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ABSTRACT

Motivation: Recent attempts to account for multiple testing in the
analysis of microarray data have focused on controlling the false
discovery rate (FDR), which is defined as the expected percentage
of the number of false positive genes among the claimed significant
genes. As a consequence, the accuracy of the FDR estimators will
be important for correctly controlling FDR. Xie et al. found that
the standard permutation method of estimating FDR is biased and
proposed to delete the predicted differentially expressed (DE) genes
in the estimation of FDR for one-sample comparison. However, we
notice that the formula of the FDR used in their paper is incorrect. This
makes the comparison results reported in their paper unconvincing.
Other problems with their method include the biased estimation of
FDR caused by over- or under-deletion of DE genes in the estimation
of FDR and by the implicit use of an unreasonable estimator of the
true proportion of equivalently expressed (EE) genes. Due to the great
importance of accurate FDR estimation in microarray data analysis,
it is necessary to point out such problems and propose improved
methods.
Results: Our results confirm that the standard permutation method
overestimates the FDR. With the correct FDR formula, we show
the method of Xie et al. always gives biased estimation of FDR: it
overestimates when the number of claimed significant genes is small,
and underestimates when the number of claimed significant genes is
large. To overcome these problems, we propose two modifications.
The simulation results show that our estimator gives more accurate
estimation.
Contact: szhang3@unl.edu

1 INTRODUCTION
The use of microarray technology makes it possible to monitor the
expression levels of thousands of genes simultaneously. A common
goal of analyzing the genome-wide expression data generated from
this technology is to detect differentially expressed (DE) genes.
Now, as the cost of microarray experiments keeps decreasing,
replicated microarray experiments are feasible.

Numerous methods (parametric and non-parametric) have
been introduced to detect DE genes. Some of the most well-
known parametric approaches include the regression approach of
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Thomas et al. (2001), the empirical Bayes (EB) methods of Newton
et al. (2001) and Kendziorski et al. (2003) and the linear models and
EB methods of Smyth (2004). Among the non-parametric methods,
some well known names include the EB method of Efron et al.
(2001), the significance analysis of microarray (SAM) of Tusher
et al. (2001) and the mixture model method (MMM) of Pan et al.
(2003).

False discovery rate (FDR) introduced by Benjamini and
Hochberg (1995) is now commonly used as the choice of the
Type I error rate in microarray studies. It is defined as the
expected percentage of false positive (FP) genes among the claimed
significant genes. It was proved that in many cases controlling
FDR is more appropriate compared to controlling family-wise error
rate (FWER) since the FDR approaches typically reject more null
hypotheses than the FWER approaches (Benjamini and Yekutieli,
2001; Yekutieli and Benjamini, 1999). Several FDR controlling
methods are implemented in the R multtest package (Pollard et al.,
2004).

However, the true FDR is unknown in practice. Hence, the
estimated FDR will serve as the criterion to compare different
methods when controlling the error rates. The comparison results
are reasonable only if the estimated FDR approximates the true FDR
well. The most common method of estimating the FDR is to use the
permutation method. However, it has been reported in the literature
that the permutation-based FDR estimator tends to overestimate the
true FDR. A number of papers has discussed the correction of the
overestimation problem of the permutation method (Guo and Pan,
2005; Pan, 2003; Zhao and Pan, 2003; Zhang, 2006).

Xie et al. (2005) also noticed the overestimation problem of
standard permutation method. Their paper showed that the over-
estimation of FDR is caused by the fact that the distribution of null
statistics generated from the permutation method is more dispersed
than the true null distribution of the test statistics. To solve the
problem, they proposed to exclude the predicted DE genes from the
estimation of FDR. However, we find that their proposed method
has serious under- or over-estimation problem depending on the
number of genes declared significant. In addition, we found that
they used an incorrect formula of FDR, and hence the comparison
results reported in their paper are not correct and the conclusions they
drew might be misleading. More seriously, we found that Xie et al.
(2005) implicitly used an estimator of the proportion of equivalently
expressed (EE) genes (π0) which can only provide good estimate
of π0 when the number of genes declared significant is equal or
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close to the true number of DE genes in the microarray data and is
otherwise biased.

2 METHODS

2.1 The test statistics and the null statistics
As in Xie et al. (2005), only one-sample comparison will be considered
in this article. Suppose that Yij is the expression level of gene i in array j
(i=1,2, …, n; j=1, …, k). The goal is to test the following hypothesis:
H0 :E(Yij)=0 against H1 :E(Yij) �=0. We use the same three test statistics as
in Xie et al. (2005) for the purpose of comparison:

1. The mean statistic: Mi =Yi,

2. The t-statistic: Ti = Yi
Vi/

√
k

,

3. The SAM statistic: Si = Yi
(Vi+V0)/

√
k

,

where Yi =∑k
j=1 Yij/k, V2

i =∑k
j=1(Yij −Yi)2/(k−1), and V0 is the fudge

factor used to stabilize the variance.
In this article, we will focus on the permutation-based method for

estimating the FDR. The key issue in the permutation-based method is the
generation of the so-called null statistics (the values of the test statistic when
the genes are EE). For convenience, we shall use Zi as a general notation to
denote the test statistic and use zi to denote its corresponding null statistic.
In the standard permutation method, one set of null statistics is calculated by
applying the test statistic to one set of permuted data. The set of permuted
data is obtained by randomly assigning the ‘+’or ‘−’ signs on each Yi1,...,Yik

(SAM). Suppose the number of permutations is B, applying the test statistic
to the b-th set of permutated data will create the b-th set of null statistics z(b)

i ,
where b=1,...,B, and i=1,...,n.

2.2 Method for FDR estimation
Given the test statistics Zi and a fixed cutoff value d, define TS(d)=#{i : |Zi|>
d} as the total number of significant genes; FP(d)=#{i : |Zi|>d,i∈EE} as
the number of FP genes, where EE is the set of all EE genes; π0 as the
proportion of EE genes; and π̂0 as its estimator. According to Storey and
Tibshirani (2003), the FDR can be approximated as

FDR(d)=E(
FP(d)

TS(d)
)≈ E(FP(d))

E(TS(d))
. (1)

A practical version of FDR is the false discovery proportions (FDP) defined
by

FDP(d)= FP(d)

TS(d)
. (2)

To estimate FDR, the standard method is to use the permutated null
statistics. Define

F̂P(d)=
B∑

b=1

#{i : |z(b)
i |>d}/B. (3)

Notice that F̂P(d) is actually an estimate of FP(d)/π0. Storey and Tibshirani
(2003) suggested to estimate the FDR by

F̂DR(d)= π̂0F̂P(d)

TS(d)
. (4)

However, as shown in Xie et al. (2005), although the null statistics of EE
genes have the true null distribution of test statistics, the null statistics of DE
genes are more dispersed than those of EE genes. As a result, the empirical
distribution of the null statistics from all genes is not a good approximation
to the true null distribution. To overcome this problem, Xie et al. (2005)
proposed a new FDR estimator. Their idea is as follows: since the over-
estimation problem of standard permutation method is caused by the DE
genes, using only EE genes to construct the null distribution will avoid this
problem. Nevertheless, in practice which genes are EE genes is unknown.
Therefore, they proposed to use the predicted EE genes to estimate the FDR.

Their FDR estimation procedure works as follows: suppose Zi is the test
statistic and Si is the SAM statistic, for any given d >0, any gene i with
|Si|>d is said to be significant. TS(d) is defined the same as before. Define a
set of non-significant genes D(d)={i : |Si|≤d′}, where Si is the SAM statistic
and d′ is chosen so that the number of genes not in set D(d) is the same as
TS(d). In other words, D(d)=�−TS(d), where � is the set of all genes.
F̂P(d) is then estimated by constructing B sets of null statistics as before.
The only difference is that only genes in D(d) are going to be used this time.
Let

F̂P(d)0 =
B∑

b=1

#{i∈D(d) : |z(b)
i |>d}/B. (5)

Then, the FDR is estimated by

F̂DR(d)0 = F̂P(d)0

TS(d)
. (6)

Note that F̂P(d)0 in (6) is the average number of significant genes found
from the genes in D(d). We can re-write (6) in the form of (4) as

F̂DR(d)0 = π̂0F̂P(d)/TS(d), (7)

where F̂P(d)= n
n−TS(d) F̂P(d)0 can be viewed as the average number of

significant genes if all n genes are EE and π̂0 =1−TS(d)/n is the estimated
proportion of EE genes in the microarray data.

In Xie et al. (2005), the above method was proved to be able to correct
the FDR overestimation problem of the permutation method effectively.
However, our study has found that (6) has four major problems:

(1) In Xie et al. (2005), the true FDR formula (2) is incorrectly defined
as

FDR(d)= π0FP(d)

TS(d)
. (8)

This mistake will affect the evaluation of their proposed FDR
estimator.

(2) In Xie et al. (2005), the SAM statistic was used to define the set
D(d), which is used in (5) to estimate the number of FP even if the
test statistic is the mean or t-statistics. This is unreasonable. If one
has chosen the mean or t-statistic as the test statistic, why would
he/she use a different statistic to estimate the number of FP? The
only explanation is that the mean statistic and the t-statistic do not
provide results as good as the SAM statistic does. Note that the mean
statistic and the t-statistic can be viewed as two extreme cases of the
SAM statistic with the fudge factor equal to ∞ and 0, respectively.
It is well known that the performance of the testing procedure based
on the mean statistic and the t-statistic is generally inferior to that
based on the SAM statistic.

(3) It can be seen from (7) that Xie et al. (2005) implicitly uses π̂0=1−
TS(d)/n as an estimate of π0. Noticing that TS(d) is the number of
claimed significant genes, such π̂0 can range from 0 to 1 for TS(d)
from n to 0. As a consequence, one will always under- or over-
estimate π0 unless TS(d) = the true number of DE genes.

(4) The over- or under-estimation of FDR due to under- or over- deletion
of genes, which will be discussed in Section 2.3.

2.3 Our proposed method for FDR estimation
Considering the unreasonable estimates π̂0 of Xie et al. (2005) may provide,
we suggest estimating π0 by the method introduced in Storey and Tibshirani
(2003), which is implemented in SAM. In their paper, they calculated
P-values for each gene. Denote the P-values by p1,p2,...,pn. Then, π0 is
estimated by π̂ sam

0 =#{pi >λ}/(n(1−λ)), where λ is a tuning parameter. As
we can see, π̂ sam

0 is a constant no matter how TS(d) changes. In addition,
after a test statistic Zi is determined, we use the same test statistic for
both identifying the DE genes and defining the set D(d). In other words,
D(d)={i : |Zi|≤d}. With π̂ sam

0 and this new D(d), we propose the following
FDR estimator

F̂DR(d)1 = π̂ sam
0 F̂P(d)/TS(d), (9)

where F̂P(d)= n
n−TS(d) F̂P(d)0.
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The estimator F̂DR(d)1 corrects Xie et al.’s method by using a more
reasonable estimator of π0. However, another question comes to light: Is
removing all the predicted DE genes a proper way of estimating the FDR?
As we know, what we really want is to remove all the DE genes and use
all the EE genes to construct the null statistics. However, in those predicted
DE genes, there are some genes which are actually EE genes, but are falsely
identified as positive (FP genes). It is obvious that the FP genes are the EE
genes with the greatest test statistics in absolute values. Therefore, excluding
such genes will cause underestimation of the tail of the null distribution. In
Section 3.2, we will show that removing all the predicted DE genes gives
significantly different FP estimates from those obtained by removing the true
DE genes (which is not feasible in practice but good for comparison).

Since removing all predicted DE genes will cause underestimation of the
FDR, an intuitive solution would be to add the FP genes back into the pool
of the genes for the estimation of the FDR. For this purpose, we propose
the following two-step procedure to estimate the FDR, in which the first
step is to remove all the predicted DE genes and the second step is trying to
re-include the possible FP genes to construct the null statistics:

(1) Suppose Zi is the test statistic, for any given d >0, any gene i with
|Zi|>d is said to be significant. Let TS(d)=#{i : |Zi|>d}, D(d)=
{i : |Zi|≤d}, F̂P(d)0 =∑B

b=1 #{i∈D(d) : |z(b)
i |>d}/B , and F̂DR(d)1 =

n
n−TS(d) π̂

sam
0 F̂P(d)0/TS(d).

(2) Using F̂DR(d)1 from Step 1, let D(d′)={i : |Zi|≤d′}, d′ is chosen such
that the number of genes not in D(d′) is TS(d′)=TS(d)(1−F̂DR(d)1).
Then following the same procedure as Step 1, we get F̂P(d′)0 =∑B

b=1 #{i∈D(d′) : |z(b)
i |>d′}/B, and

F̂DR(d)2 = π̂ sam
0 F̂P(d)/TS(d), (10)

where F̂P(d)= n
n−TS(d′) F̂P(d′)0.

The idea behind our proposed method is as follows: when the number
of predicted DE genes is greater than the true number of significant genes,
there will be a substantial number of FP genes in them. Since removing all
predicted DE genes will cause biased estimation of the FDR, we only remove
the genes which we consider are most likely to be true DE genes.

3 RESULTS

3.1 Problems caused by using Xie et al.’s estimate of π0

In Xie et al. (2005), π0 is estimated by π̂0 =1−TS(d)/n. As stated
before, we would expect to see over-or under-estimation of FDR by
this method because of the over-or under-estimation of π0 by π̂0.

To show this, 5 (=k) replicates of 4000(=n) genes are generated,
among which 400 are DE genes and the others are EE genes. The
expression levels Yij for EE genes are generated from N(0,4) and Yij
for DE gene are generated from N(µi,4), while µi ∼N(0,16). The
SAM, mean and t-statistics are used as the test statistics. Our purpose
is to compare the FDR estimator of Xie et al. (2005) (F̂DR(d)0)
from (7) and one of our proposed estimator (F̂DR(d)1) from (9).
The values of the standard FDR estimator from (4) and the true
FDR values are also plotted as references.

Overestimation of FDR when TS(d) is smaller than the true
number of DE genes.

In this scenario, TS(d) is set to be from 100 to 200, which is
much less than the true number of DE genes (=400). In Figure 1, as
we expected, F̂DR(d)0 always overestimates the true FDR while
F̂DR(d)1 provides much less biased estimates. In some cases,
F̂DR(d)1 still gives overestimation. This overestimation is caused
by the fact that π̂ sam

0 also always overestimates the true π0, but to
a much lesser degree.

Underestimation of FDR when TS(d) is greater than the true
number of DE genes.
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Fig. 1. FDR curves of different estimation methods using the SAM, mean
and t-statistics. There are 400 DE genes among 4000 genes. The number of
claimed significant gene ranges from 100 to 200. π̂ sam

0 is used as the estimate
of π0. Our method 1 is the estimator F̂DR(d)1 from (9).

The same simulation set-up is used as above except now TS(d) is
set to be from 500 to 600, which is greater than the the true number
of DE genes (=400).

As shown in Figure 2, for the t and SAM statistics, Xie et al.’s
method underestimates the true FDR while our proposed method
gives much more accurate estimates. However, for the mean statistic,
our method does not give any improvement over Xie et al.’s method.
The reason is that the SAM statistic was used to predict DE genes
in Xie et al. (2005) while our method F̂DR(d)1 uses the same mean
statistic in both predicting the DE genes and estimating the FDR.
The better performance of Xie et al.’s method in this case is due
to the use of the SAM statistic in predicting DE genes, rather than
the method itself. As it can be seen from the top plot of Figure 2,
our estimator F̂DR(d)1 performs significantly better than Xie et al.’s
method when the SAM statistic is used.

3.2 Underestimation caused by removing the predicted
DE genes

In this section, we show that removing all predicted DE genes will
lead to an underestimation of the true FP number. We generate
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Fig. 2. FDR curves of different estimation methods using the SAM mean
and t-statistics. There are 400 DE genes among 4000 genes. The number
of claimed significant gene ranges from 500 to 600. Our method 1 is the
estimator F̂DR(d)1 from (9).

n=4000 genes with k =5, while 150 of them are DE genes. The
expression levels for EE and DE genes are generated in the same
way as in Section 3.1. The number of claimed significant genes is
set to be 150, which is the number of true DE genes. Table 1 lists
the true FP number, the estimated FP number with 150 predicted
DE genes removed (F̂Pp), and the estimated FP number with 150
true DE genes removed (F̂Pt). The results reported are the averages
from 50 replicates.

From Table 1, we can see F̂Pp is always less than F̂Pt . This shows
removing predicted DE genes gives a smaller estimate of FP number
than that of removing the true DE genes.

3.3 Performance of our methods
To evaluate the performance of our methods, the same simulation
set-ups are used as those in Section 3.2. We want to see whether our
proposed estimator F̂DR(d)2 from (10) can overcome the problems
or at least has some advantages over other estimators.

We compare four different FDR estimation methods: the standard
estimator F̂DR(d) from (4), Xie et al. (2005) estimator F̂DR(d)0

Table 1. Comparison of estimated FP numbers and the true FP numbers
using the SAM, mean and t-statistics

Statistic True FP F̂Pp F̂Pt

SAM 64.38 61.62 65.30
mean 58.96 53.96 60.81
t 79.78 77.21 81.19

from (7), and two estimators we proposed: F̂DR(d)1 from (9),
F̂DR(d)2 from (10).

Figure 3 shows that the estimator of Xie et al. (2005) always
significantly underestimates the true FDR’s. The estimator F̂DR(d)1
also underestimates FDR due to over-deletion, but is much better
than Xie et al.’s estimator for the SAM statistic. For the mean and
t-statistics, Xie et al.’s estimator outperforms F̂DR(d)1 sometimes
due to the same reason discussed previously—the use of the SAM
statistic in obtaining the predicted DE genes. In contrast, F̂DR(d)2
does not have this problem. However, for the SAM statistic and
the t-statistic, F̂DR(d)2 slightly overestimates the true FDR. This
overestimation is not caused by the estimator F̂DR(d)2, but by the
overestimation of π0 caused by π̂ sam

0 . To see this, we replaced π̂ sam
0

in (9) for F̂DR(d)1 and in (10) for F̂DR(d)2 with the true π0 =
3850/4000. Figure 4 shows the comparison between the true FDR
and the estimated FDR from (9) and (10) with the true value of π0.
We can see that F̂DR(d)2 now gives smaller estimates of FDR for all
three test statistics compared to Figure 3.Another fact worth noticing
in Figure 3 and 4 is that when the number of claimed significant
genes is small, F̂DR(d)2 does not show much advantage. The reason
is that, in such a case, most of the significant genes are true DE
genes and the number of FP genes is much smaller than the number
of true DE genes. Hence, removing the FP genes is not going to have
significant impact on the estimation of the FDR.

3.4 Comparisons under other simulation set-ups
We also want to see how the ratio of induced (I) and repressed
(R) genes influences the performance of the FDR estimators. Here,
k =5, n=4000 and there are 150 DE genes. The expression level Yij
for EE genes are generated from N(0,4). For DE genes, n′ of them
are generated from N(4,4), and the rest of them are generated from
N(−4,4); where n′ =150,100,50,0. We set the number of claimed
significant genes as 300. The results reported in Table 2 are the
averages from 50 replications.

The results confirm that our methods are stable to the change of
ratios of the induced and repressed genes.

We have also conducted another simulation which tries to mimic
the real data. Similar simulation set-up as above is used except the
expression level Yij for EE genes are generated from N(0,σ 2

i ) while

σ 2
i ∼Gamma(4,2) and Yij for DE gene are generated from N(µi,σ

2
i )

while µi ∼N(0,16), σ 2
i ∼Gamma(4,2).

From Figure 5, we can see that the results are similar as before for
the SAM and t-statistics: the standard method always overestimates
and method of Xie et al. (2005) always underestimates. F̂DR(d)1
performs better than Xie et al.’s method and F̂DR(d)2 always
performs the best.
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Fig. 3. FDR curves of different estimation methods using the SAM, mean
and t-statistics. There are 150 DE genes among 4000 genes. The number of
claimed significant gene ranges from 20 to 400. π̂ sam

0 is used as estimate of
π0. Our methods 1 and 2 are the estimators F̂DR(d)1 from (9) and F̂DR(d)2

from (10), respectively.

3.5 Biological data
In Zhong et al. (2004), duplications and deletions in an evolved strain
(DD2459) were identified by a whole-genome Escherichia coli
MG1655 spotted DNA microarray experiment with three replicates.
Thirty-eight genes have been confirmed to be true duplicated/deleted
genes by rtPCR. To compare our proposed estimator F̂DR(d)2 with
Xie et al.’s estimator F̂DR(d)0, we used this data to construct a
table summarizing the upper bound of true FDR (the proportion of
detected DE genes which are not in the confirmed 38 DE genes),
FDR estimates given by F̂DR(d)2 and F̂DR(d)0 for different number
of total significant genes (TS(d)). Because the confirmed 38 true DE
genes are mostly genes with largest mean in absolute value, we can
see from Table 3 that the mean statistic gives the smallest FDR upper
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Fig. 4. FDR curves of different estimation methods using the SAM, mean
and t-statistics. There are 150 DE genes among 4000 genes. The number of
claimed significant gene ranges from 20 to 400. The true π0 =3850/4000
is used as estimate of π0. Our methods 1 and 2 are the estimators F̂DR(d)1

from (9) and F̂DR(d)2 from (10), respectively.

bound while the t-statistic does not detect any one of the 38 true DE
genes. Table 3 also shows that F̂DR(d)2 always gives more accurate
FDR estimates than F̂DR(d)0.

4 DISCUSSION
In this article, we have showed that the bias-corrected FDR estimator
proposed in Xie et al. (2005) uses an inappropriate estimate of π0 and
still has severe under- or over-estimation problem. We have proposed
two new modifications to overcome those problems. Simulation
studies and application to real data have confirmed that our estimator
F̂DR(d)2 gives significantly better FDR estimates than F̂DR(d)0 in
Xie et al. (2005).
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Table 2. Comparison of the performance of FDR estimator when the ratio
of induced and repressed genes changes

I/R FDRtrue F̂DR(d) F̂DR(d)0 F̂DR(d)1 F̂DR(d)2

150/0 SAM 0.507 0.572 0.461 0.486 0.521
mean 0.504 0.672 0.423 0.446 0.504
t 0.558 0.564 0.513 0.539 0.560

100/50 SAM 0.508 0.566 0.463 0.489 0.520
mean 0.504 0.665 0.416 0.439 0.498
t 0.557 0.569 0.512 0.538 0.562

50/100 SAM 0.509 0.570 0.460 0.485 0.520
mean 0.504 0.670 0.424 0.445 0.499
t 0.557 0.565 0.512 0.537 0.558

0/150 SAM 0.507 0.566 0.465 0.491 0.522
mean 0.504 0.661 0.427 0.449 0.504
t 0.556 0.562 0.514 0.544 0.562

Table 3. Comparison of the performance of F̂DR(d)2 and F̂DR(d)0 using
microarray data from Zhong et al. (2004)

Statistic TS(d) Upper bound F̂DR(d)0 F̂DR(d)2

SAM 35 0.457 0.347 0.506
40 0.500 0.304 0.443
45 0.533 0.272 0.404
50 0.560 0.267 0.386

mean 35 0.371 0.230 0.356
40 0.375 0.158 0.264
45 0.422 0.171 0.242
50 0.480 0.177 0.231

t 35 1.000 0.871 1.000
40 1.000 0.870 1.000
45 1.000 0.817 1.000
50 1.000 0.810 0.997

Current null statistics are constructed by randomly assigning the
‘+’ or ‘−’ signs to replicates of genes. As a consequence, the number
of ‘+’and ‘−’signs can be different in this random assignment. Mean
expression levels of EE genes will always be 0 regardless of the
way of assigning the signs. However, when there is an unbalanced
number of ‘+’ and ‘−’, the mean expression levels of DE genes will
not be 0, which may cause the null statistics of DE genes to have
different distributions from that of EE genes. Hence, it is intuitive
to deduce that if we make the number of ‘+’ and ‘−’ stay balanced,
this problem can be avoided. In Pan (2003) and Zhang (2006), they
proposed a series of such kind of ‘balanced’ null statistics, which
have the same distribution for both DE and EE genes. It would be
interesting to compare the performance of our FDR estimators and
estimators based on ‘balanced’ null statistics in the future research.
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