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Abstract
The Lewis (LEW) strain of rat appears more sensitive to nicotine than other strains in self
administration, conditioned place preference, and drug discrimination behavioral studies. The present
study sought to further evaluate the behavioral effects of chronic nicotine treatment in the LEW strain
by assessing spontaneous activity, which has consistently revealed sensitization to chronic nicotine
administration in Sprague Dawley (SD) rats. High active and low active male and female LEW rats
(N = 8 per group) were treated twice daily with either nicotine (0.4 mg/kg, sc) or vehicle for 14
consecutive days. Regardless of baseline activity level or sex, spontaneous activity was significantly
decreased, compared to saline-treated rats, after a single nicotine injection. However, spontaneous
activity increased in both low and high activity rats (both sexes) over the two-weeks of nicotine
administration to levels that were significantly higher than saline-treated rats. Based on these
findings, acute and chronic nicotine administration had greater suppressive and enhancing effects on
spontaneous activity in LEW rats compared to other strains of rats previously studied. These results
further clarify the behavioral sensitivity of the LEW strain of rat to nicotine exposure and lend
credence to the role of genetics in the individual susceptibility to nicotine dependence.

Keywords
nicotine; Lewis; activity; sensitization; rat; chronic

1. Introduction
A major question in drug dependence research concerns the susceptibility of individual humans
to develop dependency on tobacco (Rosecrans and Karan, 1993). Nicotine, the principal active
component in tobacco products, has been studied extensively in rats, and different responses

Author of correspondence: Susan E. Robinson, Ph.D., Department of Pharmacology and Toxicology, Virginia Commonwealth
University, Robert Blackwell Smith Building, 410 North 12th Street, P.O. Box 980613, Richmond, Virginia 23298-0613, Phone: (804)
828-8396, E-mail: serobins@vcu.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Pharmacol Biochem Behav. Author manuscript; available in PMC 2009 November 1.

Published in final edited form as:
Pharmacol Biochem Behav. 2008 November ; 91(1): 150–154. doi:10.1016/j.pbb.2008.06.024.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to nicotine have been found across strains. In particular, two inbred strains of rats, Lewis (LEW)
and Fischer 344 (F-344), exhibit differences in their responses to nicotine, as well as to other
drugs of abuse (for review, see Kosten and Ambrosio, 2002). Nicotine self-administration is
more readily established in LEW rats than in F-344 rats (Shoaib et al., 1997; Brower et al.,
2002). Moreover, LEW rats have been found to more rapidly learn to self-administer cocaine
(Kosten et al., 1997) and other drugs of abuse (Suzuki et al., 1988; Suzuki et al., 1992) than
F-344 rats. LEW rats exhibit a greater sensitivity to nicotine compared to F-344 rats in
conditioned place preference (Horan et al., 1997; Philibin et al., 2005), and the nAChR
antagonist mecamylamine elicits conditioned place aversion in LEW, but not F-344, rats
(Suzuki et al., 1999). LEW rats also exhibit a greater conditioned taste aversion to nicotine
(Pescatore et al., 2005) than F-344 rats. LEW rats have been found to be more sensitive to
nicotine than F-344 rats in drug discrimination, as evidenced by the fact that LEW rats can be
trained to discriminate 0.4 mg/kg nicotine from saline whereas F-344 rats require a higher
nicotine dose, 0.9 mg/kg, to acquire this discrimination (Philibin et al., 2005). Furthermore,
nicotine-induced increases in dopamine release in the nucleus accumbens have been found to
be significantly greater in LEW compared to F-344 rats (Sziraki et al., 2001).

There is also extensive evidence that nicotine’s effects vary depending on the individual’s
baseline level of physiological arousal. For example, in male and female SD and F-344 rats
ranked according to high and low baseline activity, repeated administration of nicotine (0.4
mg/kg) has been shown to decrease activity in high-activity rats, while increasing activity in
low-activity rats (Rosecrans, 1971b; Rosecrans, 1971a; Rosecrans and Schechter, 1972;
Rosecrans, 1995). These “behavioral normalizing” effects of nicotine have also been observed
in both male and female Sprague Dawley (SD) rats using several models, including habituation
and startle (Rosecrans and Chance, 1978).

The present investigation was designed to further illuminate nicotine’s subtle effects on
behavior by studying male and female LEW rats selected for low and high levels of baseline
spontaneous activity. The LEW rat was chosen for study because, as reviewed above, it is
especially sensitive to nicotine relative to other strains of rats (Philibin et al., 2005). The present
studies compared the acute and chronic effects of nicotine on locomotor activity, using methods
established in this laboratory to study male and female SD rats (e.g., Rosecrans, 1971a;
Rosecrans, 1972).

2. Methods
2.1 Subjects

This study was conducted in accordance with the National Institute of Health Guidelines for
the Care and Use of Animals in Research and the protocols were approved by the Institutional
Animal Care and Use Committee at Virginia Commonwealth University. Sixty-four (64) male
and female LEW rats (Harlan Laboratories, Indianapolis, IN) were purchased and housed in
individual plastic cages in an animal facility maintained at constant temperature and humidity.
Animal rooms were set on a 0600–1800 hr light-dark cycle. Rats were 60 days old when
received and were acclimated for 7 days after arrival, during which time they were handled
daily. Rats had ad lib access to food and water. Male and female LEW rats were studied in
separate groups within 60 days of each other, using identical methods.

2.2 Drugs
Nicotine hydrogen tartrate salt (Sigma-Aldrich, St. Louis, MO) was dissolved in a 0.01 M
phosphate buffer (pH=7.4). Nicotine and vehicle were administered subcutaneously at a
volume of 1 ml/kg. All nicotine concentrations are expressed as free-base.
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2.3 Initial activity assessment
One week after arrival to the vivarium, activity levels were assessed by photobeam crosses
using open field test chambers (ENV 515, Med-Associates, St. Albans, VT) for 3-min daily
sessions over 5 consecutive days. Using the average activity number of photobeam crosses
from days 4 and 5 for each subject, subjects of each sex (N=32) were ranked and separated
into High (H) and Low (L) Activity (A) groups, with 16 subjects per group. Subjects in the
both the HA and LA groups were further subdivided into two groups of equal size (nicotine
and vehicle groups; N=8) and matched for average activity using activity counts from days 4
and 5.

2.4 Behavioral testing regimen
All subjects received 0.4 mg/kg (sc) nicotine or vehicle (0.01M phosphate buffer, pH=7.4; sc),
depending on group assignment, twice per day for 14 consecutive days, which has been shown
to be more effective than once-a-day treatments for eliciting upregulation of nAChRs (Rowell
and Li, 1997). All injections were performed at approximately 0900 and 1700 hours daily.
Nicotine or vehicle was administered to each rat in the behavioral laboratory 5 min prior to
each test session following doses 1, 13 or 27 (i.e., after a single injection, 1 week and 2 weeks
of injections, respectively). During test sessions, each subject’s cumulative activity level was
recorded for a period of 20 min.

2.5 Data Analysis
The number of photobeam crosses for the 20 min locomotor activity test sessions were recorded
and the mean (± the standard error of the mean [SEM]) number of crosses for each group was
calculated. Two-factor repeated measures ANOVAs were used to analyze the effects of the
following factors on the number of photobeam crosses within each activity group for male and
female rats: 1) treatment (nicotine vs. vehicle) and 2) number of sessions (day 1 vs. week 1 vs.
week 2). Statistical comparisons between male and female rats were not conducted because
males and female rats were studied at separate times.

3. Results
3.1 Initial locomotor activity

Male rats selected for HA (N=16) exhibited a mean baseline rate over days 4 and 5 of 308 ±
13 counts/3 min (range = 242 to 423 mean counts/3 min), while male rats selected for LA
(N=16) exhibited a baseline rate over days 4 and 5 of 185 ± 10 counts/3min (range = 74 to 241
mean counts/3 min). Female rats selected for HA (N=16) averaged 448 ± 11 counts/3 min over
days 4 and 5 (range = 372 to 509 mean counts/3 min) and those selected for LA (N=16)
exhibited a rate of 287 ± 15 counts/3 min (range = 183 to 362 mean counts/3 min). Females
appeared more active than male subjects, which has been a consistent finding in this laboratory
using the same behavioral protocol. HA and LA rats were equally divided into groups that
received either nicotine (N=8) or vehicle (N=8). However, one subject was later removed from
the male LA vehicle group and one subject from the male LA nicotine group due to poor health.

3.2 Effects of nicotine on spontaneous activity in male rats
The effects of nicotine or vehicle on spontaneous activity in the male rats are shown in figure
1. In the HA activity rats, statistically significant effects on activity were found for treatment
(nicotine vs. saline, F1,15=10.27, p<0.01), test sessions (day 1, day7 and day 14, F2,30=15.70,
p < 0.01) and for the interaction between treatment and test sessions (F2,30=28.71, p<0.01).
Newman-Keuls post hoc analyses revealed that in HA rats, the first injection of nicotine (test
session 1) produced a statistically significant reduction in activity compared to vehicle-treated
rats (Figure 1, top panel). However, there was a significant increase in spontaneous activity
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after 7 and 14 days administration of nicotine (i.e. after 13 and 27 injections of nicotine or
vehicle, respectively) compared to vehicle-treated rats.

In the LA rats, there was also a statistically significant effect of treatment (F1,12=6.94, p <
0.05), test sessions (F2,24=16.79, p < 0.01), and for the interaction between treatment and test
sessions (F2,24=17.39, p < 0.01). Newman-Keuls post hoc analyses revealed that the first
injection of nicotine failed to produce a significant difference in activity compared to vehicle-
treated rats, whereas both 7 and 14 days of nicotine administration produced a significant
increase in activity compared to vehicle treated rats.

For test day three (i.e., after 14 days of nicotine or saline administration), a two-factor ANOVA
was conducted to compare activity in nicotine- and saline-treated rats in both the HA and LA
groups. There were no statistically significant differences between the HA and LA activity
groups, nor was there a significant interaction between activity group and treatment condition.
However, nicotine was found to significantly increase activity (F1,27=22.75, p < 0.01), which
is consistent with the effects of nicotine observed within both the HA and LA groups after 14
days of nicotine administration.

3.3 Effects of nicotine on spontaneous activity in female rats
The effects of nicotine or vehicle on spontaneous activity in the female rats are shown in figure
2. In the HA rats, statistically significant effects on activity were found for treatment
(F1,14=5.10, p < 0.05), test sessions (F2,28=20.29, p < 0.01), and for the interaction between
treatment and test sessions (F2,28=36.20, p < 0.01). Subsequent Newman-Keuls analyses
revealed that nicotine significantly decreased activity after the first administration, and after 7
days of nicotine treatment, spontaneous activity increased to levels that were not significantly
different from vehicle-treated rats. After 14 days of nicotine administration, spontaneous
activity was significantly increased compared to vehicle control rats (figure 2, top panel).

In the LA rats, statistically significant effects on activity were also found for treatment
(F1,14=17.85, p < 0.01), test sessions (F2,28=29.53, p < 0.01), and for the interaction between
treatment and test sessions (F2,28=60.28, p < 0.01). Newman-Keuls analyses revealed that
nicotine significantly reduced activity after the first administration, but significantly increased
activity after 7 and 14 days administration compared to saline controls (figure 2, bottom panel).

For test day three, a two-factor ANOVA was conducted to compare activity in nicotine- and
vehicle-treated rats in both the HA and LA groups. There were no statistically significant
differences between the HA and LA activity groups, nor was there a significant interaction
between activity group and treatment condition. However, nicotine was found to significantly
increase activity (F1,28=65.92, p < 0.01), which is consistent with the effects of nicotine
observed within both the HA and LA groups after 14 days of nicotine administration.

4. Discussion
This is the first investigation comparing the chronic effects of nicotine on spontaneous activity
in LEW rats, a strain that is thought to be more sensitive to the effects of nicotine than SD and
F-344 rats (Horan et al., 1997; Suzuki et al., 1999; Philibin et al., 2005). In the present study,
repeated administration of nicotine (0.4 mg/kg) initially suppressed spontaneous activity by
nicotine on the first day of treatment and then enhanced activity after the first and second weeks
of nicotine treatment. This sensitization effect occurred in rats identified prior to drug
administration as low activity (LA) and high activity (HA) rats.

The LEW rats responded to nicotine differently than SD rats did in previous studies conducted
in this laboratory using virtually identical designs (Rosecrans, 1995; Pehrson et al., 2008). A
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preliminary study found that the LEW rat exhibited symptoms of neurotoxicity, including
seizures, following 0.8 mg/kg of nicotine, and therefore, 0.4 mg/kg of nicotine was used in the
present study instead of the 0.8 mg/kg dose used in the SD studies. A single nicotine injection
did not affect activity in the LA male SD rats, whereas, similar to the HA LEW rats tested in
the present study, it suppressed locomotor activity in the HA male SD rats. After one week of
nicotine administration, nicotine increased locomotor activity in LA male SD rats, while
locomotor activity remained suppressed in HA male SD rats. However, after two weeks of
nicotine administration, both LA and HA male SD rats exhibited greater levels of locomotor
activity compared to vehicle-treated rats (Rosecrans, 1995; Pehrson et al., 2008). The same
experimental design used in the male SD rats was also used in female SD rats, with different
results. Female SD control rats (i.e., vehicle-treated rats) exhibited significantly greater activity
levels, often three-fold higher, at baseline and throughout the study, compared to male SD
control rats. In the female SD rats, a single nicotine injection suppressed activity in both LA
and HA groups, whereas no consistent differences in activity level were observed between
nicotine- and vehicle-treated rats after one and two weeks of treatment (Rosecrans, 1995;
Pehrson et al., 2008). Thus, the effects of repeated nicotine administration in male and female
SD rats are quite different from the effects of repeated nicotine administration in male and
female LEW rats. In the present study, both male and female LEW rats exhibited a reduction
in locomotor activity upon the first injection of nicotine and an increase in locomotor activity
after 1 and 2 weeks of nicotine treatment.

Increases in response to nicotine after repeated administration may be a consequence of
upregulation of nAChRs (Marks et al., 1983; Marks et al., 1985; Wonnacott, 1990; Mochizuki
et al., 1998; Zhang et al., 2000). nAChRs have been found to rapidly desensitize when bound
by an agonist in vitro (Bertrand et al., 1990; Marks et al., 1994; Corringer et al., 2000) and can
remain desensitized after prolonged repeated exposure to nicotine (Ogden and Colquhoun,
1985; Bertrand et al., 1990). Tolerance to acute administration of nicotine is observed for
several hours (James et al., 1994; Rosecrans et al., 1995). The repeated administration of
nicotine results in up-regulation of nAChRs in vivo in animals (Marks et al., 1983; Marks et
al., 1985; Wonnacott, 1990; Mochizuki et al., 1998; Zhang et al., 2000, Vann et al., 2006) and
man (Benwell et al., 1988; Breese et al., 1997) and has been shown to produce behavioral
sensitization to nicotine in rats (Clarke and Kumar, 1983; Clarke et al., 1988; Rosecrans,
1995; Miller et al., 2001). Repeated administration of nicotine, would therefore, be expected
to have compensatory effects on receptor availability through up-regulation, due to the repeated
and prolonged deactivation of these receptors.

Behavioral sensitization to nicotine after chronic nicotine administration (Clarke and Kumar,
1983; Clarke et al., 1988; Rosecrans, 1995; Miller et al., 2001) as well as acute behavioral
tolerance to nicotine, when nicotine is administered while nAChRs are in a desensitized state
(James et al., 1994; Rosecrans et al., 1995; Zhang et al., 2000; Robinson et al., 2006; Prus et
al. 2007), are well-established effects. Based on spontaneous activity data from male SD rats
(described above), Rosecrans and others hypothesized that the relatively slower onset of
behavioral sensitization to nicotine in the HA rats is due to less desensitization of nAChRs
than occurs in the LA rats. This initial hypothesis led to the present study in the LEW rat, a
strain of rat found to be more sensitive to nicotine in many behavioral models, and may
therefore exhibit longer periods of receptor desensitization compared to the SD and F-344 rats.
In all of the LEW rats, regardless of sex or baseline level of activity, behavioral sensitization
to repeated nicotine exposure was observed.

Although the effects that nicotine has on spontaneous activity are presumed to be mediated by
nAChRs, it should be noted that repeated administration of nicotine also produces an
accumulation of the active nicotine metabolite nornicotine in the brain (Papke et al., 2007).
Although nornicotine metabolite levels after acute nicotine administration have not been found
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to be sufficient to alter neurotransmission, nornicotine concentrations after repeated nicotine
administration have been found to reach levels that are known to elicit DA release in the
striatum and nucleus accumbens (Dwoskin et al., 1993; Green et al., 2001). Nornicotine, like
nicotine, has been shown to inhibit locomotor activity after a single dose, but has been shown
to increase activity in rats chronically treated with nicotine (Stolerman and Jarvis, 1995).
Furthermore, nornicotine produces nicotine-like discriminative stimulus effects in rats
(Rosecrans and Meltzer, 1981; Goldberg et al., 1989; Bardo et al., 1997; Desai et al., 1999;
Desai et al., 2003). Thus, nornicotine may contribute to the actions of nicotine, and there may
be individual and strain differences in the production of this metabolite. The differential
metabolism of nicotine between strains and species is an area that needs further investigation.

The present study was conducted in order to assess the behavioral characteristics of nicotine
after acute and repeated nicotine in the LEW rat, a strain of rat thought to have a greater
sensitivity to nicotine, compared to other strains of rats. Although the sex and baseline level
of physiological arousal was found to be important for the development of nicotine sensitization
in SD rats (Rosecrans, 1995; Pehrson et al. 2008), LEW rats were found to exhibit behavioral
sensitization to nicotine regardless of sex or baseline physiological arousal, suggesting that
genetic differences between these two strains were the most important determinants of
differences in behavioral sensitization to nicotine. Further elucidating the behavioral effects
of nicotine sensitization and investigating the neurobiological mechanisms mediating this
sensitization in LEW and other strains of rats may contribute greatly to our understanding of
individual susceptibility to nicotine dependence.
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Figure 1.
Locomotor activity per 20 min test session during two weeks of nicotine (0.4 mg/kg twice
daily, sc; filled symbols) or vehicle (saline, open symbols) administration in male LEW rats.
Rats were further divided into high activity (HA) and low activity (LA) groups based upon
their baseline level of activity prior to drug or vehicle administration. Symbols represent mean
cumulative number of photobeam crosses (+/−SEM) for each test session for n=7–8 per group.
*P < 0.05 and ** P < 0.01 for comparisons between nicotine- and vehicle-treated groups at
each time point by Newman-Keuls test.

Prus et al. Page 10

Pharmacol Biochem Behav. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Locomotor activity during two weeks of nicotine or vehicle administration in female Lewis
rats. *P < 0.05 and ** P < 0.01 for comparisons between nicotine- and vehicle-treated groups
at each time point. See figure 1 for further details.
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