (80% acetonitrile in 0.1% formic acid) was held

constant at 5% for 5 minutes, increased to 44% B in the next

60 minutes, and then to 95% B in the next 20 minutes. All data

was collected in a positive mode. The spray voltage on the mass

spectrometer was held constant at 4.5 K and the capillary

temperature was 200uC. For CID experiments helium was used

as the collision gas with the collision energy set to 32% of the

maximum (,5 eV). The isolation width was 3 amu. Quantitation

was carried out in the SRM mode using 13C labeled standards as

described above. Data was collected in the positive centroid mode.

Ions were monitored with a window of +/20.5 amu.

Siderophore extraction
0.1 M ferric chloride was added to cell supernatants to a final

concentration of 3.75 mM. After a 15 minute room temperature

incubation the precipitate was removed by centrifugation. The

supernatant was applied to a column packed with 200 uL of

DEAE slurry [33]. The loaded column was washed with 0.5 mL of

water and siderophores were eluted with 3 mL of 7.5 M

ammonium formate adjusted to pH 3.6 with 7.5 M formic acid.

The DEAE eluate was further purified and desalted by application

to a Chrom P solid phase extraction column (250 mg, Supelco).

The loaded column was washed with 2 mL of 0.1% formic acid in

10% acetonitrile. Siderophores were eluted following application

of 2 mL of 0.1% formic acid in 80% acetonitrile. The eluate was

then concentrated to 100–200 uL final volume in a centrifugal

evaporator for MS analysis.

Preparation of 13C-labeled internal standards
Internal standards were produced by rUTI2, a clinical urine

isolate found to express all four known E. coli siderophore types, or

UTI89. Strains were each grown for 3 hours in LB broth, which

was subsequently inoculated 1:100 into M63 medium containing

0.2% 13C3-glycerol (99+ atom %, Isotec), and 10 mg/mL niacin

and incubated for 18 h at 37 C in a rotary shaker. Cells were

removed by centrifugation and a frozen stock of supernatant was

kept for use as internal standard. Isotopic labeling was confirmed

by LC-MS.

Quantification of siderophores using stable isotope
dilution mass spectrometry

Strains to be compared, along with the reference strain rUTI2,

were prepared together on the same day using the same media,

reagents, and internal standard. Siderophore quantities are

expressed as reference strain equivalents determined through the

stable isotope dilution method. 13C-labeled internal standard was

added 1:1 to each clarified culture supernatant and mixed prior to

siderophore extraction. Siderophore extracts subject to compar-

ison were then prepared and analyzed by LC-MS/MS using the

parent and daughter ions described above and listed in Table S1.

Each siderophore type was first quantified by determining the

ratio of the analyte peak to the co-eluting 13C-labeled internal

standard peak. These peak area ratios were then converted to

molar ratios by comparison to standard curves generated by

mixing known ratios of unlabeled and labeled rUTI2 supernatants.

Siderophore quantities were expressed as rUTI2 equivalents by

normalizing each molar ratio to that observed for strain rUTI2

under identical culture conditions.

PCR analysis
Isolates were grown to log phase on 5 ml LB medium. Primer

combinations FyuA f’–FyuA r (880 bp product)/AerJ f–AerJ r

(300 bp)/IRONEC-F–IRONEC-R (665 bp) were used for ampli-

fication of fyuA, iutA, and iroN genes, respectively [12,37]

Amplification reactions were carried out individually in a Bio-

Rad MyCycler instrument using 5 ml of heat-inactivated culture

and 35 cycles of 956300/576300/726600.

Patients and strains
Patients presenting with UTI were enrolled and monitored

prospectively as described previously [14]. Rectal specimens were

collected during clinic visits using a sterile, rayon-tipped swab and

transported to the laboratory in Amies Medium (BBLTM

CultureSwabTM Plus, Becton, Dickinson). To avoid inclusion of

rectal strains that may have been introduced after the UTI event

or that may have been only transiently present [38,39] prior to the

UTI event, rectal strains were excluded if they were recovered

after or .30 days before the urinary isolate.

Statistical analysis
Statistics and graphs were generated using GraphPad Prism 4.

For groupwise comparisons of siderophore production, the Mann-

Whitney U Test was performed. Analyses of paired strain

differences in siderophore production were performed using the

Wilcoxon signed rank test for significance. For analysis of

stationary phase density, the data passed the F test for equal

variances and the t test was used to compare urinary versus rectal

strain growth as well as growth differences between paired strains.

Categorical data was analyzed using Fisher’s exact test.

Supporting Information

Figure S1 Dendrogram, PFGE patterns, siderophore status and

hemolytic properties of patient strains collected for comparison of

urinary strains with coexisting rectal strains.

Found at: doi:10.1371/journal.ppat.1000305.s001 (4.89 MB TIF)

Table S1 CID fragmentations used to identify and quantify

siderophores by LC-MS/MS.

Found at: doi:10.1371/journal.ppat.1000305.s002 (0.03 MB

DOC)

Table S2 Primers used in construction of UTI89 mutants.

Found at: doi:10.1371/journal.ppat.1000305.s003 (0.02 MB

DOC)

Acknowledgments

We thank Tom Hannan, Jennifer Jones and Marsha Cox for technical

assistance.

Author Contributions

Conceived and designed the experiments: JPH SJH. Performed the

experiments: JPH JRC PT. Analyzed the data: JPH JRC PT. Contributed

reagents/materials/analysis tools: JPH JSP JNW WES TMH SJH. Wrote

the paper: JPH SJH.

E. coli Metabolome in UTI

PLoS Pathogens | www.plospathogens.org 10 February 2009 | Volume 5 | Issue 2 | e1000305



References

1. Foxman B (2002) Epidemiology of urinary tract infections: incidence, morbidity,

and economic costs. Am J Med 113 Suppl 1A: 5S–13S.
2. Ronald A (2003) The etiology of urinary tract infection: traditional and

emerging pathogens. Dis Mon 49: 71–82.
3. Russo TA, Stapleton A, Wenderoth S, Hooton TM, Stamm WE (1995)

Chromosomal restriction fragment length polymorphism analysis of Escherichia

coli strains causing recurrent urinary tract infections in young women. J Infect
Dis 172: 440–445.

4. Foxman B, Zhang L, Tallman P, Palin K, Rode C, et al. (1995) Virulence
characteristics of Escherichia coli causing first urinary tract infection predict risk

of second infection. J Infect Dis 172: 1536–1541.

5. Kunin CM, Polyak F, Postel E (1980) Periurethral bacterial flora in women.
Prolonged intermittent colonization with Escherichia coli. Jama 243: 134–139.

6. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, et al. (2006) Identification of
genes subject to positive selection in uropathogenic strains of Escherichia coli: a

comparative genomics approach. Proc Natl Acad Sci U S A 103: 5977–5982.
7. Reigstad CS, Hultgren SJ, Gordon JI (2007) Functional genomic studies of

uropathogenic Escherichia coli and host urothelial cells when intracellular

bacterial communities are assembled. J Biol Chem 282: 21259–21267.
8. Johnson JR, Kaster N, Kuskowski MA, Ling GV (2003) Identification of

urovirulence traits in Escherichia coli by comparison of urinary and rectal E. coli
isolates from dogs with urinary tract infection. J Clin Microbiol 41: 337–345.

9. Johnson JR, Scheutz F, Ulleryd P, Kuskowski MA, O’Bryan TT, et al. (2005)

Phylogenetic and pathotypic comparison of concurrent urine and rectal
Escherichia coli isolates from men with febrile urinary tract infection. J Clin

Microbiol 43: 3895–3900.
10. Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for

microbial iron transport. Proc Natl Acad Sci U S A 100: 3584–3588.
11. Jurado RL (1997) Iron, infections, and anemia of inflammation. Clin Infect Dis

25: 888–895.

12. Johnson JR, Stell AL (2000) Extended virulence genotypes of Escherichia coli
strains from patients with urosepsis in relation to phylogeny and host

compromise. J Infect Dis 181: 261–272.
13. Johnson JR, O’Bryan TT, Kuskowski M, Maslow JN (2001) Ongoing horizontal

and vertical transmission of virulence genes and papA alleles among Escherichia

coli blood isolates from patients with diverse-source bacteremia. Infect Immun
69: 5363–5374.

14. Garofalo CK, Hooton TM, Martin SM, Stamm WE, Palermo JJ, et al. (2007)
Escherichia coli from urine of female patients with urinary tract infections is

competent for intracellular bacterial community formation. Infect Immun 75:
52–60.

15. Berner I, Greiner M, Metzger J, Jung G, Winkelmann G (1991) Identification of

enterobactin and linear dihydroxybenzoylserine compounds by HPLC and ion
spray mass spectrometry (LC/MS and MS/MS). Biol Met 4: 113–118.

16. Chambers CE, McIntyre DD, Mouck M, Sokol PA (1996) Physical and
structural characterization of yersiniophore, a siderophore produced by clinical

isolates of Yersinia enterocolitica. Biometals 9: 157–167.

17. Rusnak F, Liu J, Quinn N, Berchtold GA, Walsh CT (1990) Subcloning of the
enterobactin biosynthetic gene entB: expression, purification, characterization,

and substrate specificity of isochorismatase. Biochemistry 29: 1425–1435.
18. Kerbarh O, Ciulli A, Howard NI, Abell C (2005) Salicylate biosynthesis:

overexpression, purification, and characterization of Irp9, a bifunctional
salicylate synthase from Yersinia enterocolitica. J Bacteriol 187: 5061–5066.

19. Fischbach MA, Lin H, Liu DR, Walsh CT (2005) In vitro characterization of

IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci U S A
102: 571–576.

20. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and
determination of siderophores. Anal Biochem 160: 47–56.

21. Cox GB, Gibson F, Luke RK, Newton NA, O’Brien IG, et al. (1970) Mutations

affecting iron transport in Escherichia coli. J Bacteriol 104: 219–226.
22. Pettis GS, McIntosh MA (1987) Molecular characterization of the Escherichia

coli enterobactin cistron entF and coupled expression of entF and the fes gene.
J Bacteriol 169: 4154–4162.

23. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, et al. (1997) The

complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.
24. Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P, et al. (2002)

Extensive mosaic structure revealed by the complete genome sequence of
uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99: 17020–17024.

25. Bultreys A, Gheysen I, de Hoffmann E (2006) Yersiniabactin production by
Pseudomonas syringae and Escherichia coli, and description of a second

yersiniabactin locus evolutionary group. Appl Environ Microbiol 72:
3814–3825.

26. Johnson JR, Kuskowski MA, Gajewski A, Soto S, Horcajada JP, et al. (2005)
Extended virulence genotypes and phylogenetic background of Escherichia coli

isolates from patients with cystitis, pyelonephritis, or prostatitis. J Infect Dis 191:
46–50.

27. Luo M, Lin H, Fischbach MA, Liu D, Walsh C, et al. (2006) Enzymatic
Tailoring of Enterbactin Alters Membrane Partitioning and Iron Acquisition.

ACS Chemical Biology 1: 29–32.

28. Lin H, Fischbach MA, Liu DR, Walsh CT (2005) In vitro characterization of

salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am

Chem Soc 127: 11075–11084.

29. Guo ZF, Jiang M, Zheng S, Guo Z (2008) Suppression of linear side products by

macromolecular crowding in nonribosomal enterobactin biosynthesis. Org Lett
10: 649–652.

30. Griffin AS, West SA, Buckling A (2004) Cooperation and competition in
pathogenic bacteria. Nature 430: 1024–1027.

31. Kadner RJ, Heller K, Coulton JW, Braun V (1980) Genetic control of
hydroxamate-mediated iron uptake in Escherichia coli. J Bacteriol 143:

256–264.

32. Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K (2006) Environmen-

tal factors influence the production of enterobactin, salmochelin, aerobactin, and
yersiniabactin in Escherichia coli strain Nissle 1917. Int J Med Microbiol 296:

513–520.

33. Valdebenito M, Bister B, Reissbrodt R, Hantke K, Winkelmann G (2005) The
detection of salmochelin and yersiniabactin in uropathogenic Escherichia coli

strains by a novel hydrolysis-fluorescence-detection (HFD) method. Int J Med
Microbiol 295: 99–107.

34. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes
in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:

6640–6645.

35. Murphy KC, Campellone KG (2003) Lambda Red-mediated recombinogenic

engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol Biol
4: 11.

36. Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli:
TcR and KmR cassettes with the option of Flp-catalyzed excision of the

antibiotic-resistance determinant. Gene 158: 9–14.

37. Johnson JR, Russo TA, Tarr PI, Carlino U, Bilge SS, et al. (2000) Molecular
epidemiological and phylogenetic associations of two novel putative virulence

genes, iha and iroN(E. coli), among Escherichia coli isolates from patients with
urosepsis. Infect Immun 68: 3040–3047.

38. Sears HJ, Brownlee I, Uchiyama JK (1950) Persistence of individual strains of
Escherichia coli in the intestinal tract of man. J Bacteriol 59: 293–301.

39. Sears HJ, Brownlee I (1952) Further observations on the persistence of individual
strains of Escherichia coli in the intestinal tract of man. J Bacteriol 63: 47–57.

40. Shaw-Reid CA, Kelleher NL, Losey HC, Gehring AM, Berg C, et al. (1999)
Assembly line enzymology by multimodular nonribosomal peptide synthetases:

the thioesterase domain of E. coli EntF catalyzes both elongation and

cyclolactonization. Chem Biol 6: 385–400.

41. Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins,

siderophores of Salmonella enterica and uropathogenic Escherichia coli strains,
are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci U S A

100: 3677–3682.

42. Miller DA, Luo L, Hillson N, Keating TA, Walsh CT (2002) Yersiniabactin

synthetase: a four-protein assembly line producing the nonribosomal peptide/
polyketide hybrid siderophore of Yersinia pestis. Chem Biol 9: 333–344.

43. de Lorenzo V, Bindereif A, Paw BH, Neilands JB (1986) Aerobactin biosynthesis
and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J Bacteriol

165: 570–578.

44. Wookey P, Rosenberg H (1978) Involvement of inner and outer membrane

components in the transport of iron and in colicin B action in Escherichia coli.

J Bacteriol 133: 661–666.

45. Rakin A, Saken E, Harmsen D, Heesemann J (1994) The pesticin receptor of

Yersinia enterocolitica: a novel virulence factor with dual function. Mol
Microbiol 13: 253–263.

E. coli Metabolome in UTI

PLoS Pathogens | www.plospathogens.org 11 February 2009 | Volume 5 | Issue 2 | e1000305


