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ABSTRACT

Motivation: In this work, we aim to develop a computational
approach for predicting DNA-binding sites in proteins from amino
acid sequences. To avoid overfitting with this method, all available
DNA-binding proteins from the Protein Data Bank (PDB) are used
to construct the models. The random forest (RF) algorithm is used
because it is fast and has robust performance for different parameter
values. A novel hybrid feature is presented which incorporates
evolutionary information of the amino acid sequence, secondary
structure (SS) information and orthogonal binary vector (OBV)
information which reflects the characteristics of 20 kinds of amino
acids for two physical-chemical properties (dipoles and volumes of
the side chains). The numbers of binding and non-binding residues
in proteins are highly unbalanced, so a novel scheme is proposed
to deal with the problem of imbalanced datasets by downsizing the
majority class.

Results: The results show that the RF model achieves 91.41%
overall accuracy with Matthew’s correlation coefficient of 0.70 and
an area under the receiver operating characteristic curve (AUC) of
0.913. To our knowledge, the RF method using the hybrid feature is
currently the computationally optimal approach for predicting DNA-
binding sites in proteins from amino acid sequences without using
three-dimensional (3D) structural information. We have demonstrated
that the prediction results are useful for understanding protein—-DNA
interactions.

Availability: DBindR web server implementation is freely available at
http://www.cbi.seu.edu.cn/DBindR/DBindR.htm.

Contact: xsun@seu.edu.cn

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Protein—-DNA interactions control a variety of vital biological
processes, such as gene regulation, DNA replication and repair,
recombination and other critical steps in cellular development
(Luscombe et al., 2000). Mutations of DNA-binding residues,
such as those on the tumor repressor protein P53, may be
directly involved in human diseases (Bullock and Fersht, 2001).

*To whom correspondence should be addressed.

Thus, the ability to identify the amino acid residues that recognize
DNA can significantly improve our understanding of these
biological processes and affect the potential for guiding site-directed
mutagenesis studies for the functional characterization of DNA-
binding proteins, and can further contribute to advances in drug
discovery, such as aiding the design of artificial transcription factors
(Ho et al., 2007; Wang and Brown, 2006a).

The protein-DNA recognition mechanism is complicated and
the interactions consist of a variety of atomic contacts involving
hydrogen bonds, van der Waals contacts and electrostatic, water-
mediated bonds between amino acid residues and nucleotide bases.
Such residues that recognize DNA can be identified from the three-
dimensional (3D) structure of protein—-DNA complexes (Siggers
and Honig, 2007). Unfortunately, 3D structures of such complexes
are available for <5% of all known DNA-binding proteins (Ofran
et al., 2007). Moreover, it is a very expensive and time-consuming
process to solve the structure of a protein—~DNA complex through
experimental methods. A variety of computational methods have
been developed to identify DNA-binding interface residues from
3D structures (Jones et al., 2003; Tjong and Zhou, 2007; Tsuchiya
et al., 2004). However, these methods have at least two major
limitations: (i) One problem with using the structure of an unbound
protein to predict sites involved in interactions with DNA is that the
actual structure of the DNA-bound protein may differ substantially
from the unbound form. (ii) The other problem is that structure-
based computational methods still involve the expensive and
time-consuming process of experimental determination of protein
structure (Kuznetsov et al., 2006; Ofran et al., 2007).

An alternative to structure-based prediction is to predict
DNA-binding residues directly from amino acid sequences.
Machine learning techniques provide an effective approach for
the construction of classifiers for this task, and predicting binding
residues can be operated under the assumption that a given protein
is bound to the DNA. Recently, neural network models have been
constructed to identify protein—-DNA interface residues relying on
sequence information and residue solvent accessibility (Ahmad
et al., 2004). Evolutionary information in terms of position-specific
scoring matrices (PSSMs) have contributed to a better prediction
performance of DNA-binding sites (Ahmad and Sarai, 2005). Yan
et al. (2006) trained a naive Bayes classifier to predict DNA-binding
sites based on the identities of sequence and entropy of the target
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residue. More importantly, a variety of support vector machine
(SVM) classifiers have been developed for automated identification
of DNA-binding residues with high accuracy (Bhardwaj and Lu,
2007; Ho et al., 2007; Kuznetsov et al., 2006; Ofran et al., 2007,
Wang and Brown, 2006a, b).

In the present work, we aim to design optimal predictors
for DNA-binding sites in proteins directly from amino acid
sequences. In designing classifiers, the following points are taken
into consideration: (i) Approaches learning from a small training
dataset can result in the over-fitting of training data and will then
have poor generalization performance for new data. Accordingly, it
is necessary that all available datasets of DNA-binding proteins are
employed to build a new classifier for recognizing binding residues
(Bhardwaj and Lu, 2007; Ofran et al., 2007). (ii) The SVM is
a powerful machine-learning algorithm developed from statistical
learning theory (Vapnik, 1998) that has been successfully applied
in many fields for data classification. However, it is definitely time
consuming to find the appropriate kernel function and optimal-free
parameters of an SVM for very large training datasets. So it is
significant to find a new algorithm that is fast and robust for different
parameter values. (iii) Although many methods have been proposed,
it is still challenging to predict DNA-binding residues directly
from amino acid sequence data. To our knowledge, incorporating
more effective features is the most important way of improving
the performance of classifiers. (iv) The numbers of binding and
non-binding residues in proteins are significantly unbalanced such
that the problem of imbalanced datasets should be considered in
enhancing the prediction accuracy. (v) The prediction reliability is
an important factor that shows more information about the quality
of the prediction. (vi) How do we ensure that parameter estimation
and model generation are completely independent of the test data?
(vii) What about the performance of distinguishing DNA-binding
proteins from non-binding proteins?

In this article, we propose a novel method for predicting
DNA-binding residues using the random forest (RF) algorithm
in conjunction with a hybrid feature by combining evolutionary
information of the amino acid sequence, orthogonal binary vector
(OBV) information that reflects the characteristics of 20 kinds
of amino acids for two physical-chemical properties (dipoles
and volumes of the side chains) and secondary structure (SS)
information. The results show that the RF-based model achieves
91.41% overall accuracy with Matthew’s correlation coefficient of
0.70, and with a sensitivity of 76.57% and a specificity of 94.38%.

2 MATERIALS AND METHODS

2.1 Dataset

DBP-374 is a dataset of 374 structures of representative protein-DNA
complexes from the Protein Data Bank (PDB) (Berman et al., 2000).
We collected all protein—-DNA complexes (released by October 17, 2007)
determined by X-ray crystallography with a resolution better than 3.5 A.
Redundancy among the amino acid sequences was removed by clustering
analysis using the blastclust program in the BLAST package (Altschul et al.,
1990) from NCBI (http://www.ncbi.nlm.nih.gov/BLAST/download.shtml)
with a threshold of 25% for sequence identity. Thus, the non-redundant DBP-
374 dataset listed in the Supplementary Material was created by retaining
only the longest sequence in each cluster.

As in the previous studies (Ahmad and Sarai, 2005; Ahmad et al., 2004;
Ho et al., 2007; Wang and Brown, 20064, b), an amino acid residue within

a protein sequence is designated as a binding site if it contains at least one
atom that falls within the cutoff distance of 3.5 A from any atoms of the
DNA molecule in the complex, and all other residues are labeled non-binding
sites. The DBP-374 dataset contains 5652 DNA-binding residues and 74 782
non-binding residues.

2.2 Features of data instances

RFs are constructed using residue-wise data instances from the protein
sequences of the DBP-374 dataset. Each data instance is a segment of
amino acid sequences with length S =11, where B is the sliding window
size. Compared with other window sizes, the RF classifiers constructed with
B =11 present the best performance. From an amino acid sequence with m
residues, a total of (m—pf +1 — y) data instances are extracted, where y is
the number of residues that lack information about their atomic coordinates
in the PDB entries. A data instance is labeled with ‘P’ (positive) if the
central residue is DNA-binding or ‘N’ (negative) if the central residue is
non-binding.

Electrostatic (including hydrogen bonding) and hydrophobic interactions
probably dominate protein—DNA interactions, and can be reflected by the
dipoles and volumes of the side chains of amino acids, respectively. In
the protein-DNA complex structures, hydrogen bond is a major interaction
force and its strength is associated with the dipoles involved hydrogen bond
(Coulocheri et al., 2007). Based on the dipoles and volumes of the side
chains, the 20 kinds of amino acids can be clustered into seven classes
(Shen et al., 2007). The unique amino acid cysteine in the seventh class
is called back to the third class in this study because disulfide bonds have
no special attribution to protein—DNA interaction. Therefore, the 20 kinds
of amino acids are grouped into six classes, namely Class 1: Ala, Gly, Val;
Class 2: Ile, Leu, Phe, Pro; Class 3: Tyr, Met, Thr, Ser, Cys; Class 4: His,
Asn, GIn, Tpr; Class 5: Arg, Lys; and Class 6: Asp, Glu. Amino acids
in each class are encoded as an OBV, for example (1,0,0...) or (0,1,0...)
and the vector is 6D. In this article, each data instance is coded with a
hybrid feature by combining the OBVs of the amino acids, evolutionary
information of the amino acid sequence and SS information of the amino
acids.

In this work, evolutionary information of amino acid sequences in terms
of their PSSMs are generated for prediction of DNA-binding sites (Bhardwaj
and Lu, 2007; Ho et al., 2007; Kuznetsov et al., 2006; Ofran et al., 2007).
The PSSM elements are scaled to fall within the range 0-1 by the standard
logistic function (Wang et al., 2006):

! 1
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SS information extracted from the PDB files is encoded as follows: helix
(1,0,0), strand (0,1,0) and others (0,0,1). For each data instance, the input
vector contains 319 feature values, including 220 (20 x 11) PSSMs, 66
(6 x 11) OBVs and 33 (3 x 11) SS elements. The SS information was,
however, predicted by the PREDATOR program (Frishman and Argos, 1997)
during the prediction of new proteins.

2.3 Algorithms for classification

RF is a classification algorithm that uses an ensemble of tree-structured
classifiers (Breiman, 2001). The RF algorithm is implemented by the
randomForest (version 4.5-18) R package (Liaw and Wiener, 2002).

To ensure that parameter estimation and model generation of RFs are
completely independent of the test data, a nested cross-validation procedure
(Scheffer, 1999) is performed. Nested cross-validation means that there is
an outer cross-validation loop for model assessment and an inner loop for
model selection. In this study, the original samples are randomly divided into
k=5 parts in the outer loop. Each of these parts is chosen one by one for
assessment, and the remaining 4/5 of the samples are for model selection in
the inner loop where a type of cross-validation using the so-called out-of-bag
(OOB) samples is performed.
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2.4 The imbalanced data problem

The problem of imbalanced datasets occurs in many practical classification
events where the goal is to detect a rare but important case. All solutions
to this problem can roughly be grouped into two main categories (Cohen
et al., 2006): the first consists of preprocessing the data to re-establish class
balance (either by upsizing the minority class or downsizing the majority
class); whereas the second involves modifying the learning algorithm itself to
cope with imbalanced data. Kubat and Matwin (1997) presented an algorithm
for the one-sided selection of examples by downsizing the majority class.
Examples of the majority class can roughly be divided into four groups:
class-label noise, borderline, redundant and safe examples, and the algorithm
attempts to create a subset retaining the safe examples (Kubat and Matwin,
1997). A similar approach is used in this article to deal with the imbalanced
data problem (only 7.25% of the total data instances are positive).

The algorithm for downsizing the majority class can be summarized as
follows.

(1) Let 2 be the original training set and ¢ be the set of all negative data
instances of Q.

(2) Let ¢ contain all positive data instances and 1% randomly selected
negative data instances from ¢.

(3) Predict ¢ using the model trained by the data instances in v based on
the RF and then get F;, where F is the fraction of the tree votes for
the positive class in each data instance.

(4) Repeat steps 2 and 3. 10 times.

(5) Combine the F from all 10 iterations, and regard the data instances
in ¢ of which 50% of the F; values are between 1/9 and 2/9 as safe
(because the ratio of positive to negative instances in v is 5331:681).

(6) Get the processed dataset ¢ containing all positive data instances and
the safe negative data instances from ¢. The processed dataset ¢ has
5331 positive data instances and 26 721 negative data instances.

2.5 Measurement of classifier’s performance

The overall prediction accuracy (ACC), sensitivity (SE), precision (PR),
specificity (SP) (Wang and Brown, 2006a) and Matthew’s correlation
coefficient (MCC) (Matthews, 1975) are for assessment of the prediction
system.

The receiver operating characteristic (ROC) curve is probably the most
robust technique for evaluating classifiers and visualizing their performance
(Egan, 1975).

2.6 Reliability index

The prediction reliability index (RI) is an important factor in evaluating the
quality of prediction. We adopt the RI to show the level of reliability in the
prediction of a submitted sequence. RI is defined as:

RI— { int(D x 100) if D<0.1

10 if D>0.1 @

D=|F;—-¢| (€©)

Here, F is the fraction of the tree votes (FV) for the positive class in

each sample, and ¢ is the threshold by which to classify samples according

to FV for the positive class and is set to 1/6 in this article, because the ratio
of positive to negative samples for training is 1:5.

3 RESULTS AND DISCUSSION
3.1 Prediction performance of RF method using
various features

The prediction results of the RF modules using various features
are presented in Table 1. The RF-based classifier with the PSSM

Table 1. The prediction performance of the RF model based on various
features. The prediction system was evaluated by nested cross-validation
and the threshold for sample classification is 1/6

Features ACC £SD(%) SE=+SD(%) PR=+SD(%) SP+SD(%) MCC

A 88.93 £0.19
A+B 89.69£0.41
A+C 90.46 +0.44
A+B+C 91414049

76.29+1.40 63.39+0.79 91.46+£0.22 0.633
76.58 £1.94 66.51£1.28 92.31+0.35 0.652
75.644+0.65 69.63+2.36 93.41£0.59 0.668
76.57+1.69 73.16£2.78 94.38+0.76 0.70

A: PSSMs; B: SS; C: OBVs of amino acids.
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Fig. 1. The expected prediction accuracy and the fraction of sequences with
each RI by RF. For example, 34.2% of all samples have RI=10 and of these
samples 97.63% are predicted correctly.

feature achieved a prediction accuracy of 88.93% and a 0.883 AUC
(area under the ROC curve) value. The classifiers appending either
the SS or OBV feature achieved total accuracies of 89.69% and
90.46%, respectively. The combination of all features produced the
best performance with a 91.41% total accuracy and a 0.913 AUC
value. The results indicate that the combination of all features is
capable of capturing more information for discriminating DNA-
binding data instances from non-binding ones. Four repeats of the
nested cross-validation process were implemented. The mean of the
ACC values is 91.54% with a 95% confidence interval (CI) between
91.38% and 91.70%. For a detailed presentation of the prediction
of one representative protein—-DNA complex can be found in the
Supplementary Material.

The prediction RI is an important measure in evaluating the
quality of prediction. We adopt the RI to indicate the level of
certainty in the prediction of a submitted sequence. Figure 1 presents
the distribution of the expected prediction accuracy and the fraction
of samples with a different RI using the RF approach with nested
cross-validation. The higher the RI, the higher the reliability gained
by the prediction. When RI> 5, prediction accuracy is > 90%.
About 78.39% of all samples have an RI > 5 and of these samples
about 95.77% are correctly predicted by our method.

3.2 Performance comparison with other methods

In the past few years, SVMs have successfully been applied to many
fields, such as pattern recognition and data mining. Therefore, the
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Fig. 2. Performance comparisons of ROC graphs with other methods. (A) Both classifiers were preformed on the same dataset DBP-374 with the same
features ‘PSSMS + SS + OBVS’. RF: performance from the features (A+ B + C) of Table 2; SVM: a SVM-based method evaluated by nested cross-validation.
(B) all classifiers were tested on the same testing dataset TS75. The predictors have the following AUC value: BindN 0.782, Ho et al. 0.843 and our RF

model 0.855.

SVM method was selected as an alternative algorithm with which to
compare the RF classifier in this study. Both classifiers were applied
to the same dataset DBP-374 with the same hybrid features and
were assessed by nested cross-validation. For the SVM classifier,
the model selection in the inner loop of the nested cross-validation
procedure is performed by a standard grid parameter search.
The ROC analysis shows that the SVM classifier (AUC 0.921)
slightly outperforms the RF classifier (AUC 0.913) (Fig. 2A).
Thus, we conclude that the hybrid feature contributes most to the
excellent prediction performance. Because of time-saving and robust
performance for different parameter values, the RF algorithm was
chosen in this study.

BindN (http://bioinfo.ggc.org/bindn/) predicts potential DNA-
binding residues with SVMs (Wang and Brown, 2006a). The SVM
models used by the BindN web server were constructed with the
PDNA-62 dataset (can be found in the Supplementary Material)
whose data instances were encoded with three sequence features,
including the side chain pKa value, hydrophobicity index and
molecular mass of the amino acid. To ensure that model generation
is completely independent of the test data, a test dataset TS75 with
75 proteins (can be found in the Supplementary Material) in protein—
DNA complexes was randomly selected from the DBP-374 dataset
without the proteins of the PDNA-62 dataset. The other 299 proteins
were designated as the training dataset TR299 for constructing
prediction models. Putative DNA-binding residues in the test dataset
TS75 were predicted using BindN, and the default values were
used for the optional parameters. Ho er al. (2007) proposed a
hybrid method using a SVM in conjunction with evolutionary
information of amino acid sequences in terms of their PSSMs for
prediction of DNA-binding sites. The SVM models were evaluated
by a 6-fold cross-validation and the best performance was achieved
with a window size s=7. We repeated the process of constructing
prediction models, based on the training dataset TR299 and which
follow the same strategy as Ho’s method except for the standard
grid parameter search in our process. Putative binding residues in
the dataset TS75 were then predicted. We constructed RF models
on the TR299 dataset using exactly the same scheme as the original

RF models and applied the models to predict putative DNA-binding
residues in the test dataset TS75 whose SS information was predicted
by the PREDATOR program (Frishman and Argos, 1997). For all
three classifiers in this paragraph, 3.5 A was designated as the cutoff
distance in the definition of a binding residue. The AUC were 0.782,
0.843 and 0.855 for the BindN, Ho’s method and RF predictor,
respectively (Fig. 2B), indicating that our RF model achieves the
best performance.

DP-Bind (http://Icg.rit.albany.edu/dp-bind) (Hwang et al., 2007
Kuznetsov et al., 2006) is also a web server that predicts DNA-
binding sites in a DNA-binding protein from its amino acid
sequence. However, 4.5 A is regarded as the cutoff distance in the
definition of a binding residue in DP-Bind. The models constructed
were also based on the PDNA-62 dataset, and predictions were
performed using a profile of evolutionary conservation in terms
of PSSMs of the input sequence automatically generated by the
web server. The model provides three machine learning methods:
SVM, KLR (kernel logistic regression) and PLR (penalized logistic
regression). Putative DNA-binding residues were predicted by DP-
Bind for the test dataset TS75, and the recommended encoding
schemes were used and prediction results were received by E-mail
(default). Here, we also trained other RF models on the TR299
dataset using exactly the same strategy as the original RF models,
except that the training data instances were extracted according to
the criterion of a cutoff distance of 4.5 A in the definition of a binding
residue. These models were also used to identify putative.

DNA-binding residues in the TS75 dataset whose SS information
was predicted by the PREDATOR program (Frishman and
Argos, 1997). As shown in Table 2, the total accuracy
is 7531%, 78.19% and 76.49% for the SVM, KLR, PLR
predictors in DP-Bind, respectively, and 77.98% for the majority
consensus prediction of the three predictors. The RF-based
method attained 80.47% prediction accuracy with the AUC being
0.834. The results show that our RF model achieves the best
performance. Performance comparisons with the DISIS web server
(http://cubic.bioc.columbia.edu/services/disis) (Ofran et al., 2007)
can be found in the Supplementary Material.
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Table 2. Performance comparisons with the methods in DP-Bind. All
classifiers were tested on the same testing dataset TS75, and 45A was
designated as the cutoff distance in the definition of a binding residue

Classifiers®  ACC(%)  SE(%)  PR(%)  SP(%)  MCC
SVM 75.31 68.40 23.05 76.04 0.290
KLR 78.19 67.22 25.45 79.34 0.315
PLR 76.49 64.06 23.23 77.79 0.279
MAJ 77.98 67.85 25.35 79.04 0.316
RF 80.47 67.16 27.69 81.84 0.341

4SVM, KLR and PLR are the SVM, KLR and PLR predictors in DP-Bind, respectively;
MAIJ is the majority consensus prediction of the three predictors.

3.3 Comparison of the prediction of DNA binding and
non-binding proteins

The use of models for predicting binding residues is based on an
inherent assumption that a protein is known to bind DNA. What
about the performance of applying the RF model to predict non-
binding proteins? For this purpose, we analyzed a set of 100 proteins
that do not interact with DNA collected by Wang ef al. (Wang and
Brown, 2006a), and whose SS information was predicted by the
PREDATOR program (Frishman and Argos, 1997). The classifier
achieves 80.30% total accuracy which is similar to that of Wang et al.
(Wang and Brown, 2006a). For direct comparison of the prediction
of DNA binding and non-binding proteins by RF-based models, we
examined fractions of the tree votes for the positive class (FVPs)
of each data instance from the proteins in the dataset DBP-374 and
the dataset NBP-350 including 350 non-binding proteins, namely,
100 non-binding proteins from Wang et al. (Wang and Brown, 2006)
and a non-redundant set of 250 non-binding proteins obtained from
Stawiski et al. (2003). The FVP values of the DBP-374 dataset are
sourced from Section 3.1. We computed the average of the FVPs
of predicted positive samples (FVPs > 1/6) of each protein in both
datasets. The mean of all 374 averages of the DBP-374 dataset is
0.4135 with a 95% CI from 0.3977 to 0.430. However, the mean of
the 350 non-binding proteins of the dataset NBP-350 is 0.2765 with
a 95% CI from 0.2723 to 0.2807. A two-independent sample z-test
was also implemented for all averages of the DBP-374 and those of
the dataset NBP-350. The P-value was <0.001, which indicated that
the prediction between DNA binding and non-binding proteins was
significantly different. The results suggest that the CI values of DNA
binding and non-binding proteins would be helpful for predicting
whether a given protein is a binder or non-binder.

3.4 Web server

DBindR is available at http://www.cbi.seu.edu.cn/DBindR/DBindR.
htm. All the CGI scripts of models were written in Perl 5.8.4 and
the interface was designed using HTML. On the DBindR web page,
users can copy/paste amino acid sequences in FASTA format and
choose the prediction method (either RF or SVM). The RF and
SVM models used for predicting new proteins were constructed
from all the data instances in the processed DBP-374 dataset. The
RF algorithm is implemented by the randomForest (version 4.5-
18) R package (Liaw and Wiener, 2002), and the SVM algorithm
was by the e1071 (version 1.5-16) R package (Dimitriadou et al.,
2007). An E-mail address is required to receive the results. The
program slides a window with length g = 11 along the input sequence

(into a segment of amino acid sequences). Each window segment
constitutes a sample and each sample will be mapped into a 319-
dimension feature space reflecting a hybrid feature by combining
evolutionary information of the amino acid sequence, the OBVs of
the amino acids and SS information of the amino acids. The web
server returns the predicted DNA-binding residues and non-binding
residues along the input sequence, and marks them ‘P’ and ‘N’. The
prediction RI ranges from the lowest level O to the highest level 10
for presentation, and the higher the RI is, the higher reliability the
prediction gains.

4 CONCLUSIONS

In this work, we proposed a new RF-based approach combining a
hybrid feature for prediction of DNA-binding residues from amino
acid sequence data. The results indicate that the RF-reliant models
have a prediction accuracy of 91.41% with MCC set at 0.70. To the
best of our knowledge, until now, the RF method combined with
a hybrid feature has been the most effective method for predicting
binding residues in proteins from protein sequences without using
3D structural information, and the prediction results are useful
to realize how proteins interact with DNA molecules. The results
demonstrate that the hybrid feature contributes most to the excellent
prediction performance. The prediction RI would be helpful to
biologists for guiding selection of residue candidates in experimental
studies of site-directed mutagenesis for functional DNA-binding
proteins. A web server, called DBindR, has been developed for
efficient online predictions. In the next step, we will attempt to
classify protein-DNA complexes by using the conventional motif-
based classification and the structural and functional properties-
based classification of DNA binding proteins, and then predict their
DNA-binding sites in proteins and identify common properties and
rules that govern protein—-DNA recognition.
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