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Summary
Lipid rafts are specialized membrane microdomains that serve as organizing centers for assembly of
signaling molecules, influence membrane fluidity and trafficking of membrane proteins, and regulate
different cellular processes such as neurotransmission and receptor trafficking. In this article, we
provide an overview of current methods for studying lipid rafts and models for how lipid rafts might
form and function. Next, we propose a potential mechanism for regulating lipid rafts in the brain via
local control of cholesterol biosynthesis by neurotrophins and their receptors. Finally, we discuss
evidence that altered cholesterol metabolism and/or lipid rafts play a critical role in the
pathophysiology of multiple CNS disorders, including Smith-Lemli-Opitz syndrome, Huntington,
Alzheimer's, and Niemman-Pick Type C diseases.
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Introduction
The role of cholesterol in cellular function has come under intense scrutiny with the advent of
the lipid raft hypothesis (Simons and Ikonen 1997; Simons and Ikonen 2000; Maxfield and
Tabas 2005; Michel and Bakovic 2007). Lipid rafts are commonly defined as cholesterol- and
sphingolipid-enriched membrane microdomains that function as platforms that concentrate and
segregate proteins within the plane of the bilayer (Simons and Ikonen 1997; Pike 2006). For
the purposes of this discussion, we define caveolae as a subset of lipid rafts characterized by
the presence of caveolin (Fielding 2001). Since the advent of the raft hypothesis, the list of
putative raft-mediated events has grown at a rapid pace. Initially proposed to function primarily
in protein sorting events in polarized cells, lipid rafts are now thought to regulate membrane
trafficking in both the exocytic and endocytic pathways, cell migration, and a variety of cell
signaling cascades (Brown and London 1998; Simons and Toomre 2000). Lipid-lipid
interactions are thought to be of fundamental importance to the formation of lipid rafts, with
cholesterol playing a special role as the “glue” that holds these domains together (Barenholz
2002). Cell membranes are thought to contain both raft and non-raft domains, and proteins in

*To whom correspondence should be addressed: Anne K. Kenworthy, Department of Molecular Physiology and Biophysics, 718 Light
Hall, Vanderbilt University School of Medicine, Nashville, TN 37221, Anne.kenworthy@vanderbilt.edu, Phone: 615-322-6615, Fax:
615-322-7236.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuropharmacology. Author manuscript; available in PMC 2009 December 1.

Published in final edited form as:
Neuropharmacology. 2008 December ; 55(8): 1265–1273. doi:10.1016/j.neuropharm.2008.02.019.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



turn preferentially associate with one type of domain or the other. Thus, the presence of lipid
rafts is thought to enhance certain protein-protein interactions (for proteins contained within
the same raft for example) while inhibiting others (by segregating raft- and non-raft proteins).
The specialized lipid composition of lipid rafts, characterized by an enrichment of cholesterol
and sphingolipids, may also influence protein function directly by modulating the properties
of the membrane bilayer.

Although the human brain only accounts for about 2% of total body weight, it contains as much
as 25% of cholesterol and cholesterol derivatives (Dietschy and Turley 2001; Dietschy and
Turley 2004). Given the abundance of cholesterol in the brain, it is only natural to ask what
function lipid rafts play in the CNS. Lipid rafts are proposed to be critical for normal functioning
of the brain, and are found in both neuronal and glial cells (Tsui-Pierchala et al. 2002; Gielen
et al. 2006; Debruin and Harauz 2007). Lipid rafts serve as sites where the regulated
intramembrane proteolysis of many transmembrane proteins take place, including amyloid
precursor protein, ErbB4, deleted in colorectal cancer, Delta 1 and Jagged 2, and p75
neurotrophin receptor (Landman and Kim 2004; Vetrivel et al. 2005). Other proposed functions
of lipid rafts in the nervous system include neuronal signaling, neuronal cell adhesion, and
axon guidance (Paratcha and Ibanez 2002; Golub et al. 2004; Kamiguchi 2006; Michel and
Bakovic 2007). The presence of various ionotropic receptors and neurotransmitter transporters
within rafts suggests a critical role of rafts in controlling neurotransmission (Tillman and
Cascio 2003). In this regard, cholesterol content of the rafts has a potential to effectively control
the ion conductance and excitability of membranes, trafficking of ionotropic receptors to and
from the cell membrane, size and number of some postsynaptic receptor clusters (such as
NMDA and GABAa), and neurotransmitter signaling through G-protein coupled receptors
(Stetzkowski-Marden et al. 2006; Willmann et al. 2006; Besshoh et al. 2007; Huang et al.
2007).

Lipid rafts consist of both protein and lipid components, and are thought to exist in continuity
with non-raft regions of membrane. This has made their identification and characterization
particularly challenging. As such, many details of the structural properties of lipid rafts, and
indeed their very existence, are hotly debated (Munro 2003; Hancock 2006; Jacobson et al.
2007). We thus begin our discussion with an overview of methods currently used to study lipid
rafts as well as models for how lipid rafts form and function. Next, we outline a potential
mechanism for regulating lipid rafts in the brain via local control of cholesterol biosynthesis
by neurotrophins and their receptors. Finally, we discuss the consequences of deficits in
cholesterol production/metabolism on human brain function, which may be linked to
alterations in lipid raft function (Moebius et al. 2000; Nwokoro et al. 2001; Maxfield and Tabas
2005).

Methods for studying lipid rafts in cells and artificial membranes
The earliest results supporting the lipid raft model used a biochemical approach to isolate a
detergent-resistant membrane (DRM) fraction from polarized epithelial cells. This fraction was
enriched in (glyco)sphingolipids, cholesterol, and glycosylphosphatidylinositol (GPI)-
anchored proteins (Brown and Rose 1992). Subsequent studies developed non-detergent based
raft isolation methods (reviewed in (Pike 2003)). Biochemical fractionation, either with or
without detergent, remains by far the most widely used technique to isolate lipid rafts and their
associated proteins (Brown 2006). By this criterion, lipid rafts are abundant at the cell surface
and are enriched in cholesterol and sphingolipids and contain a variety of proteins. A number
of sorting signals that target proteins to DRMs have been identified. These include binding to
raft-associated lipids such as sphingolipids or cholesterol, specific regions of the
transmembrane domain, GPI-anchors, and other lipid modifications of peripheral membrane
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proteins such palmitoylation and myristoylation (Brown 2006). Moreover, the association of
proteins with lipid rafts can either be constitutive or transient (Lucero and Robbins 2004).

Lipid-lipid interactions are one of the major mechanisms thought to underlie lipid raft
formation (Simons and Ikonen 1997; Rietveld and Simons 1998; Simons and Vaz 2004). In
particular, DRMs are thought to represent liquid-ordered (Lo) domains, which coexist in the
same membrane with liquid disordered (Ld) domains (Schroeder et al. 1994; Brown and
London 1998). Lo domains form due to the preferential interactions of sphingolipids and/or
phospholipids containing saturated acyl chains with cholesterol (Brown and London 1998;
Rietveld and Simons 1998). In this state, lipids are tightly packed such that their order is close
to that observed in the gel state, yet can undergo rapid lateral diffusion (Brown and London
1998). The characteristic features of liquid ordered domains, as well as the phase behavior of
mixtures of liquid-ordered and liquid-disordered domains, can be easily studied in simple
mixtures of purified lipids (London 2002; Silvius 2003; Veatch and Keller 2005). A great
attraction of these artificial membrane systems is that the domains that form are often micron-
sized in scale and can thus be directly visualized with fluorescent probes that show a preference
for one phase (Brown 2001). In addition, their composition can be readily manipulated,
enabling studies of the effects of natural sterols, sterol derivatives, and cholesterol precursors
on liquid ordered domain formation (Xu and London 2000; Xu et al. 2001; Megha et al.
2006).

Since cholesterol is required for the formation of Lo domains, removal of cholesterol from
membranes would likewise be expected to cause the loss of lipid rafts (Simons and Toomre
2000; Edidin 2003; Pike 2003). Thus, cholesterol depletion has also become widely used as
an assay to study lipid rafts. In cells, cholesterol depletion can be accomplished through
sequestration of cholesterol by cholesterol-binding compounds, removal of cholesterol from
the membrane using methyl-beta-cyclodextrin, and/or inhibition of cholesterol biosynthesis.
Consistent with cholesterol's role in enabling lipid raft formation, cholesterol depletion often
causes a loss of raft proteins from DRMs. In addition, cholesterol depletion has also been used
in functional assays; pathways that are inhibited by cholesterol depletion are defined as raft-
dependent (Simons and Toomre 2000; Edidin 2003; Pike 2003).

Although biochemical fractionation and cholesterol depletion remain among the most widely
used techniques to define the raft-associated proteins and the function of rafts in cells, a number
of questions have been raised about the validity of these approaches (Munro 2003; Shogomori
and Brown 2003; Lichtenberg et al. 2005; Zidovetzki and Levitan 2007). In some instances,
clustering of raft proteins in microdomains can be detected by electron microscopy. The best
studied examples include Ras, influenza hemagglutinin, and components of the high affinity
IgE receptor signaling pathway (Wilson et al. 2002; Parton and Hancock 2004; Wilson et al.
2004; Hess et al. 2005)(Takeda et al. 2003). In addition, large-scale lipid phase separation can
be observed in plasma membrane blebs (Baumgart et al. 2007). Although these approaches
have provided valuable information about lipid rafts and related membrane microdomains,
their use is limited to fixed or perturbed cells. In living cells, lipid rafts have been exceptionally
difficult to visualize.

Due to the difficulties of directly imaging lipid rafts in live cell membranes, biophysical
techniques sensitive to protein and lipid dynamics and domain organization have instead been
used to explore their properties (Figure 1). Such techniques can be used to monitor raft-related
events with high spatial and temporal resolution without perturbing the integrity of the
membrane (Lommerse et al. 2004;Jacobson et al. 2007). One such approach is fluorescence
(or Förster) resonance energy transfer (FRET), used to test the hypothesis that raft proteins or
lipids are enriched in domains with sub-micron dimensions (reviewed in (Kenworthy
2002;Lommerse et al. 2004;Lagerholm et al. 2005;Rao and Mayor 2005;Silvius and Nabi
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2006)). In this technique, proteins or lipids of interest are labeled with fluorophores known as
a donor and acceptor. FRET occurs when the donor and acceptor-labeled molecules are within
∼100 Å of one another. The extent of FRET is quantified in terms of the efficiency of energy
transfer. This is typically detected by monitoring changes in the fluorescence of the donor
fluorophores in the presence or absence of the acceptor or by looking for emission of the
acceptor when exciting at the donor wavelength. Alternatively, it can be monitored by
following changes in the polarization of fluorescence under conditions where homoFRET, i.e.
FRET in which the same type of fluorophore serves as both donor and acceptor, is measured.

Importantly, the efficiency of FRET is very strongly distance dependent, falling off as the
inverse of the 6th power of the distance between the labeled molecules. Thus, FRET provides
a convenient way to determine the proximity of two molecules to one another-- for example,
their colocalization within the same lipid raft-- over distances smaller than could be measured
by conventional fluorescence microscopy (Figure 1). For proteins and lipids in membranes,
FRET can occur by chance if the concentration of donors and acceptors is high enough.
However, it is possible to distinguish this type of “non-specific” FRET from FRET that occurs
as the result of clustering of proteins within lipid rafts, as well as to test various models of
domain organization, with the aid of mathematical modeling (Kenworthy and Edidin
1998;Sharma et al. 2004;Kiskowski and Kenworthy 2007).

Based on FRET criteria, some raft proteins show little evidence for clustering in FRET studies
(Kenworthy and Edidin 1998; Kenworthy et al. 2000; Glebov and Nichols 2004), Others appear
to be clustered in sub-micron domains, as predicted by the lipid raft model (Varma and Mayor
1998; Zacharias et al. 2002; Nichols 2003; Sharma et al. 2004). Interestingly, detailed analysis
of such FRET data has shown that only a small fraction of GPI-anchored proteins are found in
clusters and that these clusters consist of only a few molecules (Sharma et al. 2004). These
findings raise the possibility that raft proteins spend much of their time in a monomeric state
and that the fraction of proteins associated with lipid rafts may be highly regulated. It remains
to be determined if this type of domain organization is specific to GPI-anchored proteins or a
common feature of various types of raft-associated proteins. How the fraction of proteins
associated with lipid rafts is regulated also is currently unknown. Further studies of the sub-
micron distribution of additional raft proteins should help to resolve these issues. Finally, in
addition to providing information about the size and area fraction of lipid rafts, FRET also
holds great potential to reveal transient interactions between raft-associated molecules, as
illustrated by a recent FRET study of dynamic events that occur during B-cell signaling (Sohn
et al. 2006).

Lipid rafts have also been hypothesized to impact the ability of membrane proteins to diffuse
freely within the plane of the membrane (Kenworthy 2005) (Figure 1). For example, protein
diffusion could be slowed within the specialized liquid-ordered environment of lipid rafts.
Other models suggest that proteins may be transiently associated with lipid rafts, especially if
the rafts are crosslinked (Dietrich et al. 2002; Shvartsman et al. 2003; Chen et al. 2006).
Alternatively, proteins may diffuse as part of a raft complex (Pralle et al. 2000). These effects
have been studied using techniques sensitive to lateral diffusion such as fluorescence recovery
after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and single
molecule tracking (reviewed in (Lommerse et al. 2004; Kenworthy 2005; Lagerholm et al.
2005)).

FRAP measures the diffusion of a population of fluorescently labeled molecules by monitoring
the recovery of fluorescence into a small region after subjecting it to a rapid bleaching event,
via exchange with molecules in the surrounding region by diffusion (Chen et al. 2006). The
speed of recovery is characterized by a diffusion coefficient (units of length2/time, typically
cm2/s or μm2/s), and the extent of recovery provides a measure of the fraction of molecules
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that are free to diffuse or mobile fraction. Differences in these parameters between raft and
non-raft proteins, or changes as the result of cholesterol depletion are used to probe for the
association of proteins with lipid rafts versus non-raft domains (Niv et al. 2002; Kenworthy et
al. 2004). On the basis of such experiments, caveolae have been shown to be quite stable and
immobile (van Deurs et al. 2003). On the other hand, under steady state conditions, raft proteins
can diffuse relatively rapidly, suggesting lipid rafts are dynamic structures (Kenworthy et al.
2004). Interestingly, in polarized epithelial cells, the diffusion of non-raft proteins, but not raft
proteins, is highly temperature dependent (Meder et al. 2006). This suggest that the plasma
membrane of these cells consists of dispersed non-raft domains separated by a connected raft
phase at low temperatures, and conversely, dispersed raft domains separated by connected non-
raft domains at 37° C (Meder et al. 2006). However, because FRAP is a population-based
measurement, it cannot provide detailed information about the mechanisms that lead to such
changes in either bulk diffusion coefficients or mobile fractions at the level of single molecules.

Single particle tracking follows the behavior of individual protein and lipid molecules and thus
gain insights into the ways in which their diffusion is regulated. Here, very sensitive detectors
are required to enable the visualization of single molecules and tracing of their movements.
Interpretation of the resulting trajectories also requires considerable analysis (Ritchie and
Kusumi 2003; Chen et al. 2006). Nevertheless the outcomes of such experiments can be
extremely informative. One question that can be addressed, for example, is whether the relative
diffusion of a pair of proteins is correlated in a manner consistent with their confinement to
rapidly diffusing, small domains (Vrljic et al. 2002). Other single particle tracking studies have
addressed the question of how GPI-anchored proteins, a class of raft-associated molecules,
behave upon crosslinking by multivalent antibodies, a stimulus known to induce intracellular
signaling pathways by poorly understood mechanisms (Chen et al. 2006; Suzuki et al. 2007;
Suzuki et al. 2007). Impressively, such studies allow one to trace out the signaling pathways
involved by monitoring the recruitment of individual signaling proteins to sites of crosslinking.
Protein diffusion during T-cell signaling, another example of a signaling event thought to
involve lipid rafts, has also been investigated using single molecule techniques. This approach
revealed an unexpected role of protein-protein networks in regulating the enrichment or
exclusion of proteins from sites of T-cell signaling (Douglass and Vale 2005).

FCS monitors the movement of small numbers of fluorescent molecules through a very small
observation volume (Elson 2004). Autocorrelation analysis of the resulting fluorescence
fluctuations over time provides information about the number of molecules passing through
the volume and their characteristic residence time, which is related to their diffusion coefficient.
In the lipid raft field, FCS has proven to be especially useful in studies in artificial membranes,
but can also be applied to cells (Kahya and Schwille 2006). A variation on FCS called cross
correlation jointly monitors the movement of two different colors of fluorescent molecules
simultaneously. Using this technique, it is possible to test for cross-correlations indicative of
molecule diffusing together as a complex. This type of analysis holds great potential for
elucidating molecular interactions that occur during events such as cell signaling mediated by
raft-associated proteins and lipids (Larson et al. 2005).

In addition to these approaches, new methods are also being brought to bear to study lipid rafts
in cells, including techniques sensitive to membrane ordering (Gaus et al. 2006; Davey et al.
2007) and superresolution techniques such as fluorescence photoactivation localization
microscopy that enable localization of molecules with sub-diffraction precision (Hess et al.
2007). Thus, the arsenal of biophysical tools to investigate lipid rafts and related membrane
domains is continuing to grow.
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Molecular mechanisms underlying raft formation and function
Lipid rafts are hypothesized to function by a process of compartmentalization (Simons and
Ikonen 1997; Pierce 2002; Manes et al. 2003; Pike 2003; Parton and Hancock 2004). In this
model, interactions of molecules within the same raft are enhanced, while interactions of non-
raft and raft molecules are inhibited due to their spatial segregation.

But, how does segregation of proteins into raft and non-raft domains occur? As already
introduced, the most commonly cited model suggests that lipid rafts correspond to Lo domains
that coexist with Ld domains. In turn, different raft proteins exhibit varying “affinities” for
rafts, reflected by the extent to which they associate with Lo domains (Brown 2006). To test
this idea, recent in vitro studies have begun to examine the partitioning of peptides and/or
proteins into Lo versus Ld domains (Hammond et al. 2005; Vidal and McIntosh 2005).
However, partitioning is not the only mechanism by which lateral compartmentalization of
proteins could be achieved, and it is not yet clear that this is the most appropriate model to
describe the behavior of raft proteins and lipids in cell membranes. For example, some proteins
expected to associate with Lo domains on the basis of their association with DRMs in cells
show little partitioning when studied in liposomes (Shogomori et al. 2005). With the recent
development of methods to examine lipid domain segregation in plasma membrane blebs, it
should be possible to begin to examine this model in more detail (Baumgart et al. 2007;
Sengupta et al. 2007).

Other models have focused on explaining how rafts can be functional if they are small and
transient structures. One of these, the lipid shell model, suggests that individual “raft” proteins
are surrounded by a shell of raft lipids, giving rise to their characteristic association with
detergent-resistant membrane fractions (Anderson and Jacobson 2002; Jacobson et al. 2007).
The lipid shell model allows for the existence of raft proteins as monomers, yet also suggests
the shells could function to target proteins to pre-existing domains/stable domains such as
caveolae, or form larger domains via regulated self-assembly and/or crosslinking. Yet another
model is suggested by the observations that the clustering of certain raft proteins occurs in a
concentration-independent fashion (Sharma et al. 2004). This indicates that the fraction of
proteins associated with domains is constant over a wide range of expression levels, a result
that implies these domains are actively regulated by the cell. The possibility that protein-protein
or protein-lipid interactions stabilize small transient domains and/or induce the formation of
larger, longer-lived entities has been proposed by a number of groups (Kusumi et al. 2004;
Kusumi and Suzuki 2005; Hancock 2006; Jacobson et al. 2007). Finally, the possibility that
cell membranes exist close to a phase boundary and thus small changes in lipid composition
could drive raft assembly or disassembly has also been suggested (Keller et al. 2004; Veatch
and Keller 2005).

To date, most studies have focused on the role of cholesterol in driving the formation of lipid
rafts. It is clear however that the presence of cholesterol in lipid rafts should have physical
consequences on the membrane as well, by influencing membrane thickness, elasticity, and
even curvature (Allende et al. 2004; Bacia et al. 2005). These structural consequences of
cholesterol enrichment may in turn impact the ability of certain proteins to associate with lipid
rafts, as illustrated by studies of the sorting of peptides between liquid ordered and liquid
disordered domains in vitro (McIntosh et al. 2003). Protein activity may additionally be
modulated by the specialized lipid environment of rafts (Pike 2003).

In summary, current models differ in their proposed details of the molecular mechanisms
underlying lipid raft formation. Nevertheless, most models agree that cholesterol is a critical
regulator of lipid raft function. Thus, local regulation of cholesterol levels via control of
cholesterol biosynthesis could represent a powerful mechanism to control raft-dependent
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events such as signaling and trafficking. Below, we discuss evidence that such a regulatory
mechanism may in fact occur in the brain, through a feedback loop that links regulation of the
cholesterol biosynthesis machinery and growth factor function.

Regulation of CNS cholesterol biosynthesis: a novel mechanism for
regulation of lipid rafts?

Cholesterol plays a wide variety of roles in the CNS, most notably as a precursor for steroid
hormones and myelin, in addition to its potential role in forming lipid rafts (Simons and Ikonen
2000; Dietschy and Turley 2001; Fielding 2001). Cholesterol biosynthesis starts with acetyl-
CoA as a substrate and involves at least 20 enzymes (Dietschy and Turley 2001; Dietschy and
Turley 2004). The rate-limiting enzyme in cholesterol biosynthesis is 3-hydroxy-3-
methylglutaryl-coenzyme A reductase (Hmgcr; EC 2.3.3.10) which catalyzes conversion of
Hmg-CoA to mevalonic acid. In addition to cholesterol biosynthesis, the cholesterogenic
pathway plays a pivotal role in the synthesis of many bioactive compounds, including four key
intermediates: mevalonate, farnesyl pyrophosphate, squalene, and lanosterol. Mevalonate is
the first committed intermediate in the synthesis of dolichols that are carriers for addition of
carbohydrate chains to glycoproteins. Farnesyl pyrophosphate is an important precursor for
nonsterol isoprenoids geranylgeranyl pyrophosphate, heme A, and ubiquinone. The first
dedicated step in de novo cholesterol biosynthesis begins with formation of squalene and ends
with the reduction of 7-dehydrocholesterol by 7-dehydrocholesterol reductase (Dhcr7; EC
1.3.1.21) into cholesterol (Bae et al. 1999).

All of brain cholesterol is synthesized locally, with the highest rate of synthesis occuring during
first postnatal weeks in humans and rodents (Jurevics and Morell 1995; Jurevics et al. 1997),
and this time window corresponds to the peak of myelination process. Myelin, produced by
oligodendrocytes, ensheathes axons and is critical for the conduction of action potential along
the neurons (Miller 2002). It has high lipid and cholesterol content, which are critical for its
insulating function. Disturbances in lipid homeostasis result in altered CNS structure and
function: deficient cholesterol biosynthesis in oligodendrocytes delays myelination (Saher et
al. 2005), while altered biosynthesis of other lipids (e.g. galactolipids) give rise to defects in
myelination (Marcus and Popko 2002). These findings indicate that development and
maintenance of myelin membranes require a complex interplay of lipids and proteins, and
membrane rafts may play a critical role in this process (Gielen et al. 2006; Debruin and Harauz
2007)(Colognato et al. 2002).

While there is clear role of oligodendrocytes in myelin formation, the respective roles of
neurons and glial cells in cholesterol biosynthesis in the adult nervous system are poorly
understood (Pfrieger 2003). Although the prevailing view is that in the adult nervous system
astrocytes produce brain-derived cholesterol (Pfrieger 2003), there have been suggestions that
neuronal cells, in addition to glial cells, are also capable of cholesterol synthesis (Saito et al.
1987; Suzuki et al. 2007). A detailed map of the expression of cholesterogenic enzymes in the
adult nervous system is not yet available. However, our recent study revealed that adult cortical,
cholinergic and hippocampal neurons express high transcript levels of Hmgcr and Dhcr7
(Korade et al. 2006). The co-expression of the first and last enzymes of the cholesterogenic
pathway in cortical, hippocampal, and cholinergic neurons (Korade et al. 2006) suggests that
these neurons may require high levels of endogenous cholesterol production for their normal
function. There are also regional differences in the distribution profile of cholesterol-
synthesizing enzymes (Ness 1994; Bae et al. 1999), sterol-sensing factors, intracellular
transporters, lipoprotein receptors, and cholesterol shuttle proteins (Stockinger et al. 1998;
Ong et al. 2000; Ong et al. 2004). Considering the complexity of adult nervous system, it is
not surprising that different brain regions show marked differences in cholesterol content
(Zhang et al. 1996). In particular, hippocampal and cortical neurons show different intrinsic
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concentrations of cholesterol (Ko et al. 2005). This difference is also present in the detergent
resistant membranes, suggesting that hippocampal neurons are also enriched in membrane
rafts. Furthermore, the data suggest that cholesterol is a potent regulator of in vitro neuronal
morphology: increased cholesterol levels lead to less complex dendritic arborization (Ko et al.
2005). Support for this view also comes from an independent study by Pooler et al., in which
they report that a Hmgcr inhibitor, pravastatin, enhanced neurite outgrowth, neurite length, and
neurite branching in cultured hippocampal neurons (Pooler et al. 2006).

In addition to building evidence for regional differences in cholesterogenic enzyme expression,
several recent lines of evidence suggest that their expression may be dynamically regulated by
neurotrophic factors. Neurotrophic factors exert multiple biological functions in the nervous
system. They are essential for the development of the brain; they promote survival and
differentiation and are important for maintenance of synaptic contacts (Chao 2003). A recent
study by Suzuki et al, (Suzuki et al. 2007), showed that cortical and hippocampal neurons
grown in culture for several days increase amount of cholesterol and this is due to increased
expression level of cholesterol-synthesizing enzymes. Importantly, these investigators found
that brain-derived neurotrophic factor (BDNF) regulates expression of cholesterogenic
enzymes specifically in neurons but not in glial cells. Furthermore, this de novo synthesized
cholesterol was incorporated into lipid rafts and BDNF stimulation lead to increased level of
caveolin-2 and presynaptic proteins in rafts but not in nonrafts. The neurotrophic effects on
the cholesterol/lipid raft system appear to be mediated through both the specific (TrkB) (Suzuki
et al. 2007) and common (p75) neurotrophin receptors (Korade et al. 2006). Blocking TrkB
prevented increase in cholesterol (Suzuki et al. 2007). Our recent studies revealed that p75 is
a potent regulator of cholesterogenic enzyme expression in neuronal cultures and several
human neuroblastoma cell lines (Korade et al. 2006).

Overexpression of GDNF in neuronal progenitor cells was shown to regulate four enzymes of
the cholesterol-biosynthesis pathway but it is not known if these changes lead to alterations of
lipid rafts (Pahnke et al. 2004). Similarly, microarray analysis of NGF-induced gene expression
in PC12 cells revealed changes in cholesterol biosynthesis enzymes (Lee et al. 2005).

All of these studies revealed that neurotrophins and their receptors are involved in regulation
of cholesterol metabolism. A simplified model of this regulation is shown in Figure 2. Binding
of neurotrophins leads to activation of their respective receptors and transcriptional regulation
of lipidogenic enzymes in the nervous tissue. The altered lipid biosynthesis will lead to altered
organization/composition of lipid rafts and changes in neurotransmitter release, cell division,
and neuronal outgrowth. The growth factor-membrane raft interaction is a two-way street. Not
only do growth factors regulate membrane raft structure, but membrane rafts are also essential
for growth factor signaling. Growth factor receptor tyrosine kinases EGFR, Trk and PDGFR
are enriched in lipid rafts and other receptors, normally located outside the rafts (e.g. Ret), can
be recruited to the raft by GPI-anchored co-receptors (Paratcha and Ibanez 2002;Tsui-Pierchala
et al. 2002;Kamiguchi 2006). Therefore, disruption of rafts is likely to impair signaling via
these systems. Much more work is needed to define the consequence of this altered cholesterol
biosynthesis on lipid raft composition and function.

Human conditions with altered cholesterol biosynthesis: consequences of
raft dysfunction?

Cholesterol is not only important for normal brain function but also has been linked to CNS
pathophysiology. Cholesterol disturbances in the CNS appear to lead to brain abnormalities
(microcephaly, macrocephaly and mental retardation). Here, we discuss evidence that altered
cholesterol metabolism and/or lipid rafts play a critical role in the pathophysiology of multiple
CNS disorders, including Smith-Lemli-Opitz syndrome (Jira et al. 2003), Huntington's
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(Valenza et al. 2005), Alzheimer's (Wellington 2004; Wolozin 2004), and Niemman-Pick Type
C (Vance et al. 2005) diseases. However, at the present time it is unclear which of these
disturbances are mediated through raft-dependent mechanisms.

Reduced or absent Dhcr7 leads to Smith-Lemli-Opitz syndrome (SLOS), which is
characterized by developmental deformities, incomplete myelination, and mental retardation
(Jira et al. 2003). In SLOS, the tissue cholesterol and total sterol levels are markedly reduced
while the concentrations of 7-dehydrocholesterol are greatly elevated (Jira et al. 2003). This
elevation in 7-dehydrocholesterol inhibits the activity of Hmgcr, thus further exacerbating the
cholesterol deficit (Honda et al. 1998; Fitzky et al. 2001). Importantly, as 7-dehydrocholesterol
can incorporate into lipid rafts and alters the protein composition within it (Keller et al.
2004), at least some of the disturbances seen in SLOS can be due to the altered function of the
lipid rafts. The greatly increased level of 7-dehydrocholesterol leads to increased membrane
fluidity and decreased intermolecular packing of phospholipids fatty acyl chains (Vainio et al.
2006; Rog et al. 2007; Samuli Ollila et al. 2007). Membrane X-ray diffraction studies suggest
that the minor difference between the structure of cholesterol and 7-dehydrocholesterol leads
to significant differences in membrane lipid organization and dynamics (Xu et al. 2001). 7-
dehydrocholesterol differs from cholesterol in a double bond at the 7th position in the sterol
ring, and this appears to be an important structural difference that translates into a functional
difference: depletion of cholesterol from hippocampal membranes and replenishment with 7-
dehydrocholesterol does not restore ligand-binding activity of the serotonin 1A receptor,
despite the recovery of the overall membrane order (Singh et al. 2007). Based on the clinical
symptoms of SLOS and our own findings of high neuronal expression of cholesterogenic
enzymes (Korade et al. 2006), we propose that altered neuronal synthesis of cholesterol may
be an important contributing factor to the SLOS pathophysiology, and that these events may
involve altered membrane raft events.

In Huntington's disease, the expanded glutamate tract in the huntingtin protein leads to reduced
cholesterol biosynthesis and neuronal cell death (Valenza et al. 2005). Specifically, the
expression level of cholesterol biosynthesis genes was downregulated in human postmortem
striatum and cortex as well as in brain tissue from HD mouse (Valenza et al. 2005).
Interestingly, the application of exogenous cholesterol to striatal neurons expressing mutant
huntingtin prevented their death (Valenza et al. 2005). The reduction of both cholesterol and
BDNF in HD brains suggests a causal relationship between BDNF signaling and cholesterol
homeostasis, and it is likely that one of the critical sites of disturbance is the signal transmission
at the lipid rafts (Zuccato et al. 2005).

Alzheimer's disease is characterized by accumulation of amyloid beta peptide (Aβ1-42) derived
by presenilin 1/gamma secretase cleavage of amyloid precursor protein (APP) (Price et al.
1998; Sisodia and St George-Hyslop 2002). Cholesterol metabolism is altered in the brain of
patients with AD and the critical evidence of the importance of normal cholesterol homeostasis
in AD comes from epidemiological studies (Wellington 2004). These revealed that the
prevalence of diagnosed AD is reduced in individuals taking statins (inhibitors of cholesterol
biosynthesis) for long time periods (Wolozin 2004). Experimental evidence revealed that
statins are capable of reducing amyloid β42 deposition in animal models of AD (Refolo et al.
2001). The analysis of temporal cortex from AD subjects showed loss of lipid rafts (Molander-
Melin et al. 2005), while hippocampi showed reduced cholesterol content in the rafts (Ledesma
et al. 2003). In addition the inhibition of cholesterol transport alters PS1 localization and APP
processing in neuronal cells (Runz et al. 2002).

Finally, Niemann-Pick type C (NPC) disease is characterized by accumulation of unesterified
cholesterol and other lipids in endosomal vesicles, which lead to a set of CNS abnormalities
that share clinical and histopathological similarities between NPC and AD: progressive
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dementia, neurofibrillary tangles, tau hyperphosphorylation, increased APP and abnormal
accumulation of Aβ42 in the hippocampus and cerebral cortex (Vance 2006). Cultured striatal
neurons from NPC KO mice do not respond to BDNF although they express TrkB on their cell
membrane (Henderson et al. 2000). This is demonstrated by the absence of
autophosphorylation of TrkB receptor and defective neurite outgrowth in NPC KO neurons
(Henderson et al. 2000). This study corroborates the link between neurotrophins and
cholesterol. The common clinical symptoms between AD and NPC suggest a set of shared
pathophysiological events, and these most likely involve the cholesterol biosynthesis/lipid raft
signaling system.

Perspectives
In the nervous tissue various molecular complexes are assembled in lipid rafts, thus mediating
a diversity of downstream cellular events such as neurotransmitter processing and release, cell
division, cell adhesion, and neuronal outgrowth. Most prominently, neurotrophin receptors are
embedded in lipid rafts and BDNF, NGF and GDNF signaling depends on the normal
functioning of lipid membrane microdomains. However, it appears that the lipid raft-
neurotrophin interaction undergoes a dual feed-forward and feedback regulation: recent
evidence suggests that the neurotrophin system is capable of regulating the lipid and cholesterol
content of the rafts themselves. These findings, combined with evidence of altered lipid
biosynthesis and neurotrophin disturbances in multiple CNS disorders suggest that lipid rafts
are likely to play a critical role in the pathophysiology of multiple CNS disorders, including
Smith-Lemli-Opitz syndrome, Huntington, Alzheimer's, and Niemman-Pick Type C diseases.
Novel methods to study lipid rafts will aid in resolving composition of rafts and their role in
nervous system function.
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Figure 1. Properties of lipid rafts that can be probed by FRET and diffusion-based measurements
Bulk membrane is depicted in gray, lipid rafts in yellow, raft-associated proteins in blue, and
proteins that exist in the absence of rafts in red. The movement of proteins by diffusion within
the plane of the membrane is indicated by the black lines. (A) In the absence of lipid rafts, a
random protein distribution is expected. This gives rise to either no FRET or a FRET signal
that shows a characteristic dependence on the surface density of labeled proteins. A similar
result would be expected for proteins that are neither enriched nor excluded from lipid rafts.
(B) The association of proteins with lipid rafts brings them within FRET proximity. For FRET
to be able to detect such domains, at least one donor-labeled and one acceptor-labeled protein
must localize within the same lipid raft. (C) For proteins undergoing classical free diffusion,
diffusion is not hindered in any way. (D) One way that lipid rafts can impact protein diffusion
is by transiently confining them to liquid ordered domains. This can be detected experimentally
by testing for cholesterol-dependent, confined diffusion.
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Figure 2. Proposed feed-forward and feedback regulation of the lipid raft – neurotrophin signaling
cascade
Binding of neurotrophins leads to activation of their respective receptors and transcriptional
regulation of lipidogenic enzymes in the nervous tissue. The altered lipid biosynthesis will lead
to altered organization/composition of lipid rafts and changes in neurotransmitter release, cell
division, and neuronal outgrowth. Finally, altered microdomain structure will also affect the
insertion and signaling of the neurothrophin receptors, thus completing the lipid-raft/
neurotrophin regulatory cycle.
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