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Defining the transcriptome, the repertoire of transcribed regions
encoded in the genome, is a challenging experimental task. Current
approaches, relying on sequencing of ESTs or cDNA libraries, are
expensive and labor-intensive. Here, we present a general approach
for ab initio discovery of the complete transcriptome of the budding
yeast, based only on the unannotated genome sequence and millions
of short reads from a single massively parallel sequencing run. Using
novel algorithms, we automatically construct a highly accurate tran-
script catalog. Our approach automatically and fully defines 86% of
the genes expressed under the given conditions, and discovers 160
previously undescribed transcription units of 250 bp or longer. It
correctly demarcates the 5� and 3� UTR boundaries of 86 and 77% of
expressed genes, respectively. The method further identifies 83% of
known splice junctions in expressed genes, and discovers 25 previ-
ously uncharacterized introns, including 2 cases of condition-depen-
dent intron retention. Our framework is applicable to poorly under-
stood organisms, and can lead to greater understanding of the
transcribed elements in an explored genome.

computational biology � RNAseq � next generation sequencing �
transcriptome profiling � Saccharomyces cerevisiae

Experimentally defining the complete transcriptome of eukary-
otic organisms has traditionally been a challenging task, involv-

ing large, costly, and slow experimental efforts for sequencing of
ESTs and full-length cDNA libraries. Unlike the genome, RNA
transcripts are not present at equimolar concentrations, and are
typically expressed in a context-specific manner. Thus, despite the
fact that the genomes of �1,000 species have been sequenced, only
few transcriptomes have been extensively characterized.

Recent advances in massively parallel sequencing technology (1,
2) offer new and powerful approaches to the study of transcrip-
tomes. Recent studies (3–7) have shown that, by sequencing the
mRNA content of cells, one can quantify the expression levels of
known genes (by counting how often sequences from a given gene
are observed) and refine their boundaries. For example, Nagalak-
shmi et al. (3) studied the Saccharomyces cerevisiae transcriptome by
mapping reads to the location of known genes to quantify expres-
sion, and to known splice sites to measure their occurrence.
Similarly, Mortazavi et al. (5) studied the mouse transcriptome by
mapping reads to known exons and known splice junctions, as well
as to ‘‘putative’’ junctions between known exons. Thus, in both cases
(and in additional studies, see refs. 4–7) the analysis critically
depended on existing annotation.

A more challenging problem is to define a transcriptome ab
initio, based only on the unannotated genome sequence and
millions of short reads from cDNA samples. Rapid and efficient
methods to do so would transform our ability to define transcripts
and study transcription in any genome. This ability would be
particularly important in a new genome project involving phyloge-
netically isolated species and in cancer genome projects, where the
genome annotation may fail to reflect pathological aberrations. The

full goal would include: (i) identification of all regions encoding
transcripts (coding and noncoding RNAs) in a given condition or
cell type; (ii) demarcation of the 5�- and 3�- ends of transcripts; (iii)
determination of splice junctions and identification of different
splice variants; and (iv) identification of posttranscriptional tran-
script editing.

Here, we present a general approach to accomplish all of these
goals, based solely on an unannotated genome sequence and data
from a single sequencing run on an Illumina sequencer (2). To test
our approach, we apply it to the budding yeast S. cerevisiae, and
compare our ab initio results to the known transcript annotation
(8). Our approach automatically and fully defines 86% of the genes
expressed under the given conditions, and discovers 160 previously
undescribed transcription units of 250 bp or longer. The approach
correctly demarcates the correct 5� and 3� UTR boundaries of 86
and 77% of expressed genes, respectively. The method identifies
83% of known splice junctions in expressed genes, and discovers 25
previously uncharacterized introns, including evidence for 2 rare
cases of condition-dependent ‘‘alternative splicing.’’ Last, we use
the data to quantify absolute and relative expression levels of each
transcript, showing remarkable agreement with well-established
microarray technologies.

Our results demonstrate that massive, cost-efficient, and fast
sequencing can be used to accurately define and quantify a transcrip-
tome ab initio. To evaluate the strength of our approach, we have
refrained from using other sets of data and gene predictions methods.
However, in many practical cases, these methods can be incorporated
into a single bioinformatics pipeline for a more powerful outcome.
This framework can be readily applied to study poorly understood
organisms, for which only the genomic sequence is known.

Results
Sequencing the Budding Yeast Transcriptome. To define the budding
yeast transcriptome ab initio, we generated cDNA libraries from
poly(A)� mRNA from the budding yeast S. cerevisiae under 2
growth conditions: in rich medium (YPD) and after heat shock
(HS). We used a cDNA preparation procedure that combines a
random priming step with a shearing step (see Materials and
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Methods). This approach has 2 benefits, which are essential for
ab initio predictions. First, unlike other methods that provide a
signal only in the 5� or the 3� end of transcripts, our method results
in signal that covers the whole transcript (Fig. 1A). Second, for
sequencing with short reads, random priming alone results in
extensive nonuniformity in the start sites (9), whereas we obtain
better uniformity.

We sequenced each library using an Illumina 1G Analyzer to
generate 36-bp long reads. We obtained 25,043,976 reads from the
YPD sample (2 biological replicates) and 11,776,251 reads after HS
(see Materials and Methods). The entire experiment (RNA extrac-
tion, library preparation, and sequencing) required �14 workdays.

Then, we developed an accurate method to map reads to their
genomic locations. The sequence matching approach used in pre-
vious studies (3, 4) may fail due to errors in the sequencing process
or repetitive genomic regions (as a result of low-complexity or
homology). Therefore, we developed a detailed probabilistic error
model that scores the genomic matches of reads according to the
position-specific probability of sequencing errors [see Materials and
Methods; also, supporting information (SI) Fig. S1 and Dataset S1].
To minimize mapping errors, a read should match a specific
genomic sequence at a strict threshold and should not match any
other genomic location, even at a more relaxed threshold (see
Materials and Methods). Applying this strategy to our data, we
uniquely mapped 52% of the reads in YPD. We discarded an

additional 23% of the reads that mapped to �1 genomic locus; this
proportion is consistent with expectations due to genomic repeats
(25.5% for 36-bp reads based on simulation). The remaining 25%
reads did not map to any genomic locus at the required stringency
(Fig. 1B). A minority is due to posttranscriptional modifications,
such as splicing (see below). We obtained similar results with the
reads in the HS experiment (Fig. 1B).

Ab Initio Construction of a Transcript Catalog for S. cerevisiae. We next
developed a procedure to ab initio define all of the transcriptional
units expressed under the 2 conditions, using only the mapped
cDNA reads and the (unannotated) genome sequence of S. cerevi-
siae (Fig. 2A). Based on the current annotation of the yeast genome
and microarray-based expression studies (8, 10), we expect 4,630
known genes to be expressed in YPD (at �0.2 transcripts per cell;
see Materials and Methods). We started by identifying contiguous
regions with a density of cDNA reads above a given threshold.
Because genes are densely packed in the S. cerevisiae genome, such
regions can span several genes. Thus, we developed a procedure
that breaks these regions into segments of consistent read density,
reflecting the expectation that transcript levels should be much
more consistent within genes, than between genes (see Materials
and Methods and Fig. 2B; also, Fig. S2). Last, we predicted
transcription orientation based on different read densities between
ends of genes (even in our relatively uniform libraries, there is a
higher read density toward the 3� end, which may be due to the
library preparation protocol; see Materials and Methods and Fig.
2B). In total, we identified 6,248 segments, demarcating putative
transcribed regions.

Before assembling a gene catalog, we next searched for splicing
events. We analyzed the 25% of reads (9,212,859) that did not
match the genome to identify those that may originate from splicing
events. In such events, sequences from 2 exons that are separated
in the genomic sequence are adjacent in the mature mRNA,
yielding reads with a ‘‘gapped alignment’’ (Fig. 2C).

We developed an automatic method to systematically discover
splice junctions. First, we identified reads with a gapped alignment,
involving 2 sites of at least 10 bp each separated by at most 2 Kb (and
together adding up to 36 bp). We required the same noise thresh-
olds as before to filter out mismatches and nonunique matches (see
Materials and Methods). Because we allow only a single gap, the
probability of finding a spurious match is extremely low, although
the precise gap location might be ambiguous by 1 or 2 base pairs,
depending on the exact sequence at the gap boundaries. To
eliminate spurious events, we required splice junctions to be
supported by multiple observations. Specifically, we included all
putative junctions that were either (i) supported by at least 5
independent reads (possibly starting at different locations; 243
junctions); (ii) supported by at least 3 independent reads and
contain donor (5�) and acceptor (3�) splice site motifs (263 junc-
tions; see http://compbio.cs.huji.ac.il/RNASeq); or (iii) supported
by 2 independent reads and contain very strong splice motifs (13
junctions). This scoring allows us to resolve ambiguities, increase
confidence in gapped reads, and assign an orientation to the
junction (see Materials and Methods and Fig. 2C). The remaining
putative junctions had little support and were discarded. In partic-
ular, shorter junctions are likely due to short deletions in the
genomic DNA of the particular strain, consistent with Illumina
sequencing of the DNA of this specific strain (data not shown). The
resulting set had 285 junctions of 40 bp or longer. Notably, the
majority of these junctions (243/285) were identified by the first
criterion (5 strong junctions lack canonical splice site signals
altogether; see http://compbio.cs.huji.ac.il/RNASeq), demonstrat-
ing the power of ab initio detection.

Joining the putative transcribed units based on the splice junc-
tions, we built a final catalog of the yeast transcriptome in the 2
measured conditions (Fig. 2A; Dataset S2). This catalog includes
6,160 transcripts, 264 of them with at least 1 splicing junction.

Fig. 1. Unbiased sequencing of the yeast transcriptome. (A) Distribution of
reads mapped to the PAP1 locus. Shown are SGD annotations (downloaded at
November 2007) (8), and mapped reads (red, W strand; blue, C strand).
Additional tracks plot the cumulative number of reads covering each base
position (yellow, YPD; light blue, HS). Full data can be accessed at http://
compbio.cs.huji.ac.il/RNASeq, and is visualized using the University of Califor-
nia, Santa Cruz, genome browser (22). (B) Distribution of reads matched to the
genome. Of the 26,050,414 reads sequenced in YPD (Left), 13,424,957 (52%,
blue) were uniquely mapped to a single genomic locus, 6,144,595 (23%,
green) were mapped to several locations, and 6,480,862 (25%, yellow) could
not have been aligned, and were later used to detect splice junctions. Similar
numbers were found after a HS (Right).
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Assessment of Transcription Units of the Catalog. We compared our
ab initio catalog of transcripts with the current annotated tran-
scriptional catalog of the yeast genome. Approaches based on
sequencing of mRNAs cannot discover genes that are not ex-
pressed. Also, because we rely on short reads, we are limited to
identifying transcripts in alignable (nonrepetitive) genomic regions.
By using conservative thresholds, there are 5,437 (94%) known
genes (classified as ‘‘verified’’ or ‘‘uncharacterized’’ ORF genes; see
ref. 8) in the yeast genome that are ‘‘alignable’’ (at 50% coverage
or more) with 36-bp reads, of which 4,784 are expressed in YPD
(see Materials and Methods).

Overall, the ab initio transcriptional units in our catalog cover
99% of these expressed genes over �80% of the length of genes
(Fig. 3A). For 86% of the genes, the transcriptional units fully cover
the known genes (4096/4784; see Fig. 3A). For the remaining 13%
of genes, the genes are largely covered, but correspond to multiple
transcriptional units that have not been confidently connected (due
to gaps or unevenness in coverage, particularly for highly expressed
genes); this problem should be largely eliminated by connecting
transcribing units through the use of ‘‘paired-end’’ reads, which are
now becoming routinely available on the Illumina platform (11).
Last, we correctly assigned orientation to 3,432 genes (84%), based
solely on the pattern of increasing read density from 5� to 3�-end.
Overall, these results demonstrate that we can reconstruct the
compendium of transcripts with great sensitivity and specificity.

Notably, our analysis indicates transcription from some ‘‘dubious
ORFs’’ loci (62 of 206 expressed alignable dubious ORFs that do
not overlap any other gene). In comparison, only 1% of nontran-
scribed loci based on ultradense tiling arrays (12) are covered by
transcription units in YPD. This observation suggests that these are
less likely to be spurious transcription events, and that some of these
loci encode for functional transcripts (possibly noncoding RNAs).

The transcripts in our catalog assign the correct gene structure in
terms of boundaries (and splicing; see below). Notably, because
RNA-sequencing only samples short reads from transcripts, it has
limited ability to accurately determine transcript boundaries in a
highly compact genome (as compared with 5� sequencing methods).
Nevertheless, our transcript boundaries reasonably match several
previous annotations of transcript boundaries in S. cerevisiae. These
include the known annotations (SGD) as well as start site defini-
tions based on previous full-length cDNA sequencing (13) and
ultradense tiling arrays (12). In particular, our 5� UTR positions
match 80% of previous definitions within 50 bp, but have limited
agreement in higher resolution [47% with Miura et al. (13); 22%
with David et al. (12) in 10-bp resolution]. This latter result may be
because our protocol likely misses 8–21 nt at the 5� end of the
transcript (14). Notably, we correctly predict the 3� boundaries of
307 of 501 (60%) pairs of converging genes, and miss the boundary
by at most 50 bp for an additional 58 cases (11%). Differential
expression is a major contributor to correct detection. For correctly
predicted pairs, the mean differential expression ratio is 8.5, whereas for
those pairs that we cannot correctly differentiate, the mean differential
expression ratio is 2.9. By considering the predicted ORFs within our
transcripts, we estimate the typical lengths of 5� and 3� UTRs as 153 bp
(SD of 145 bp), and 169 bp (SD of 142 bp), respectively (see http://
compbio.cs.huji.ac.il/RNASeq; also, Dataset S3).

To our surprise, although 93% of our catalog corresponds to
known genes (Fig. 3B; Dataset S2), we also discovered 160 tran-
scription units of length �250 bp that did not overlap any previously
annotated transcripts (Dataset S2; see ref. 8). Many of these units
are clearly transcribed, for example, a �3,694-bp region at Chro-
mosome 1, coordinates 196277–199970, that we also validated
experimentally (see below). Many of these transcripts have sup-
porting evidence in the raw data from hybridization to tiling arrays
(129 units overlap; see ref. 12) and cDNA sequencing (92 units
overlap; see ref. 13); although these previous studies did not report
them as transcriptional units per se. Some of the units are differ-
entially expressed between YPD and HS (Dataset S2). Most

Fig. 2. Ab initio assembly of a transcript catalog. (A) Outline of steps in the
catalog construction pipeline. (B) Segmentation of a contiguously transcribed
region into 2 regions of distinct expression levels corresponding to the genes
YBR287W and APM3. When using YPD reads alone, both genes exhibit similar
coverage and thus cannot be segmented. However, in HS, they are differentially
expressed, and hence by combining observations from both conditions the au-
tomatic segmentation procedure (see Materials and Methods) correctly sepa-
rates them to 2 units. Tracks from top to bottom: SGD annotations (blue), our
catalog (green), read coverage at YPD (yellow), and read coverage at HS (blue).
(C) Detection of splice junctions. Full and gapped reads mapped to the RIM1
genomic locus. Tracks are as in B, together with gapped reads (connected seg-
ments), our putative splice junctions (in red and blue), including the junction
orientations as estimated by donor and acceptor sequence motifs (arrows). As
shown, our procedure identifies the exact coordinates and orientation of the
known splice site.
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notably, 12/160 novel units have are induced 10-fold or higher in HS
vs. YPD, and 2 of those are not detected at all in YPD.

Overall, the previously undescribed units are mostly short (mean
length of 713 bp, SD of 431 bp), and many are likely not coding for
a protein. Several lines of evidence support this conclusion. First,
the predicted ORFs are usually short (mean predicted ORF of 51
aa, SD of 19 aa, 20 units �80 aa; see Dataset S2), and do not match
predicted or known proteins in other fungal species. Second, when
sampling regions of the same length at random from intergenic
regions, the median length of predicted ORFs is 146 aa, in contrast
to the much shorter median length of predicted ORFs in these
transcription units (48 aa). Last, relatively few of the units are evolu-
tionary conserved (28/160 units �50% conservation; see ref. 15), which
is not significant when compared with random (P � 0.059).

We experimentally tested and verified 4 of these novel transcripts
by RT-PCR followed by sequencing. These included: (i) the novel
�3,694-bp transcript discussed above (Chromosome 1, 196277–
199970; see Fig. S3A); (ii) a transcribed pseudogene at Chromo-
some 15, coordinates 36742–38650 (Fig. S3B); (iii) a novel tran-
scription unit at the YMR194C locus that spans both a dubious
ORF (YMR194C-B) and the gene YMR194C-A (Fig. S3C); and (iv)
a predicted 900-bp 3� UTR for the FEN2 gene. In the latter 2 cases, the
novel transcriptional units overlap, expand, or modify dubious ORFs or
pseudogenes. For example, the novel transcription unit at the
YMR194C locus also includes a 200-bp 3� UTR past the predicted stop
codon of YMR194C-A, suggesting a recent pseudogene.

Validation of Splice Junctions. Our splice site predictions are also
highly accurate and sensitive, as compared with the known anno-
tated junctions. The 285 ab initio detected splice junctions include
most of the annotated junctions in the yeast genome (Fig. 3C;
Dataset S2). We predict 254 (83%) out of 305 known junctions
within 5-bp resolution. Of the 51 missed junctions, 21 are in non
unique ‘‘unalignable’’ regions (telomeres and ribosomal protein
genes), and 21 have very low read coverage (Fig. 3D). From the
remaining 9 cases, we see read-through transcription in 4 undetected
junctions, whose introns are matched by a significant number of reads
(see http://compbio.cs.huji.ac.il/RNASeq), and determine a corrected
location for 1 junction (LSB3 gene; see below). Thus, in only 4 of the
51 cases, we do not detect spliced reads for unknown reasons.

We also discovered 25 previously uncharacterized splice junc-
tions that are not close to any annotated ones (one is an ‘‘artifact’’
caused by the HIS3 deletion in this strain). To study the implications
of these splice junctions, we examined their effect on transcript
structure. We found that 11 of the putative junctions are within

annotated coding regions and affect the encoded protein, either by
modifying existing introns, or by introducing additional ones (Data-
set S3). For example, in the LSB3 gene, our putative intron is 24-bp
shorter than the known one, adding 8 aa to the translated protein.
When compared with other yeast species, the 8-aa stretch shows
clear evolutionary conservation in the orthologous proteins (Fig.
S4; see ref. 16); thus, it appears to be a conserved part of the protein.

In 6 of these junctions, we see evidence for alternative splicing
(intron retention), because 3 junctions appear only in YPD and 3
only in HS (while taking into consideration the number of full reads
aligned in both conditions; see http://compbio.cs.huji.ac.il/
RNASeq). For example, in the MRM2 gene, the discovered intron
is spliced out only in YPD; thus, creating a shorter protein, which
perfectly aligns with orthologs of this gene in Kluyveromyces lactis,
Candida lusitaniae, Debopriya hansenii, Candida guilleromondi, Candida
tropicalis, and Candida albicans. In C. albicans, for example, the intronic
sequence is completely missing from the genome, strongly supporting
the functionality of this spliced form. Similarly, in the APE2 gene, the
HS intron is slightly shorter, which creates a protein that is 6-aa shorter
than the regular one. This modified protein has a domain that fits
orthologs of this gene in Saccharomyces paradoxus, Saccharomyces
mikatae, and Saccharomyces bayanus.

We experimentally tested 6 predicted splicing events and vali-
dated 4 of them (in the genes FES1, YMR148W, RPS22B, and
AGA2) using RT-PCR and sequencing (Fig. 3E; Fig. S5). For
example, in the FES1 gene, our catalog identified a previously
uncharacterized intron with full reads through the splice junction
and inside the intron, suggesting alternative splicing (Fig. 3E). In the
spliced variant, the annotated stop codon is abolished and a later
stop codon is introduced, resulting in a 10-aa extension. Validation
by RT-PCR shows bands consistent with both the spliced and
unspliced variants (sequencing of these bands confirmed the splice
site). Another example of alternative splicing is the SUS1 gene,
where, in addition to the 2 known introns, we also observe clear
read-through at both junctions (Fig. S5A). Experimental validation
confirms our predictions by revealing 3 bands, 2 bands consistent
with just 1 intron spliced, and a stronger band consistent with both
introns spliced out. A third example is an intron from the end of the
snoRNA, SNR44, to the acceptor site of its hosting intron, inside
RPS22B (Fig. S5B). All experimental validations were performed
by RT-PCR followed by sequencing of the bands to verify the exact
splice site. The predicted splice junctions that we could not validate
may be in low-abundance or represent partial splicing.

Fig. 3. Validation of the transcript
catalog. (A) Coverage of the top 86%
expressed genes by our predicted tran-
scribed units, based on different pat-
terns of coverage. (B) Relationship be-
tween found transcribed units and
annotated transcribed features from
SGD. In both A and B, white boxes de-
note genes, and purple boxes denote
transcribed units. (C) Comparison of
our putative splice junctions (blue) to
known ones (green). (D) The 51 known
introns missed by our predictions are
partitioned into 8 categories. (E) Vali-
dation of splicing read-through in the
gene FES1. Tracks are as in Fig. 2C, in-
cluding the evolutionary conservation
of each position across 7 yeast species
(15).
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Inferring Expression from Massively Parallel Sequencing. Having
defined a gene catalog, we then examined the ability to infer
quantitative expression levels from sequence abundance. We esti-
mated the mRNA abundance of known annotated ORFs by
calculating the average density of reads along each ORF and
compared the results with expression data from microarrays. We
converted the read densities per gene to rough assessments of
absolute mRNA copy numbers per cell, using a conservative
estimation of 15,000 transcripts per yeast cell (17). This analysis
reveals at least 4 orders of magnitude differences in mRNA copy
number among genes. For example, we find an average of 26
mRNA copies per cell for the top 5% of expressed genes, in contrast
to an average of 0.0026 copies per cell for the bottom 5% (Fig. S6A).
The top 5% of expressed genes in YPD account for 58% of the
transcriptome, mostly comprised of transcripts encoding protein
biosynthesis proteins and central carbon metabolism enzymes. Our
mRNA copy number estimates are consistent with previous esti-
mates using DNA microarrays (Pearson correlations of 0.67, P �
10�300; 0.72, P � 10�300; and 0.83, P � 10�300, respectively; see
Dataset S3 and Fig. S7) (3, 10, 18).

To calculate the relative expression level of each gene in HS vs.
YPD, we compared the read densities in the 2 conditions. We
compared the result with relative expression levels for the same
mRNA samples inferred by commercial 2-dye microarrays (see
Materials and Methods). Indeed, these ratios show strong agreement
(Pearson correlation coefficient of 0.87, P � 10�300; see Fig. S6B).
These results were reproducible across sequencing and microarray
replicates (Dataset S3; http://compbio.cs.huji.ac.il/RNASeq), con-
sistent with recent studies (5).

Discussion
We set out to test whether it is possible to define a complete yeast
transcriptome ab initio using only the (unannotated) genome
sequence and massively parallel sequencing of cDNA from 1 or
more experimental conditions. Our approach independently iden-
tifies the vast majority of known genes transcribed under the tested
conditions, correctly infers splicing events, and detects the correct
gene structure. Also, it corrects a number of current annotations and
identifies previously undescribed transcriptional units and splice junc-
tions, several of which we validated experimentally. Last, the method
can also accurately quantify the expression levels of transcripts.

There are several crucial steps in the strategy. First, the creation
of the cDNA fragments determines the transcript coverage. The
laboratory protocol that we used here is only mildly biased toward
the 3� end of the transcript and thus provides efficient coverage
throughout the transcript, allowing us to effectively assemble
transcripts from short reads. Second, to accurately map reads to the
reference genome, we created a sequencing noise model to limit the
errors in mapping. Because the yeast genome has large unique
regions, we can estimate the error model from the data without
requiring calibration runs. Using this model, we correct for varying
quality among batches. Unlike previous read mapping approaches
(19), our method estimates the noise model separately for each
batch; thus, it is more specific and, depending on the model, may
allow for more mismatches if their probability is higher. Third, using the
error model and sequence similarity tests, we reliably identify reads that
are split between 2 genomic positions. This step is crucial for identifying
splice junctions ab initio and defining correct gene structures, and is
distinct from previous read mapping approaches (19).

Our approach has several limitations. First, we are unable to
predict transcriptional units for low-copy transcripts and nonunique
regions (e.g., at the telomeres). Although we can estimate relative
expression of some low-copy transcripts, we cannot reliably deter-
mine splicing events or boundaries in such genes. We partially
address this issue by creating libraries from YPD and HS. Deeper
sequencing and libraries from additional conditions can further
improve the completeness of the catalog. Second, we miss splicing
events due to local nonuniqueness at the splice junction. We can

alleviate this problem by sequencing either longer reads or paired-
end fragments, both of which are becoming available (11). Last, our
approach is limited in detecting and distinguishing antisense tran-
scripts and differentiating between close divergent transcription
units due to the lack of strand specificity. Although in most cases
we can recover transcript orientation, we can further improve the
predictions by constructing strand-specific cDNA libraries.

Unlike recent studies (3, 5), we demonstrate the use of massively
parallel sequencing for complete, ab initio construction of a eu-
karyotic transcriptome, independent of any existing genome anno-
tation. For example, Mortazavi et al. (5), and several similar
approaches (3–7), use a step-wise mapping approach that relies on
mapping reads to known gene models, exons and splice junctions.
De novo discovery in these schemes is also limited, and is based on
mapping reads to all possible combinations of known exons. Such
approaches cannot detect splice junctions between unannotated
exons. Also, they are not applicable to a genome for which there are
poor (or no) gene predictions. In contrast, our approach searches
for all the locations where a spliced version of an unaligned read can
be mapped in the genome. Thus, our approach will be useful for both
smaller more compact genomes, such as those of fungi or protists that
often involve phylogenetically isolated groups for which there are poor
gene predictions (20), as well as for aberrant cancer genomes.

Our work powerfully demonstrates the feasibility of constructing
a transcriptome of an organism in a comprehensive, fast, and cheap
way. To estimate the power of this approach, we conducted our
analysis in isolation from any other source of data or gene predic-
tion methods. Nevertheless, we anticipate that in many practical
setups it can be powerfully combined with other gene prediction
approaches. Applying our approach to explore the transcriptomes
of less characterized organisms in an ab initio fashion, can have a
significant impact on genomics studies.

Materials and Methods
Yeast Strains and Growth Conditions. HS experiment. The strain used was a
derivative of the S. cerevisiae strain S288c (BY4741; see ref. 21). We grew 1-L
cultures overnight in YPD medium (1% yeast extract, 2% peptone, 2% dextrose)
to an OD600 of �1.0. The cultures were split and 1 flask was submerged in a 37 °C
water bath and the other in a 22 °C water bath; 50-mL samples were harvested
after 0 and 15 min.
RNA extraction and library preparation. Total RNA and polyA� RNA were isolated
by using the RNeasy Midi Kit (Qiagen) and Poly(A) Purist kit (Ambion), respec-
tively. Samples were quality controlled with the RNA 6000 Nano ll kit of the
Bioanalyzer 2100 (Agilent). Sheared cDNA libraries were created for 6 samples
(22 °C, 0 min; 22 °C, 15 min; 37 °C, 15 min; 2 replicates per condition; 150 ng of
polyA� RNA per sample). The cDNA was synthesized by using the SuperScript
Double-Stranded cDNA Synthesis kit (Invitrogen) with SuperScript III (Invitrogen),
15-ng random hexamers (Invitrogen), and 20 units SUPERase�In (Ambion). Primer
annealing was done at room temperature for 10 min followed by 1 h at 55 °C for
first strand synthesis and 2 h at 16 °C for second strand synthesis; cDNA was
sheared by sonication with 12 alternating cycles between ‘‘high intensity’’ (30 s;
dutycycle,20%; intensity,10%;cyclesperburst,200)and‘‘lowintensity’’ (4s;duty
cycle, 5%; intensity, 10%; cycles per burst, 200) in the Frequency Sweeping mode
(CovarisS2machine).Adapters for Illuminasequencingwereaddedfollowingthe
instructions provided, except that 5 times less adapter mix was ligated to the
cDNAs and PCR primers were removed by digestion with RecJ (New England
Biolabs). Each library had an insert size of 60 to 110 bp. One lane of sequence (5.4
to 7.0 M reads) was generated for each sample on an Illumina 1G sequencer.

Genomic Mapping of Reads. Error model. We developed a detailed probabilistic
model for scoring the quality of matching reads to the genome. Our score
depends on the specific type of sequencing error made (e.g., genomic A se-
quenced as C) and its position within the sequenced read. Formally, the score of
obtaining a read R originating from a genomic sequence G equals
�i�1

36 log2(Pr(Ri�Gi,i)), where i is the position within the read, Ri is the sequenced
nucleotide at position i, and Gi is the nucleotide at the corresponding genomic
position. To estimate the error parameters, we identified reads with up to 4
mismatches to highly unique regions of the genome. Then, we estimated the
fraction of errors at each position for each genomic nucleotide (Fig. S1).
Mapping method. To map the sequenced reads to the genome with minimal
errors, we devised the following strategy. Each read was compared with every
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possible 36-bp window in the genome and scored according to the error
model above. We developed a procedure that uses suffix trees to efficiently
finds all of the matches above a predefined threshold. To filter the matches,
we require that the read matches the assigned genomic sequence with a
threshold (�8.3) that assures correct mapping of 95% of reads (based on
simulations). Also, to ensure uniqueness, we require the match to remain
unique even when allowing a more relaxed threshold (�11.5).

Detection of Transcriptional Units. Segmentation of transcriptional units. To
identify transcriptional units, we first artificially extended mapped reads to
partially reconstruct the dsDNA segments they originated from. Because the
segment size in our library varies between 60 and 110 bp, we chose a conservative
approachandextendedeachreadbyanadditional40bp(eachreadisnow76bp).
We then identified contiguously covered genomic regions. In many cases, these
regions contained �1 gene, due to overlapping neighboring transcripts in the
dense yeast genome. To refine these regions into single transcribed units, we
developed an automated segmentation algorithm to fit the genomic patterns of
mapped reads using piecewise linear regression (Fig. S2). Neighboring genes
often exhibit different expression levels allowing an accurate partition. To
achieve a coherent segmentation, we applied our algorithm to YPD and HS data
simultaneously. This strategy also allows us to use the transcriptional differences
of genes between the 2 conditions. For example, the 2 neighboring genes
YBR287WandAPM3(Fig.2B; Fig. S2)havesimilarexpression levelsatYPD;hence,
preventing a proper segmentation to 2 transcription units. However, at HS,
YBR287W is expressed in much higher levels than APM3, allowing us to position
the boundary between the 2 genes.
Definition of nontranscribed loci. For a negative control, we applied a sliding
window of 75 bp over the data of David et al. (12), and identified 892 loci that
presented the lowest mRNA to genome signal in YPD.
Automated determination of orientation. As demonstrated in Fig. 2B, the typical
density of reads is not completely uniform along the transcript with higher
density towardthe3�end.Weusethispatterntoestimatetheorientationofeach
transcription unit. We use the slope of our piecewise linear fit to determine the
orientation of each transcription unit. Specifically, we estimate a 95% confidence
interval of the regressed slope parameters, and assign a forward or reverse
orientation to the transcription unit if the entire interval is orientation-consistent
(above or below zero, respectively).
Detection of splice junctions. First, we map gapped reads by searching for
coordinated partial matches to 2 genomic loci within 2 Kb, each one of at least
10 bp (and together adding up to 36 bp). We require the same noise thresholds
to filter out mismatches and nonunique matches. Specifically, we score each
putative match with the score described above, allowing a single gap in the
genomic sequence. Second, we calculate the position-specific scoring matrix
(PSSM) score for each gapped read, according to the splice motifs we learned
from the known introns (see http://compbio.cs.huji.ac.il/RNASeq). Third, we
cluster gapped reads by the genomic location of their gaps. Each cluster
defines a putative junction in the transcriptome, and is characterized by the
number of supporting reads and the PSSM score of the junction. We assign
orientation to each putative junction using these asymmetric PSSM motifs. We
define a threshold over the PSSM log-odd scores (2.78), such that 95% of the
known splice junctions (based on SGD annotations, October 2007) are iden-
tified in the correct orientation.

Definition of Alignable Expressed Genes. A genomic location is ‘‘nonalignable’’
if reads originating from that location will be mapped by our method to at least
one other location in the genome; otherwise, we say that the location is align-

able. We define a gene to be alignable if at least 50% of locations within its
coding region are alignable. We define genes, known from previous studies to
haveat least0.2mRNAcopiespercell (onaverage) (10),as ‘‘expressed,’’ reflecting
85% of the transcriptome at YPD condition.

Estimation of Gene Expression Levels. Using annotations from SGD (October
2007), we calculate the number of reads mapped to each coding region. We
approximate the expression level of each gene by the average density of reads
along the unique (alignable) part of the coding region. This measure is expressed
in arbitrary units of number of reads per lane per 1-K base pairs, and is assumed
to be proportional to the actual number of mRNA molecules per cell. Assuming
a conservative estimation of 15,000 transcripts per cell (17), we can assess the
expected number of copies for each gene. Relative expression levels (HS vs. YPD)
arecalculatedbycomparingtheaveragedensityofeachgeneat the2conditions.

Relative Gene Expression Using Commercial Arrays. PolyA� RNA samples from
one replicate each of the 37 °C, 15 min (HS) and 22 °C, 15 min (YPD reference)
were labeled with either Cy3 or Cy5 by using a modification of the protocol
developed by De Risi (University of California, San Francisco) and Rosetta Inphar-
matics that can be obtained at http://www.microarrays.org. For the detailed modi-
fiedprotocol seehttp://compbio.cs.huji.ac.il/RNASeq.Four technical replicatesof the
HSsampleswerehybridizedagainstthereferenceoncommercialS.cerevisiae (S288C
strain) 2-color 60-mer oligo Agilent arrays in the 4 	 44 K format (Agilent). After
hybridization and washing per Agilent instructions, arrays were scanned by using a
scanner (Agilent) and analyzed with a feature extraction software (Agilent).

Validation of Novel Transcription Units and Splice Sites. RNA from the HS and
YPD reference samples was treated with TURBO DNA-free Kit (Ambion) to
remove trace amounts of genomic DNA; cDNA was synthesized from this RNA by
using a SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen). Assays
were designed to detect predicted RNA species by the PCR. Reactions were
performed under the conditions specified in the Amplitag gold polymerase
product manual (Applied Biosystems) by using 10 ng of cDNA as template in a
volume of 50 �L. For primer sequences, see http://compbio.cs.huji.ac.il/RNASeq.
Products were amplified by using the following Thermocycler program: i, 95 °C
for 5 min; ii, 95 °C for 30 s; iii, 56 °C for 30 s; iv, 70 °C for 45 s; go to step 2 for 40
cycles; v, 70 °C for 7 min; vi, 4 °C forever. PCR products were separated by using 3%
Metaphoragarose(Cambrex)gels.TheDNAfragmentswereisolatedfromthegelby
using a QIAEX ll Gel extraction kit (Qiagen). These fragments were cloned by using a
TOPO TA Cloning Kit for Sequencing (with pCR4-TOPO) with One Shot TOP10
Chemically Competent Escherichia coli and PureLink Quick Plasmid Miniprep Kit
(Invitrogen). Insert containing constructs were sequenced at the Massachusetts In-
stitute of Technology core facility. Sequences were verified by using the BLAST
function at the Saccharomyces genome database (www.yeastgenome.org/).

Supplementary Web Site. Raw data and additional notes and figures can be
found at our supplementary web site (http://compbio.cs.huji.ac.il/RNASeq).
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