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     Boron (B) is an essential element for plants, and B 
deficiency is a worldwide agricultural problem. In 
B-deficient areas, B is often supplied as fertilizer, but 
excess B can be toxic to both plants and animals. 
Generation of B defi ciency-tolerant plants could reduce 
B fertilizer use. Improved fertility under B-limiting 
conditions in  Arabidopsis thaliana  by overexpression of 
BOR1, a B transporter, has been reported, but the root 
growth was not improved by the BOR1 overexpression. In 
this study, we report that enhanced expression of  NIP5;1 , 
a boric acid channel for efficient B uptake, resulted in 
improved root elongation under B-limiting conditions 
in  A. thaliana . An  NIP5;1  activation tag line, which 
has a T-DNA insertion with enhancer sequences near 
the  NIP5;1  gene, showed improved root elongation 
under B limitation. We generated a construct which 
mimics the tag line: the caulifl ower mosaic virus 35S RNA 
promoter was inserted at 1,357 bp upstream of the  NIP5;1  
transcription initiation site. Introduction of this construct 
into the  nip5;1-1  mutant and the  BOR1  overexpresser 
resulted in enhanced expression of  NIP5;1  and improved root 
elongation under low B supply. Furthermore, one of the transgenic 
lines exhibited improved fertility and short-term B 
uptake. Our results demonstrate successful improvement 
of B deficiency tolerance and the potential of enhancing 
expression of a mineral nutrient channel gene to improve 
growth under nutrient-limiting conditions.   

   Keywords: Arabidopsis thaliana •    Boron •   Channel •   Defi ciency 
tolerance   • Nodulin 26-like intrinsic proteins   • Transporter.  

  Abbreviations: CaMV 35S promoter, caulifl ower mosaic 
virus 35S RNA promoter;   MIP, major intrinsic protein;   NIP, 

nodulin 26-like intrinsic protein;   PIP, plasma membrane 
intrinsic protein;   RT–PCR, reverse transcription–PCR.       

 Introduction 

 Boron (B) is an essential element for plants ( Marschner 1995 ). 
B is mainly present in cell walls and cross-links rhamnogalac-
turonan-II, a pectic polysaccharide ( Kobayashi et al. 1996 , 
 Ishii and Matsunaga 1996 ,  O’Neill et al. 1996 ). Reduction of 
cross-linked rhamnogalacturonan-II resulted in suppressed 
growth of  Arabidopsis thaliana  ( O’Neill et al. 2001 ), demon-
strating that B is required as one of the cell wall components. 
B defi ciency is reported in >80 countries ( Shoroccks 1997 ). 
B-defi cient symptoms fi rst appear in the growing point of 
plants, and typical symptoms include inhibition of root elon-
gation, expansion of leaves and fertilization ( Dell and Huang 
1997 ). Therefore, a continuous supply of B is important for 
normal growth through vegetative and reproductive stages. 
In the B-defi cient areas, B is supplied as fertilizer, but the 
usage of B fertilization needs to be tightly controlled because 
B accumulation potentially causes toxicity problems. Gen-
eration of B defi ciency-tolerant plants could reduce B fertil-
izer use and potential toxicity problems. Regulation of B 
transport is among the strategies to generate such plants. 

 Understanding of B transport mechanisms at the molecular 
level has advanced greatly in the last several years (for a review, 
see  Takano et al. 2008 ). Two different types of transporters, 
BOR1 and NIP5;1, were identifi ed as B transport molecules 
required for effi cient B translocation under B-limited condi-
tions in  A. thaliana  ( Takano et al. 2002 ,  Takano et al. 2006 ). 

 BOR1 is a boric acid/borate transporter for xylem loading 
( Takano et al. 2002 ) identifi ed as a causual gene for the 
 bor1-1  mutant of  A. thaliana . The  bor1-1  mutant exhibited 
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severe shoot growth inhibition and reduced fertility under 
low B conditions ( Noguchi et al. 1997 ) and is defective in 
B translocation from roots to shoots ( Noguchi et al. 2000 ). 
Overexpression of  BOR1  under the control of the caulifl ower 
mosaic virus 35S RNA (CaMV 35S) promoter resulted in 
improved shoot growth and fertility under B-defi cient 
conditions ( Miwa et al. 2006 ). 

 NIP5;1 is a member of the major intrinsic protein (MIP) 
family and has been identifi ed as a boric acid channel required 
for plant growth under low B conditions in  A. thaliana  ( Takano 
et al. 2006 ). MIPs are channels for water and/or small non-
charged molecules ( Wallace et al. 2006 ). MIPs are grouped 
into four subfamilies: the plasma membrane intrinsic protein 
(PIPs), the tonoplast intrinsic proteins (TIPs), the nodulin 
26-like intrinsic proteins (NIPs) and the small basic intrinsic 
proteins (SIPs). NIP5;1 belongs to the NIP subfamily and 
mediates boric acid transport ( Takano et al. 2006 ). Under 
low B conditions,  NIP5;1  is up-regulated at the mRNA level 
and  NIP5;1  mutants exhibited severe growth reduction both 
in shoots and roots. 

 As overexpression of  BOR1  under the control of the CaMV 
35S promoter improved shoot growth and fertility under B 
defi ciency ( Miwa et al. 2006 ), we tried the same approach 
with  NIP5;1  without success (data not shown). However, we 
succeeded in generating plants with elevated tolerance to 
low B levels by inserting the CaMV 35S enhancer into the 
promoter region of  NIP5;1 .   

 Results  

 Root growth was improved in the NIP5;1 activation 
tag lines under limited B conditions 
 Because overexpression of  NIP5;1  under the control of the 
CaMV 35S promoter did not result in improved growth under 
low B supply (data not shown), we tried another approach. 
Two independent  NIP5;1  activation tag lines (GABI 297G11 
and 046C12), which carry T-DNA insertions upstream of the 
initiation codon of the  NIP5;1  gene ( Rosso et al. 2003 ), were 
obtained ( Fig. 1A ).  NIP5;1  mRNA levels in roots were increased 
by 2-fold in both lines compared with wild-type plants (Sup-
plementary data 1). The activation tag lines were grown on 
solid medium containing various concentrations of B, and 
shoot fresh weights and primary root lengths were measured 
( Fig. 1B, C ). In GABI 297G11, root length was 1.8 and 1.4 times 
longer than that of the wild-type plants on medium contain-
ing 0.03 and 0.1 µM B, respectively. The root length of GABI 
297G11 was similar to that of the wild type at 0.3 and 100 µM 
B. There was no signifi cant difference in shoot fresh weight 
compared with the wild-type plants under all conditions 
examined. In GABI 046C12, root lengths on medium contain-
ing 0.03 µM B were 1.5 times longer than those of the wild-
type plants; however, shoot fresh weight was reduced to about 
50% of that of wild-type plants under B limitation. 

 These observations established that in the two enhancer 
tag lines, root growth was improved under low B conditions. 
Wild-type plants and two  NIP5;1  activation tag lines grew 
similarly on media containing 100 µM B, suggesting that 
growth enhancement of roots is specifi c to the low B condi-
tion. It is not clear why shoot fresh weight was reduced in 
GABI 046C12 but not in GABI 297G11, while both lines have 
a similar level of  NIP5;1  transcript accumulation in roots 
(Supplementary data 1). Possible explanations include second 
site mutations and/or loss of tissue-specifi c expression.   

 Enhanced expression of NIP5;1 resulted in improved 
root elongation under low B conditions in the 
nip5;1-1 mutant 
 The sites of T-DNA insertion in the two tag lines were both 
upstream of the  NIP5;1  gene, and the T-DNA in the GABI 

 Fig. 1  .     Growth of  NIP5 ; 1  activation tag lines. (A) Schematic 
representation of a gene model of  NIP5 ; 1  and T-DNA insertion sites 
of activation tag lines based on SIGnAL T-DNA express. Black boxes 
represent exons. T-DNAs are not drawn to scale. The fi rst nucleotide 
of full-length cDNA (NM_117106) was defined as + 1. (B) and (C) 
Growth of  NIP5 ; 1  activation tag lines. Plants were grown on solid 
medium containing various concentrations of boric acid. Primary 
root lengths (B) and shoot fresh weights (C) were measured. The 
averages and SDs are shown ( n  = 7–10). Asterisks indicate signifi cant 
differences from the wild-type plants (Student's  t -test  P  < 0.05).  
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lines includes the CaMV 35S promoter. As shown in Supple-
mentary data 1,  NIP5;1  transcription levels were elevated in 
these lines. It is possible that the root growth enhancement 
observed only under low B conditions is due to enhance-
ment of  NIP5;1  expression. 

 To verify this hypothesis, we generated a DNA construct 
which has the CaMV 35S promoter at 1,357 bp upstream of 
the  NIP5;1  transcription initiation site ( Fig. 2A ). This DNA 
construct was designed to mimic the  NIP5;1  promoter in 
GABI 297G11 and will be referred to as  Pro35S-NIP5;1:NIP5;1 . 
GABI 297G11 was selected because, unlike the case of GABI 
046C12, it exhibited growth enhancement without inhibi-
tory effects on shoot growth ( Fig. 1B, C ). This DNA con-
struct was introduced into  nip5;1-1 , a  NIP5;1  mutant line 
( Takano et al. 2006 ). Eleven independent transgenic lines 
(named n02–n25) were obtained and T 3  homozygous plants 
were established. The relative expression level of  NIP5;1  in 
roots was measured under B-limiting conditions ( Fig. 2B ). 
Nine out of the 11 transgenic lines had 3.7- to 10-fold more 
accumulation of  NIP5;1  mRNA than the wild-type plants. 
Accumulation of  NIP5;1  mRNA in n04 and n25 was 0.88 and 
0.76 times lower than in the wild-type plants. 

 To investigate the effect of enhanced expression of  NIP5;1 , 
the wild type,  nip5;1-1  and the transgenic  nip5;1-1  lines car-
rying  Pro35S-NIP5;1:NIP5;1  were grown on medium contain-
ing 0.1 or 100 µM B. Shoot fresh weight and primary root 
length were measured ( Fig. 2C–F ). Growth of the transgenic 
lines under 100 µM B supply was similar to that of the wild 
type except for a slight reduction of root length in n25 
( Fig. 2C, D ). Under 0.1 µM B supply, the root length of trans-
genic plants which have enhanced expression of  NIP5;1  
was 1.2- to 1.5-fold longer than that of the wild-type plants 
( Fig. 2E ). Root lengths of n04 and n25, which have lower 
 NIP5;1  mRNA levels than the wild-type plants, were not sig-
nifi cantly different from that of the wild-type plants. Shoot 
fresh weights were similar to that of the wild-type plants in 
seven transgenic lines ( Fig. 2F ). The shoot fresh weights of 
n09 and n19 were 1.3 and 1.5 times larger than that of wild-
type plants, respectively ( Fig. 2F ). These results indicate that 
enhanced expression of  NIP5;1  resulted in improved root 
elongation under low B supply.   

 Enhanced expression of NIP5;1 improved root 
elongation in plants overexpressing BOR1 under 
low B supply 
 Overexpression of BOR1 improved shoot growth but not 
root growth ( Miwa et al. 2006 ). To confer further B defi -
ciency tolerance, we introduced  Pro35S-NIP5;1:NIP5;1  into 
the transgenic line overexpressing BOR1 (BOR1OX, line18, 
 Takano et al. 2005 ). Eleven independent transgenic lines 
were obtained and T 3  homozygous plants in terms of  Pro35S-
NIP5;1:NIP5;1  insertion were established. The relative 
expression levels of  NIP5;1  in roots were measured under 

B-limiting conditions ( Fig. 3A ). Transgenic plants had 2.3- to 
15-fold more accumulation of  NIP5;1  mRNA than the wild-
type plants. 

 To investigate the effect of elevated  NIP5;1  expression, 
wild-type, BOR1OX and the transgenic plants were grown 
on solid media containing 0.1 or 100 µM B, and shoot fresh 
weight and root length were measured ( Fig. 3B–E ). Under 100 µM 
B supply, growth of the transgenic lines was not improved 
compared with the BOR1OX plants ( Fig. 3B, C ). With 0.1 µM 
B, root lengths were 1.4–2.4 times increased in seven lines 
( Fig. 3D ), but no line showed improved shoot growth com-
pared with the BOR1OX plants ( Fig. 3E ). These results show 
that enhanced expression of  NIP5;1  improves root elonga-
tion under low B supply in the BOR1OX background. 

 In the several transgenic lines carrying both  Pro35S-
BOR1-GFP  and  Pro35S-NIP5;1:NIP5;1 , reduced shoot growth 
was observed ( Fig. 3C, E ), presumably due to mutation/
variations induced during the transformation processes.   

 Pro35S-NIP5;1:NIP5;1 plants exhibited remarkable 
improvement of root elongation on media without 
B supply 
 We grew the transgenic BOR1OX lines carrying  Pro35S-
NIP5;1:NIP5;1  on solid medium without supplemental B 
( Fig. 4A ). Several transgenic plants exhibited remarkable 
improvement of root elongation under these severe B-defi -
cient conditions. Wild-type and BOR1OX plants under these 
conditions exhibited a disorder of root morphology, as has 
been observed in the  nip5;1-1  mutant line under low B con-
ditions ( Takano et al. 2006 ). The root tips of these plants 
were stunted and root hair density increased dramatically. 
However, the roots of B02, B07, B16 and B22 were apparently 
normal and similar to those of plants grown with suffi cient B 
supply. Shoot growth was also improved in several lines, 
especially in B01. 

 The shoot fresh weights and root lengths of the trans-
genic plants were measured ( Fig. 4B, C ). Primary root lengths 
were 2.0–7.0 times longer in seven transgenic lines compared 
with the original BOR1OX ( Fig. 4B ). Shoot fresh weight of 
B01 was 2.4 times more than that of the original BOR1OX 
lines ( Fig. 4C ). Statistically signifi cant improvement of shoot 
growth was observed only in B01, but lines B03, B07, B16 and 
B22 showed a tendency to higher shoot fresh weight. 

 Growth improvement was further observed after an 
extended growth period ( Fig. 5 ). Lines B01 and B07 contin-
ued to grow for 23 d and the difference in growth was much 
more evident after the extended period of growth.   

 Improved fertility of a BOR1OX line carrying 
Pro35S-NIP5;1:NIP5;1 under very low B 
 To reveal the effect of enhanced expression of  NIP5;1  on the 
reproductive growth stage, the wild type, BOR1OX and 
the transgenic lines (B01, B07, B16 and B22) were grown 
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 Fig. 2  .     Generation and growth characterization of  Pro35S - NIP5 ; 1 : NIP5 ; 1  transgenic plants in the  nip5 ; 1 - 1  background. (A) The schematic 
representation of the DNA construct which has the CaMV 35S promoter at 1,357 bp upstream of the  NIP5 ; 1  transcription initiation site. 
(B) Relative mRNA level of  NIP5 ; 1  in roots of the transgenic plants. Plants were grown on plates containing 100 µM B for 12 d. Then the plants 
were transferred to plates containing 0.1 µM B and incubated for 1 d. Total RNAs were extracted from roots of 7–10 plants. The averages and 
SDs are presented for independent reverse transcription reactions followed by real-time PCR (n = 3). (C–F) Growth of the transgenic plants. 
Plants were grown on solid medium containing 100 or 0.1 µM boric acid for 12 d. Shoot fresh weights and primary root lengths were measured. 
Averages and SDs are shown ( n  = 9–10). Asterisks indicate signifi cant differences from the wild-type plants (Student's  t -test  P  < 0.05). (C) Primary 
root length under 100 µM B conditions. (D) Shoot fresh weight under 100 µM B conditions. (E) Primary root length under 0.1 µM B conditions. 
(F) Shoot fresh weight under 0.1 µM B conditions.  
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 Fig. 3  .     Generation and growth characterization of  Pro35S - NIP5 ; 1 : NIP5 ; 1  transgenic plants in the BOR1OX background. (A) Relative mRNA 
level of  NIP5 ; 1  in roots of the transgenic plants. Plants were grown on plates containing 100 µM B for 12 d. The plants were then transferred to 
plates containing 0.1 µM B and incubated for 1 d. Total RNAs were extracted from roots of 7–10 plants. The averages and SDs are presented 
for independent reverse transcription reactions followed by real-time PCR ( n  = 3). (B–E) Growth of the transgenic plants. Plants were grown 
on solid medium containing 100 or 0.1 µM boric acid for 12 d. Shoot fresh weight and root length were measured. Averages and SDs are shown 
( n  = 8–10). Asterisks indicate signifi cant differences from the BOR1OX plants (Student's  t -test  P  < 0.05). (B) Primary root length under 100 µM B 
conditions. (C) Shoot fresh weight under 100 µM B conditions. (D) Primary root length under 0.1 µM B conditions. (E) Shoot fresh weight under 
0.1 µM B conditions.  
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hydroponically supplied with 0.3 µM B for 65 d ( Fig. 6 ). Wild-
type plants did not set seeds but BOR1OX did under these 
conditions. This improvement in fertility in the BOR1OX line 
was consistent with the report of  Miwa et al. (2006) . Among 
the lines tested, B01 developed the highest numbers of 
branches and set seeds more vigorously than the BOR1OX 
line. In other lines, fertility was similar to that of BOR1OX 
(data not shown).   

 Increased short-term B uptake and/or translocation 
in a BOR1OX line carrying Pro35S-NIP5;1:NIP5;1 
 To determine the physiological reason for improved fertility 
of B01, we measured short-term B uptake using a stable iso-
tope of B ( Fig. 7 ). The plants were fi rst grown on solid 
medium containing 100 µM  11 B-enriched boric acid for 22 d. 
Next, the plants were incubated in liquid medium contain-
ing 0.1 µM  11 B-enriched boric acid for 2 d and then exposed 
to liquid medium containing 10 µM  10 B-enriched boric acid. 
The amount of B absorbed in shoots was determined ( Fig. 7 ). 
When the time of exposure to  10 B was 30 min, no signifi cant 
difference in B uptake was detected among the wild type, 
BOR1OX and B01. BOR1OX exhibited greater B uptake than 
wild-type plants when incubated for 120 min. Remarkably, 
B01 exhibited higher B uptake than the BOR1OX plants 
when exposed for 60 or 120 min.    

 Discussion 

 In this study, we demonstrated that enhanced expression of 
 NIP5;1  leads to improved root elongation under B-limiting 
conditions. There are several reports on improvement of 
growth by modulating expression of MIPs (for a review, see 

 Fig. 5  .     Growth of  Pro35S - NIP5 ; 1 : NIP5 ; 1  transgenic plants after an 
extended period of time on solid medium without supplemental 
B. Plants of the wild type (WT, Col-0), BOR1OX and the transgenic 
lines B01 and B07 (four plants each) were grown on plates without 
supplemental B for 23 d. Scale bar, 50 mm.  

Col-0 B01 BOR1OX B07

 Fig. 4  .     Growth of  Pro35S - NIP5 ; 1 : NIP5 ; 1  transgenic plants in 
the BOR1OX background on solid medium without supplemental 
B. (A) Plants were grown on solid media without B supply for 16 d. 
Scale bar, 10 mm. (B) Root lengths and (C) shoot fresh weights were 
measured. Averages and SDs are shown ( n  = 7). Asterisks indicate 
significant differences from the BOR1OX plants (Student's  t -test 
 P  < 0.05).  
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 Hachez et al. 2006 ). Overexpression of an  A. thaliana  PIP, 
PIP1b, resulted in an increased plant growth rate, transpira-
tion rate, stomatal density and phytosynthetic effi ciency in 
tobacco plants ( Ahron et al. 2003 ). Stress-induced overex-
pression of OsPIP1;3/OsRWC3 leads to higher root osmotic 
hydraulic conductivity, leaf water potential and transpira-
tion, but does not change morphology in rice plants ( Lian 
et al. 2004 ). These studies report changes of growth properties 
related to water conditions, but there has been no report of 
enhanced growth under nutrient defi ciency by modulating 
expression of a MIP. This study represents the fi rst successful 
demonstration of improved growth under nutrient defi -
ciency by enhancement of MIP expression. Recently some 
MIPs have been shown to mediate transport of various phys-
iologically important molecules, such as CO 2 , H 2 O 2 , silicon or 
lactic acid ( Choi and Roberts 2007 , for a review, see  Maurel 
2007 ). Enhancement of expression of these MIPs may 
improve plant growth under various conditions. 

 In the case of  NIP5;1  the situation is different from previ-
ous work in that introduction of  NIP5;1  under the control of 
the CaMV 35S promoter did not improve plant growth 
under B-limiting conditions (data not shown). The CaMV 
35S promoter is a constitutive promoter that induces gene 
expression in all cell types and strongly in vascular tissues 
( Benfey and Chua 1990 ), and its expression is not induced 
by B defi ciency ( Takano et al. 2005 ).  NIP5;1  is expressed in 

epidermal, cortical and endodermal cells, but weakly in stel-
lar cells in roots, and it is strongly induced by low B condi-
tions ( Takano et al. 2006 ). Incompatibility between cell type 
specifi city and/or low B induction may be a reason why 
 Pro35S:NIP5;1  did not improve plant growth under B defi -
ciency. Native promoter regions may be important to main-
tain specifi c expression patterns required for NIP5;1 function 
in B transport. In support of this hypothesis, induction of 
 NIP5;1  expression under B defi ciency was maintained in 
 Pro35S-NIP5;1:NIP5;1  plants. As shown in Supplementary 
data 1,  NIP5;1  expression in  Pro35S-NIP5;1:NIP5;1  plants (n05, 
n19, B01, B02 and B22) was 9.1- to 13.0-fold higher under 
B-limiting conditions than under adequate B supply. This 
induction was similar to the case of wild-type plants which 
exhibited 14.5-fold induction. 

 NIP5;1 is a boric acid channel required for effi cient import 
of B into roots ( Takano et al. 2006 ). The  NIP5;1  mutants 
exhibited severe growth defects in both roots and shoots 
under limited B supply ( Takano et al. 2006 ), suggesting that 
NIP5;1 is important for overall B intake into plants. In this 
study, we demonstrated that enhanced expression of  NIP5;1  
improved root growth more effectively than shoot growth 
under B limitation, suggesting that NIP5;1 is important for 
supplying B to roots to be used for their elongation. 

 This observation also implies that enhanced expression 
of NIP5;1 is not suffi cient to enhance shoot growth. It is 
likely that xylem loading needs to be improved for shoot 
growth in the transgenic plants with enhanced expression of 
 NIP5;1 . BOR1 is responsible for xylem loading of B under low 

 Fig. 6  .    Improved fertility of a BOR1OX line carrying  Pro35S -
 NIP5 ; 1 : NIP5 ; 1  under B-limiting conditions. The wild type, BOR1OX 
and the B01 line were grown hydroponically supplied with 0.3 µM B 
for 68 d. Scale bar, 100 mm.  

WT BOR1OX B01

 Fig. 7  .     Short-term boron uptake of a BOR1OX line carrying  Pro35S -
 NIP5 ; 1 : NIP5 ; 1 . The wild type, BOR1OX and the B01 line were first 
grown on solid medium containing 100 µM  11 B-enriched boric acid 
for 22 d. The plants were subsequently incubated in liquid medium 
containing 0.1 µM  11 B-enriched boric acid for 2 d and then exposed to 
liquid medium containing 10 µM  10 B-enriched boric acid. The amount 
of B absorbed in shoots was determined. The averages and SDs are 
shown ( n  = 3–4). Asterisks indicate signifi cantly larger values than the 
value for BOR1OX plants (Student's  t -test  P  < 0.05).  
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B conditions in the wild-type plants. Overexpression of  BOR1  
resulted in enhanced xylem loading of B and improved shoot 
growth but not root growth under low B ( Miwa et al. 2006 ). 
Given the different roles of  NIP5;1  and  BOR1  in B transport, 
we expected that enhancement of  NIP5;1  expression in the 
BOR1 overexpression background, in which xylem loading 
activity is enhanced, would result in shoot growth improve-
ment. In our study we obtained such a line (line B01) with 
higher levels of both  BOR1  and  NIP5;1  expression. This line 
exhibited greatly enhanced shoot growth and improved fer-
tility under low B conditions ( Fig. 6 ). B translocation into 
shoots was increased more in B01 compared with BOR1OX 
( Fig. 7 ) and this is likely to cause development of the 
branches and increased seed yields. We fully acknowledge 
that results from a single transgenic line cannot be conclu-
sive, but highly expressed  NIP5;1 , a boric acid channel to 
facilitate the passive transport of boric acid from the soil to 
root cells, is likely to facilitate B fl ow effectively through the 
concentration gradient generated by BOR1 across the root 
diameter. We propose that collective enhancement of NIP5;1 
and BOR1 is an effective strategy to improve B fl ow from soil 
to xylem across roots. 

 In conclusion, we demonstrated successful improvement 
of B defi ciency tolerance by enhanced expression of B trans-
port proteins. The approach to enhance expression of trans-
porters while keeping their cell type specifi city or response 
to nutrient conditions might generate transgenic plants tol-
erant to many types of nutrient defi ciency and toxicity 
around the world.   

 Materials and Methods  

 Plant material and plasmid constructions 
  Arabidopsis thaliana  (L.) Heynh. Col-0,  nip5;1-1  ( Takano et al. 
2006 ) and  Pro35S:BOR1-GFP  (BOR1OX, line 18) ( Takano et al. 
2005 ) were from our laboratory stock. Two  NIP5;1  activation 
tag lines (GABI 297G11 and GABI 046C12) were obtained 
from the Max Planck Institute für Züchtungsforschung (Köln, 
Germany), and T 3  homozygous plants were established by 
PCR analysis using primers specifi c to genome DNA and T-DNA. 
Information about the T-DNA insertion site was obtained 
from the SIGnAL database ( Alonso et al. 2003 ). Primers used 
are as follows: 5´-CCCATTTGGACGTGAATCTAGACAC-3´
for T-DNA; 5´-GACTTACACAAAGGGCCAACTT-3´ and
5´-ATGCCTACGTTAACACTGAACAAA-3´ for GABI 046C12;
and 5´-AGAGGGGGAGGTCATAGGAA-3´ and 5´-TGTGCC
AAAATCTTAAACATCACT-3´ for GABI 297G11. 

  Pro35S-NIP5;1:NIP5;1  was constructed as follows. The 
genomic fragment containing the 1,357 bp region upstream 
of the transcription initiation site of  NIP5;1  and the  NIP5;1  
gene was PCR amplifi ed from bacterial artifi cial chromo-
some (BAC) clone F24G24 (obtained from the Arabidopsis 
Biological Resource Center at Ohio State University, Columbus, 

OH, USA) using primers 5´-TAAAGTCGACAAAAATCAAG
CCACTAACACG-3′ and 5′-TAAAGTCGACACAACACATT
ACACATGCCATA-3′. The amplifi ed fragment was A-tailed 
and cloned into the pGEM-T Easy vector (Promega, Madi-
son, WI, USA). The set of the  NIP5;1  promoter region and the 
 NIP5;1  gene was subcloned into pPTbar. The pPTbar vector 
has the CaMV 35S promoter and  rbcS  terminator and is 
derived from pPZP212 ( Hajdukiewicz et al. 1994 ). The result-
ing construct  Pro35S - NIP5;1:NIP5;1  has the CaMV 35S pro-
moter located at 1,357 bp upstream of the  NIP5;1  initiation 
site. The  nip5;1-1  mutant and BOR1OX plants were trans-
formed via the  Agrobacterium tumefaciens -mediated fl oral 
dip method ( Clough and Bent 1998 ). Plant lines homozy-
gous for the T-DNA were established by observation of the 
resistance to Basta herbicide.   

 Plant growth conditions 
 Plant growth media were prepared according to  Fujiwara 
et al. (1992)  and supplied with various concentrations of 
boric acid. Solid medium contained 2% sucrose and 1.5% 
gellan gum. To observe vegetative growth, surface-sterilized 
seeds were sown on the plates and incubated at 22°C under 
a 16 h light/8 h dark cycle as described previously ( Takano 
et al. 2001 ). To observe reproductive growth, plants were 
grown hydroponically at 22°C under a 16 h light/8 h dark 
cycle as described previously ( Takano et al. 2001 ).   

 Quantifi cation of transcripts by real-time reverse 
transcription–PCR 
 Plants were grown for 12 d on solid medium containing 
100 µM boric acid and transferred to plates containing 0.1 or 
100 µM boric acid. They were then incubated for 1 d. Total 
RNA was extracted from roots with an RNeasy mini kit 
(QIAGEN, Hilden, Germany) following the manufacturer's 
procedure. A 400 ng aliquot of total RNA was subjected to 
reverse transcription with the Primescript RT reagent kit 
(TAKARA SHUZO CO. LTD., Kyoto, Japan). Real-time 
PCR was conducted using Thermal Cycler Dice (TAKARA 
SHUZO CO. LTD) with SYBR Premix Ex Taq II (TAKARA 
SHUZO CO. LTD). The  NIP5;1  transcript levels were stan-
dardized to the levels of the  EF1  α. The sequences of the 
primers used for  NIP5;1  and  EF1  α were described by  Takano 
et al. (2006) .   

 Determination of B accumulation and tracer 
experiment 
 The digestion of samples and B isotope determination by 
inductively coupled plasma mass spectroscopy were as 
described previously ( Takano et al. 2002 ). Determination of 
the amount of B absorbed during the exposure to tracer B was 
calculated as described by  Miwa et al. (2006) . In brief, the 
fraction of B derived from the tracer (B dft ) was determined 
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using the following equation:
   

 The subscripts s, p and t refer to the atomic percentages 
of  10 B in the treated sample, the hydroponic solution used 
for the pre-culuture and the hydroponic solution used for 
the tracer experiments, respectively.   

 Supplementary data 

 Supplementary data are available at PCP online.    
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