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Abstract
Background: MicroRNAs are small non-coding RNA gene products that play diversified roles
from species to species. The explosive growth of microRNA researches in recent years proves the
importance of microRNAs in the biological system and it is believed that microRNAs have valuable
therapeutic potentials in human diseases. Continual efforts are therefore required to locate and
verify the unknown microRNAs in various genomes. As many miRNAs are found to be arranged in
clusters, meaning that they are in close proximity with their neighboring miRNAs, we are
interested in utilizing the concept of microRNA clustering and applying it in microRNA
computational prediction.

Results: We first validate the microRNA clustering phenomenon in the human, mouse and rat
genomes. There are 45.45%, 51.86% and 48.67% of the total miRNAs that are clustered in the three
genomes, respectively. We then conduct sequence and secondary structure similarity analyses
among clustered miRNAs, non-clustered miRNAs, neighboring sequences of clustered miRNAs
and random sequences, and find that clustered miRNAs are structurally more similar to one
another, and the RNAdistance score can be used to assess the structural similarity between two
sequences. We therefore design a clustering-based approach which utilizes this observation to
filter false positives from a list of candidates generated by a selected microRNA prediction
program, and successfully raise the positive predictive value by a considerable amount ranging from
15.23% to 23.19% in the human, mouse and rat genomes, while keeping a reasonably high
sensitivity.

Conclusion: Our clustering-based approach is able to increase the effectiveness of currently
available microRNA prediction program by raising the positive predictive value while maintaining a
high sensitivity, and hence can serve as a filtering step. We believe that it is worthwhile to carry
out further experiments and tests with our approach using data from other genomes and other
prediction software tools. Better results may be achieved with fine-tuning of parameters.
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Background
MicroRNAs (miRNAs) are small non-coding RNA gene
products of 19–25 nucleotides (nt) long, which function
to repress the translation or mediate the degradation of
their target mRNAs. A 22 nt mature miRNA is derived
from a precursor transcript of 60–80 nt in length, which is
named as pre-miRNA. Pre-miRNAs can potentially fold
into a hairpin structure without large internal loops or
bulges.

MiRNAs were found to play diversified roles from species
to species [1,2]. In recent years, researches on the roles of
miRNAs in cancers have been increasing tremendously,
and miRNAs are suggested to have important therapeutic
potential in human diseases. To date, there are 678, 472
and 287 miRNA entries for the human, mouse and rat
genomes deposited in miRBase [3,4], the home of miRNA
data on the web, in Release 11.0, respectively. Yet some
studies suggested that the total number of miRNAs exist-
ing in a vertebrate genome can reach at least 800 [5,6],
therefore continual efforts should be made on locating
and verifying the unknown miRNAs. A number of compu-
tational prediction methods and software tools have been
developed over the years for this purpose [7], however the
datasets adopted by the various prediction tools are differ-
ent and older methods are usually outweighed by the
newly developed ones in terms of specificity and sensitiv-
ity.

In this paper, we first describe and validate the clustering
phenomenon of miRNAs in the human, mouse and rat
genomes by computational means. We then develop a
clustering-based approach to a selected software tool,
ProMirII-g [8,9], which was launched in 2006, aiming to
filter their false positive miRNA predictions.

Results and discussion
MiRNA clustering
Many miRNAs are found to be arranged in clusters [10],
meaning that they are in close proximity with their neigh-
boring miRNAs. MiRNAs located in the same cluster are
usually co-regulated and co-expressed [11,12], and recent
studies suggest that miRNA clusters play important bio-
logical roles in specific tissues or genomes. Examples
include cell proliferation in human lung cancer tissues
[13], latent and lytic replication of Kaposi's sarcoma-asso-
ciated herpesvirus [14], testis development and sperma-
togenesis in primates [15].

In view of this, we believe that miRNA clustering can be
used to assist the prediction of novel miRNAs, and here
we analyze how this idea can be applied computationally.

Analysis of miRNA clustering in the human, mouse and rat 
genomes
The definition of a miRNA cluster varies among research-
ers. Altuvia and colleagues defines a cluster in which there

Table 1: Effects on the distance of chromosomal separation of clustered miRNAs on the number of clustered miRNAs found in the 
human, mouse and rat genomes.

Genome Effect Chromosomal distance at which two clustered miRNAs are separated

1500 nt 3000 nt 6000 nt 10000 nt 25000 nt 50000 nt

Human # of clustered miRNAs 196 217 240 241 242 261

# of clusters defined 71 68 60 60 60 65

Average cluster size 2.76 3.19 4 4.02 4.03 4.02

Mouse # of clustered miRNAs 204 215 237 243 253 260

# of clusters defined 70 53 55 57 58 61

Average cluster size 2.91 4.06 4.31 4.26 4.36 4.26

Rat # of clustered miRNAs 119 129 145 154 154 160

# of clusters defined 46 45 48 49 47 48

Average cluster size 2.59 2.87 3.04 3.14 3.28 3.14

"Average cluster size" is equivalently to the average number of miRNAs found in a single cluster. It can be seen that there is an abrupt increase in 
the number of clustered miRNAs from the case of 3000 nt to the case of 6000 nt. There are little effects on the number of clustered miRNAs and 
the number of clusters defined when the separation is more than 10000 nt. To conclude, among the six distances that we have tested, 6000 nt is an 
optimal chromosomal distance bound within which two clustered miRNAs are separated.
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are two or more miRNA genes with pairwise chromo-
somal distances of at most 3000 nt [10]. Weber [16] sug-
gested the following criteria of a cluster: same orientation
and not separated by a transcription unit or a miRNA in
the opposite orientation. A microarray study reveals that
an abrupt transition in the correlation between pairs of
expressed miRNAs occurs at a distance of 50 kb, implying
that miRNAs separated by less than 50 kb typically derive
from a common transcript [17]. In many other studies,
the term 'cluster' is used without a proper and clear defi-
nition [18-20], and is also used to describe the phyloge-
netic relationships of miRNAs [11,21]. To assess the
clustering property of miRNAs in the human, mouse and
rat genomes, we want to have our own definition of a
miRNA cluster. We define that two miRNAs belong to the
same cluster if (1) they are located on the same strand of
the same chromosome, i.e. same orientation; and (2) they
are separated by a chromosomal distance of not more
than 6000 nt. This distance of 6000 nt is not arbitrary. We
first choose six different distances, which are 1500 nt,
3000 nt, 6000 nt, 10000 nt, 25000 nt and 50000 nt, and
then we test the effect of the distances on the number of
clusters and the number of clustered miRNAs formed. As
shown in Table 1, there is an abrupt increase in the
number of clustered miRNAs from the case of 3000 nt to
the case of 6000 nt. There are little effects on the number
of clustered miRNAs and the number of clusters defined
when the separation is more than 10000 nt. To conclude,
among the six distances that we have tested, 6000 nt is an
optimal chromosomal distance bound within which two
clustered miRNAs are separated. Figure 1 illustrates our
definition of a miRNA cluster and Table 2 summarizes our
results of the miRNA clustering analyses. The human and
mouse datasets used in this paper were downloaded from
Release 10.0 of miRBase and the rat datasets were from
Release 10.1. There are 45.45%, 51.86% and 48.67% of
the total miRNAs that are clustered in the human, mouse
and rat genomes, respectively.

Similarity analyses among clustered miRNAs, non-
clustered miRNAs, neighboring sequences of clustered 
miRNAs and random sequences
As there are nearly half of the total miRNAs organized in
clusters, we are interested in testing whether there are any
relationships or similarities among them. We assess the
sequence and secondary structure similarities among miR-
NAs in the same cluster by aligning the precursors of each
clustered miRNA with the sequences from the following
four categories in a pairwise manner:

(i) its fellow miRNAs found in the same cluster;

(ii) miRNAs located outside its cluster;

(iii) random sequences extracted from the genome; and

(iv) neighboring sequences extracted from its flanking
3000 nt regions.

The software T-COFFEE [22] (Version 5.05) is used for
pairwise sequence alignment. The program RNAdistance
of the Vienna RNA package [23] (Version 1.7.1) is used to
compute the distance between two miRNA secondary
structures, which are determined by RNAfold. Figure 2

Table 2: The number of clustered miRNAs and isolated miRNAs 
found in the human, mouse and rat genomes using our definition 
of miRNA cluster.

Human Mouse Rat

Version of miRBase 10.0 10.0 10.1

Total # of clusters 60 55 48

Size of clusters Min 2 2 2

Mean 4 4.31 3.04

Max 43 52 17

Isolated miRNAs # 288 220 154

% 54.55% 48.14% 51.33%

Clustered miRNAs # 240 237 146

% 45.45% 51.86% 48.67%

Total # of miRNAs 528 457 300

"Version of miRBase" denotes the update version of miRBase where 
the datasets are downloaded. "Size of clusters" is equivalently to the 
number of miRNAs found in a single cluster. There are 60, 55 and 47 
clusters identified in the three genomes respectively, which are 
equivalent to 45.45%, 51.86% and 48.67% of the total human, mouse 
and rat miRNAs.

Our definition of a clusterFigure 1
Our definition of a cluster. MiRNAs which are separated 
by a distance of less than 6000 nt are grouped as one cluster.
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shows how a clustered miRNA is aligned to sequences of
the four categories.

As shown in Table 3, there is no statistically significant dif-
ference among the sequence alignment scores of the four
categories (t-test, p-value < 0.05), suggesting that
sequence similarity is unlikely to be useful for identifying
clustered miRNAs. Interestingly, the distance between the
secondary structures of miRNAs located in the same clus-
ter is found to be much smaller than the distance obtained
by comparing the structures of clustered miRNAs with the
sequences from the other three categories (t-test, p-value <
0.0001). In other words, clustered miRNAs are structur-
ally more similar to one another, and the RNAdistance
score can be used to assess the structural similarity
between two sequences. Based on this observation, we
propose a clustering-based approach to improve the effec-
tiveness of computational prediction of miRNAs.

Performance analyses of ProMirII-g and miR-abela
We select two software tools to test our proposed cluster-
ing-based approach, namely ProMirII-g [8,9] and miR-
abela [24]. In terms of positive predictive value (PPV) and
sensitivity (SE), we first analyze the performances of these
two prediction tools, and the results serve as a benchmark
for comparison with our approach. Both ProMirII-g and
miR-abela allow users to set a prediction threshold. Using
a relaxed threshold, more true positives (TPs) and predic-

tions will be obtained, yet at the same time a large number
of false positives (FPs) will be included. In other words, a
high SE and a low PPV are expected. Our approach aims
at increasing the PPV by filtering as many as FPs as possi-
ble with the application of miRNA clustering.

Table 4 illustrates the results of the performance analyses.
ProMirII-g works better than miR-abela on all the three
genomes under our investigation, giving a SE ranging
from 81.22% to 89.58%. miR-abela, on the contrary, does
not show satisfactory performance on the prediction of
human, mouse and rat miRNAs, with only around 60% of
SE achieved. Both of them produce a large number of false
FPs along with the TPs, and therefore low PPVs are
resulted with a range from 13.31% to 31.16%. Clearly the
prediction programs will be more useful and reliable if
their FP rates can be reduced.

Application of miRNA clustering: a clustering-based 
approach
Recalling that clustered miRNAs are more structurally
similar to one another as determined by the RNAdistance
scores, we therefore design a clustering-based approach
which utilizes this observation to filter false positives. The
detailed steps of our approach are described in the section
of Methods under the sub-title of "Our clustering-based
approach" and Figure 3 provides the overview of the
approach.

Similarity analyses of a clustered miRNA with four groups of sequencesFigure 2
Similarity analyses of a clustered miRNA with four groups of sequences. A clustered miRNA is aligned with 
sequences from four categories: (i) miRNA(s) in the same cluster; (ii) miRNAs outside its cluster; (iii) random sequences 
extracted from the genome; and (iv) random sequences extracted from its flanking 3000 nt region.
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From Table 5, it is clear that our approach is able to
increase the PPV to a large extent, from 17.37% to
21.25%. At the same time, it retains most TPs with just a
slight drop of less than 10% in SE when it is applied to the
human and the mouse genome. The approach appears to
sacrifice the SE for the increase in PPV when it is tested on
the rat genome. Since our filtering approach is based on
miRNA clustering, it works best when the cluster has more
than one TP. Table 6 shows a more suitable comparison
when the clusters with less than two TPs are excluded
from our test. The increase in PPV outweighs the drop in
SE in all the three cases, suggesting that our approach is
effective in filtering FPs without losing too many TPs.

Conclusion
In this paper, we first validate the phenomenon of miRNA
clustering in the human, mouse and rat genomes and con-
firm that there are more than 45% of the miRNAs in these
genomes which can form clusters. We demonstrate that
the secondary structure of a clustered pre-miRNA is more
similar to its neighbouring pre-miRNAs located in the
same cluster, when compared to the sequences outside
clusters. Using this property, we design a clustering-based

approach to filter the FPs resulting from a miRNA predic-
tion software named ProMirII-g and successfully raise the
PPV by a considerable amount ranging from 15.23% to
23.19% in the human, mouse and rat genomes. At the
same time, the approach is able to retain a reasonably
high SE. In view of this, we conclude that our approach is
shown to be effective in raising the PPV of a software tool,
particularly in the human genomes. We believe that it is
worthwhile to carry out further experiments and tests with
our approach using data from other genomes and other
prediction software tools. Better results may be achieved
with fine-tuning of parameters.

Methods
Performance analyses of ProMirII-g and miR-abela
The following steps are applied to data from the genomes
of human, mouse and rat respectively.

Step 1: A group of 10000 nt-long sequences are extracted
from the genome as the input sequences to the prediction
software. Each of the long sequences consists of the clus-
tered miRNAs identified in the genomes as mentioned in
the section of "Analysis of miRNA clustering in the

Table 3: Results of the similarity analyses between clustered miRNAs and other sequences.

Genome T-COFFEE sequence alignment score RNAdistance structure alignment score

Human Category Maximum Average Minimum Std Dev Maximum Average Minimum Std Dev

(i) 79 45.20 17 15.70 71 28.86 0 9.73

(ii) 73 46.30 15 12.96 94 37.21 15 11.29

(iii) 74 45.47 17 14.13 203 140.89 104 18.78

(iv) 77 44.81 15 12.60 134 75.55 28 22.19

Mouse (i) 79 43.63 0 14.40 72 30.41 0 9.33

(ii) 78 45.28 16 13.03 69 35.19 10 9.67

(iii) 75 43.72 16 14.40 239 139.93 103 17.31

(iv) 72 45.37 15 13.33 128 69.55 26 19.31

Rat (i) 75 44.28 17 12.83 113 31.41 11 12.60

(ii) 72 45.18 16 13.12 116 35.68 13 11.73

(iii) 69 45.03 16 12.48 198 143.12 110 18.43

(iv) 73 47.90 15 13.26 114 74.69 32 18.74

Sequence and secondary structural alignments are performed for each clustered miRNA with sequences from the following categories: (i) clustered 
miRNAs, (ii) non-clustered miRNAs, (iii) random and (iv) neighboring sequences. A higher score implies a greater distance and hence a higher 
degree of dissimilarity. Std Dev, standard deviation.
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human, mouse and rat genomes". Large clusters which
span over 10000 nt are split into smaller clusters.

Step 2: Each sequence is inputted to ProMirII-g and miR-
abela. For ProMirII-g, 0.001 is selected as the prediction
threshold (ProMiR value). For miR-abela, the prediction
threshold is set at -10. Other parameters are set by default.
A list of outputs, representing the potential miRNA candi-
dates, is generated.

Step 3: The outputs are checked against the clustered miR-
NAs found in the genomes. The output candidates which
match the clustered miRNAs are the true positives, and the
rest of the predicted candidates are the false positives.

With the total number of predictions, the total number of
clustered miRNAs in the genome, the number of TPs and
the number of FPs, we evaluate the performance of the
two miRNA prediction tools in terms of the SE and PPV.
The formulas for calculating SE and PPV are as follows:

SE = TP/total number of clustered miRNAs in the genome

PPV = TP/total number of predictions, i.e. TP/(TP + FP)

Table 4 summarizes the results.

Our clustering-based approach
Stage 1
A miRNA prediction program with prediction threshold
set at a relaxed value is run with the same set of input
sequences as described in the performance analyses of the
prediction software. A list of candidates is produced,
which are potential clustered miRNAs. Since the perform-
ance of miR-abela is not satisfactory, only ProMirII-g is
used to test the effectiveness of our approach. 0.001 is
chosen as the predictive value as it is the most relaxed
threshold.

Stage 2
Pairwise structural alignment between each pair of candi-
dates is conducted using RNAdistance. RNAdistance reads
RNA secondary structures and calculates one or more
measures for their dissimilarity, based on tree or string
editing (alignment). Briefly, it first translates the RNA sec-
ondary structures, which is inputted by the user using the
bracket format or coarse grained representations, into tree
structures. The standard morphologic features like bulge,
internal, multi-branch and hairpin loops are captured in
the tree structures. It then aligns the trees using a multiple
alignment program [25]. Since a higher RNAdistance score
implies that the pair of candidate sequences have rela-
tively different structures and vice versa, if a candidate has

Table 4: Results of the performance analyses of ProMirII-g and miR-abela using human, mouse and rat genome data.

Software Statistics Human Mouse (All) Mouse (Distinct) Rat

ProMirII-g # of predictions 690 656 640 615

# of TPs 215 199 183 127

# of FPs 475 457 457 485

# of real miRNAs missed 25 46 29 19

SE 89.58% 81.22% 85.92% 86.99%

PPV 31.16% 30.34% 28.59% 20.65%

miR-abela # of predictions 1036 915 901 646

# of TPs 149 140 126 86

# of FPs 887 775 775 560

# of real miRNAs missed 91 105 86 60

SE 62.08% 57.14% 59.43% 58.90%

PPV 14.38% 15.30% 13.98% 13.31%

It should be noted that in the mouse genome, 25 of the pre-miRNAs are duplicated. In other words, only 212 mouse pre-miRNAs are distinct in the 
genome. To avoid overestimation of the performance of the software, we identify the duplicated ones and conduct two measurements. #, number; 
FP, false positives; TP, true positives; SE, sensitivity; PPV, positive predictive value.
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high pairwise RNAdistance scores with other candidates, it
is likely to be a false positive and should be eliminated.
The crucial step lies on how to determine candidate(s)
with high scores and filtered them from the results. After
several trials, we propose the following steps to do the fil-
tering:

Step 1
Calculate the lower quartile (LQ) score of all the pairwise
RNAdistance scores formed by the candidates as the
threshold. If a cluster has less than four candidates, the
average score will be taken as the threshold.

Step 2
Select the potential candidates. Potential candidates are
candidates which can form a pairwise score less than the
threshold with another candidate, and these two candi-
dates are regarded as a linked pair. For example, given that

c1 and c2 are two of the candidates and c_{1, 2} denotes
the RNAdistance score when they are aligned to each other,
if the threshold score is 40 and c_{1, 2} is 32, c1 and c2
are potential candidates and linked pair.

Step 3
Adopt a brute-force approach and enumerate all combina-
tions formed by the potential candidates with replace-
ment. Only the combinations that are formed by linked
pairs are of our interest. For example, if there is a combi-
nation of c1, c2, c3, c4 and c5, but c1 and c5 does not form
a linked pair (i.e. c_{1, 5} is less than the threshold), this
combination will be discarded. Each combination is given
a "R score" which is calculated as follows:

R_{1, 2,..., k-1, k} = (1/n)(sum(c_{1, 2}, c_{1, 3}, c_{1,
4}, c_{1, k}, c_{2, 3}, c_{2, 4}, c_{2, k},...., c_{k-1, k})),
where k is the total number of candidates in the combina-
tion and n is the combinatorial kC2 = k(k-1)/2

In simple terms, R score is calculated as the average of all
the pairwise RNAdistance scores formed by the candidate
pairs in the combination.

Step 4
Another threshold has to be determined using the R scores
in order to select the final candidates from the combina-
tions formed in Step 3.

If there is only one combination formed, the candidates
which form this combination are taken as the results.

The R scores will be sorted in ascending order, e.g. R1, R2,
R3, R4,...., Rk, where k denotes the total number of com-
binations formed in Step 3. If k is bigger than or equal to
3 and (R3 – R2) < (R2 – R1), the threshold is taken as R3.
Otherwise the threshold is taken as R2. If the threshold is
less than 30, the threshold is set at 30. Candidates which
form a combination with a R score less than or equal to
this threshold are the TPs and will be outputted as the
answers.

List of abbreviations used
FP(s): false positive(s); LQ: lower quartile; miRNA(s):
microRNA(s); nt: nucleotides; PPV: positive predictive
value; SE: sensitivity; TP(s): true positive(s).
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