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ABSTRACT

Motivation: An important problem in systems biology is
reconstructing complete networks of interactions between biological
objects by extrapolating from a few known interactions as examples.
While there are many computational techniques proposed for this
network reconstruction task, their accuracy is consistently limited
by the small number of high-confidence examples, and the uneven
distribution of these examples across the potential interaction
space, with some objects having many known interactions and
others few.
Results: To address this issue, we propose two computational
methods based on the concept of training set expansion. They work
particularly effectively in conjunction with kernel approaches, which
are a popular class of approaches for fusing together many disparate
types of features. Both our methods are based on semi-supervised
learning and involve augmenting the limited number of gold-standard
training instances with carefully chosen and highly confident auxiliary
examples. The first method, prediction propagation, propagates
highly confident predictions of one local model to another as the
auxiliary examples, thus learning from information-rich regions of
the training network to help predict the information-poor regions.
The second method, kernel initialization, takes the most similar and
most dissimilar objects of each object in a global kernel as the
auxiliary examples. Using several sets of experimentally verified
protein–protein interactions from yeast, we show that training set
expansion gives a measurable performance gain over a number of
representative, state-of-the-art network reconstruction methods, and
it can correctly identify some interactions that are ranked low by other
methods due to the lack of training examples of the involved proteins.
Contact: mark.gerstein@yale.edu
Availability: The datasets and additional materials can be found at
http://networks.gersteinlab.org/tse.

1 INTRODUCTION
Many types of biological data are naturally represented as networks,
in which a node corresponds to a biological object and an edge
corresponds to an interaction between two objects. For example,
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in protein interaction networks, a node is a protein and an edge
connects two proteins that physically interact. In gene regulatory
networks, a node denotes a gene and its corresponding protein(s),
and an edge connects a regulator protein to a gene it regulates. In
genetic networks, a node is a gene and an edge connects two genes
that have genetic interactions, such as synthetic lethality.

These networks provide important information for understanding
the underlying biological processes, since they offer a global
view of the relationships between biological objects. In recent
years, high-throughput experiments have enabled large-scale
reconstruction of the networks. However, as these data are usually
incomplete and noisy, they can only be used as a first approximation
of the complete networks. For example, a recent study reports
that the false positive and negative rates of yeast two-hybrid
protein–protein interaction data could be as high as 25–45%
and 75–90%, respectively (Huang et al., 2007), and a recently
published dataset combining multiple large-scale yeast two-hybrid
screens is estimated to cover only 20% of the yeast binary
interactome (Yu et al., 2008). As another example, as of July 2008,
the synthetic lethal interactions in the BioGRID database (Stark
et al., 2006) (version 2.0.42) only involve 2505 yeast genes, while
there are about 5000 non-essential genes in yeast (Giaever et al.,
2002).Alarge part of the genetic network is likely not yet discovered.

To complement the experimental data, computational methods
have been developed to assist the reconstruction of the networks.
These methods learn from some example interactions, and predict
the missing ones based on the learned models.

This problem is known as supervised network inference (Vert and
Yamanishi, 2005). The input to the problem is a graph G= (V ,E,Ē),
where V is a set of nodes each representing a biological object (e.g.
a protein), and E,Ē ⊂V ×V are sets of known edges and non-edges,
respectively, corresponding to object pairs that are known to interact
and not interact, respectively. All the remaining pairs are not known
to interact or not (Fig. 1a). A model is to be learned from the data,
so that when given any object pair (vi,vj) as input, it will output a
prediction y∈[0,1] where a larger value means a higher chance of
interaction between the objects.

The models are learned according to some data features that
describe the objects. For example, in predicting protein–protein
interaction networks, functional genomic data are commonly used.
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In order to learn models that can make accurate predictions, it is
usually required to integrate heterogeneous types of data as they
contain different kinds of information. Since the data are in different
formats (e.g. numeric values for gene expression, strings for protein
sequences), integrating them is non-trivial. A natural choice for this
complex data integration task is kernel methods (Schölkopf et al.,
2004), which unify the data representation as special matrices called
kernels and facilitate easy integration of these kernels into a final
kernel K through various means (Lanckriet et al., 2004) (Fig. 1b).
As long as K is positive semi-definite, K(vi,vj) represents the inner
product of objects vi and vj in a certain embedded space (Mercer,
1909), which can be interpreted as the similarity between the objects.
Kernel methods then learn the models from the training examples
and the inner products (Aizerman et al., 1964). Since network
reconstruction involves many kinds of data, in this article we will
focus on kernel methods for learning.

The supervised network inference problem differs from most
other machine learning settings in that instead of making a prediction
for each input object (such as a protein), the learning algorithm
makes a prediction for each pair of objects, namely how likely
these objects interact in the biological network. Since there is a
quadratic number of object pairs, the computational cost could
be very high. For instance, while learning a model for around
6000 genes of yeast is not a difficult task for contemporary
computing machines, the corresponding task for around 18 million
gene pairs remains challenging even for high-end computers.
Specialized kernel methods have thus been developed for this
learning problem.

For networks with noisy high-throughput data, reliable ‘gold-
standard’ training sets are to be obtained from data verified by
small-scale experiments or evidenced by multiple methods. As the
number of such interactions is small, there is a scarcity of training
data. In addition, the training data from small-scale experiments
are usually biased towards some well-studied proteins, creating an
uneven distribution of training examples across proteins.

In the next section, we review some existing computational
approaches to reconstructing biological networks. One recent
proposal is local modeling (Bleakley et al., 2007), which allows
for the construction of very flexible models by letting each object
construct a different local model, and has been shown promising
in some network reconstruction tasks. However, when there is
a scarcity of training data, the high flexibility could turn out to
be a disadvantage, as there is a high risk of overfitting, i.e. the

(a) (b) (c)

Fig. 1. The supervised network inference problem. (a) Adjacency matrix
of known interactions (black boxes), known non-interactions (white boxes)
and node pairs with an unknown interaction status (gray boxes with question
marks). (b) Kernel matrix, with a darker color representing a larger inner
product. (c) Partially complete adjacency matrix required by the supervised
direct approach methods, with complete knowledge of a submatrix. In the
basic local modeling approach, the dark gray portion cannot be predicted.

construction of overly complex models that fit the training data well
but do not represent the general trend of the whole network. As a
result, the prediction accuracy of the models could be affected.

In this article, we propose methods called training set expansion
that alleviate the problem of local modeling, while preserving
its modeling flexibility. They also handle the issue of uneven
training examples by propagating knowledge from information-rich
regions to information-poor regions. We will show that the resulting
algorithms are highly competitive with the existing approaches in
terms of prediction accuracy. We will also present some interesting
findings based on the prediction results.

2 RELATED WORK: EXISTING APPROACHES
FOR NETWORK RECONSTRUCTION

2.1 The pairwise kernel approach
In the pairwise kernel (Pkernel) approach (Ben-Hur and Noble,
2005), the goal is to use a standard kernel method (such as SVM) to
make the predictions by treating each object pair as a data instance
(Fig. 2a, b). This requires the definition of an embedded space for
object pairs. In other words, a kernel is to be defined, which takes
two pairs of objects and returns their inner product. With n objects,
the kernel matrix contains O(n4) entries in total.

One systematic approach to constructing such Pkernel is to build
them on top of an existing kernel for individual objects, in which
each entry corresponds to the inner product of two objects. For
example, suppose a kernel K for individual objects is given, and
v1, v2, v3, v4 are four objects, the following function can be used to
build the Pkernel (Ben-Hur and Noble, 2005):

K ′((v1,v2),(v3,v4))=K(v1,v3)K(v2,v4)+K(v1,v4)K(v2,v3) (1)

(a)

(b) (c)

Fig. 2. Global and local modeling. (a) An interaction network with each
green solid edge representing a known interaction, each red dotted edge
representing a known non-interaction and the dashed edge representing a
pair of objects with an unknown interaction status. (b) A global model based
on a Pkernel. (c) A local model for object v3.
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Loosely speaking, two object pairs are similar if the two objects
in the first pair are, respectively, similar to different objects in the
second pair.

2.2 The direct approach
The direct approach (Yamanishi et al., 2004) avoids working in
the embedded space of object pairs. Instead, only a kernel for
individual objects is needed. Given such an input kernel K and a
cutoff threshold t, the direct approach simply predicts each pair of
objects (vi,vj) with K(vi,vj)≥ t to interact, and each other pair to
not interact. Since the example interactions and non-interactions are
not used in making the predictions, this method is unsupervised.

The direct approach is related to the Pkernel approach through a
simple Pkernel:

K ′((v1,v2),(v3,v4))=K(v1,v2)K(v3,v4) (2)

With this kernel, each object pair (vi,vj) is mapped to the point
K(vi,vj) on the real line in the embedded space of object pairs.
Thresholding the object pairs at a value t is equivalent to placing
a hyperplane in the embedded space with all pairs (vi,vj) having
K(vi,vj)≥ t on one side and all other pairs on the other side.
Therefore, if this Pkernel is used, then learning a linear classifier
in the embedded space is equivalent to learning the best value for
threshold t.

To make use of the training examples, two supervised versions
of the direct approach have been proposed. They assume that the
sub-network of a subset of objects is completely known, so that a
submatrix of the adjacency matrix is totally filled (Fig. 1c). The goal
is to modify the similarity values of the objects defined by the kernel
to values that are more consistent with the partial adjacency matrix.
Thresholding is then performed on the resulting set of similarity
values.

The two versions differ in the definition of consistency between
the similarity values and the adjacency matrix. In the kernel
canonical correlation analysis (kCCA) approach (Yamanishi et al.,
2004), the goal is to identify feature f1 from the input kernel
and feature f2 from the diffusion kernel derived from the partial
adjacency matrix so that the two features have the highest correlation
under some smoothness requirements. Additional feature pairs
orthogonal to the previous ones are identified in similar ways,
and the first l pairs are used to redefine the similarity between
objects.

In the kernel metric learning (kML) approach (Vert and
Yamanishi, 2005), a feature f1 is identified by optimizing a function
that involves the distance between known interacting objects. Again,
additional orthogonal features are identified, and the similarity
between objects is redefined by these features.

2.3 The matrix completion approach
The em approach (Tsuda et al., 2003) also assumes a partially
complete adjacency matrix. The goal is to complete it by filling
in the missing entries, so that the resulting matrix is closest to
a spectral variant of the kernel matrix as measured by Kullback–
Leibler (KL)-divergence. The algorithm iteratively searches for the
filled adjacency matrix that is closest to the current spectral variant
of the kernel matrix, and the spectral variant of the kernel matrix that
is closest to the current filled adjacency matrix. When convergence is

reached, the predictions are read from the final completed adjacency
matrix.

2.4 The local modeling approach
A potential problem of the previous approaches is that one single
model is built for all object pairs. If there are different subgroups
of interactions, a single model may not be able to separate all
interacting pairs from non-interacting ones. For example, protein
pairs involved in transient interactions may use a very different
mechanism than those involved in permanent complexes. These two
types of interactions may form two separate subgroups that cannot
be fitted by one single model.

A similar problem has been discussed in Myers and Troyanskaya
(2007). In this work, the biological context of each gene is taken
into account by conditioning the probability terms of a Bayesian
model by the biological context. The additional modeling power of
having multiple context-dependent sub-models was demonstrated
by improved accuracy in network prediction.

Another way to allow for a more flexible modeling of the
subgroups is local modeling (Bleakley et al., 2007). Instead of
building a single global model for the whole network, one local
model is built for each object, using the known interactions and
non-interactions of it as the positive and negative examples. Each
pair of objects thus receives two predictions, one from the local
model of each object. In our implementation, the final prediction is
a weighted sum of the two according to the training accuracy of the
two local models.

Figure 2 illustrates the concept of local modeling. Figure 2a shows
an interaction network, with solid green lines representing known
interactions, dotted red lines representing known non-interactions,
and the dashed black line representing an object pair of which the
interaction status is unknown. Figure 2b shows a global model with
the locations of the object pairs determined by a Pkernel. The object
pair (v3,v4) is on the side with many positive examples, and is
predicted to interact. Figure 2c shows a local model for object v3.
Object v4 is on the side with a negative example, and the pair (v3,v4)
is predicted to not interact.

Since each object has its own local model, subgroup structures
can be readily handled by having different kinds of local models for
objects in different subgroups.

3 OUR PROPOSAL: THE TRAINING SET
EXPANSION APPROACH

Local modeling has been shown to be very competitive in terms of
prediction accuracy (Bleakley et al., 2007). However, local models
can only be learned for objects with a sufficiently large amount
of known interactions and non-interactions. When the training sets
are small, many objects would not have enough data for training
their local models. Overfitting may occur, and in the extreme case
where an object has no positive or negative examples, its local
model simply cannot be learned. As to be shown in our empirical
study presented below, this problem is especially serious when the
embedded space is of very high dimension, since very complex
models that overfit the data could be formed.

In the following, we propose ways to tackle this data scarcity
issue, while maintaining the flexibility of local modeling. Our idea is
to expand the training sets by generating auxiliary training examples.
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We call it the training set expansion approach. Obviously these
auxiliary training examples need to be good estimates of the actual
interaction status of the corresponding object pairs, for expanding
the training sets by wrong examples could further worsen the learned
models. We propose two methods for generating reliable examples:
prediction propagation (PP) and kernel initialization (KI).

3.1 Prediction propagation
Suppose v1 and v2 are two objects, where v1 has sufficient training
examples while v2 does not have. We first train the local model
for v1. If the model predicts with high confidence that v1 interacts
with v2, then v1 can later be used as a positive example for training
the local model of v2. Alternatively, if the model predicts with high
confidence that v1 does not interact with v2, v1 can be used as a
negative example for training the local model of v2.

This idea is based on the observation that high confidence
predictions are more likely correct. For example, if the local models
are support vector machines, the predictions for objects far away
from the separating hyperplane are more likely correct than those for
objects falling in the margin. Therefore, to implement the idea, each
prediction should be associated with a confidence value obtained
from the local model. When expanding the training sets of other
objects, only the most confident predictions should be involved.

We use support vector regression (SVR) (Smola and Schölkopf,
2004) to produce the confidence values. When training the local
model of an object vi, the original positive and negative examples
of it are given labels of 1 and −1, respectively. Then a regression
model is constructed to find the best fit. Objects close to the
positive examples will receive a regressed value close to 1, and they
correspond to objects that are likely to interact with vi. Similarly,
objects close to the negative examples will receive a regressed value
close to −1, and they correspond to objects that are likely to not
interact with vi. For other objects, the model is less confident in
telling whether they interact with vi. Therefore, the predictions with
large positive regressed values can be used as positive examples for
training other local models, and those with large negative regressed
values can be used as negative examples, where the absolute
regressed values represent the confidence.

Each time we use p% of the most confident predictions to expand
the training sets of other objects, where the numbers of new positive
and negative examples are in proportion to the ratio of positive and
negative examples in the original training sets. The parameter p is
called the training set expansion rate.

To further improve the approach, we order the training of local
models so that objects with more (original and augmented training
examples) are trained first, as the models learned from more training
examples are generally more reliable. Essentially, this is handling the
uneven distribution of training examples by propagating knowledge
from the information-rich regions (objects with many training
examples) to the information-poor regions (objects with no or few
training examples).

Theoretically PP is related to co-training (Blum and Mitchell,
1998), which uses the most confident predictions of a classifier
as additional training examples of other classifiers. The major
differences are that in co-training, the classifiers are to make
predictions for the same set of data instances, and the classifiers
are complementary to each other due to the use of different data
features. In contrast, in PP, each model is trained for a different

object, and the models are complementary to each other due to the
use of different training examples.

Instead of regression, one can also use support vector classifier
(SVC) to determine the confidence values, by measuring the distance
of each object from the separating hyperplane. Since we only use
the ranks of the confidence values to deduce the auxiliary examples
but not their absolute magnitudes, we would expect the results to
be similar. We implemented both versions and tested them in our
experiments. The two sets of results are indeed comparable, with
SVR having slightly higher accuracy on average. In the experiment
section, we report the results for SVR, and the results for SVC can
be found at the Supplementary web site.

3.2 Kernel initialization
The PP method is effective when some objects have sufficient input
training examples at the beginning to start the generation of auxiliary
examples. Yet if all objects have very few input training examples,
even the object with the largest training sets may not be able to form
a local model that can generate accurate auxiliary examples.

An alternative way to generate auxiliary training examples is to
estimate the interaction status of each pair of objects by its similarity
value given by the input kernel. This is in line with the idea of
the direct approach, that object pairs with a larger similarity value
are more likely to interact. However, instead of thresholding the
similarity values to directly give the predictions, they are used only
to initialize the training sets for learning the local models. Also, to
avoid generating wrong examples, only the ones with the largest and
smallest similarity values are used, which correspond to the most
confident predictions of the unsupervised direct method.

For each object, p% of the objects with the largest/smallest
similarity values given by the kernel are treated as positive/negative
training examples in proportion to the positive and negative
examples in the original training sets. These auxiliary examples are
then combined with the original input examples to train the local
models.

The KI method can be seen as adding a special prior to the object
pairs, which assigns a probability of 1 to the most similar pairs of
each object and 0 to the most dissimilar pairs. We have also tried
normalizing the inner products to the [0,1] range and using them
directly as the initial estimate of the confidence of interaction. Yet
the performance was not as good as the current method, which could
be due to the large variance of confidence values of the object pairs
with moderate similarity.

The two training set expansion methods fall within the class of
semi-supervised learning methods (Chapelle et al., 2006), which
make use of both the training examples and some information about
all data instances to learn the model. PP exploits the information
about each object pair produced by other local models to help
train the current local model. KI utilizes the similarity between
objects in the feature space to place soft constraints on the local
models, that the objects most similar to the current object should
be put in the positive class and those most dissimilar to the current
object should be put in the negative class.

3.3 Combining the two methods (PP+KI)
Since KI is applied before learning while PP is applied during
learning, the two can be used in combination. In some cases it leads
to additional performance gain in our experiments.
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Table 1. List of datasets used in the comparison study

Code Data type Source Kernel

phy Phylogenetic profiles COG v7 (Tatusov et al., 1997) RBF (σ = 3,8)

loc Sub-cellular localization (Huh et al., 2003) Linear

exp-gasch Gene expression (Gasch et al., 2000) RBF (σ = 3,8)

(environmental response)

exp-spellman Gene expression (Spellman et al., 1998) RBF (σ = 3,8)

(cell-cycle)

y2h-ito Yeast two-hybrid (Ito et al., 2000) Diffusion (β = 0.01)

y2h-uetz Yeast two-hybrid (Uetz et al., 2000) Diffusion (β = 0.01)

tap-gavin Tandem affinity purification (Gavin et al., 2006) Diffusion (β = 0.01)

tap-krogan Tandem affinity purification (Krogan et al., 2006) Diffusion (β = 0.01)

int Integration Summation

Each row corresponds to a dataset from a publication in the Source column, and is turned
into a kernel using the function in the Kernel column, as in previous studies (Bleakley
et al., 2007; Yamanishi et al., 2004).

4 PREDICTION ACCURACY

4.1 Data and setup
To test the effectiveness of the training set expansion approach,
we compared its prediction accuracy with the other approaches
on several protein–protein interaction networks of the yeast
Saccharomyces cerevisiae from BioGRID, DIP, MIPS and iPfam.
We report below in detail the results on the BioGRID-10 dataset,
which includes all yeast physical interactions in BioGRID from
small-scale studies that report not more than 10 interactions. The
cutoff was chosen so that the network is large enough to have
relatively few missing interactions, while small enough to run the
different algorithms in reasonable time. We have also tested the
methods on a high quality but smaller dataset (DIP_MIPS_iPfam),
and a larger dataset (BioGRID-100) that is believed to contain few
missing interactions, but is too large that the Pkernel method could
not be tested as it caused our machine to run out of memory. The
details of the datasets and the complete sets of results can be found
at the Supplementary web site.

We tested the performance of the different approaches on various
kinds of genomic data features, including phylogenetic profiles,
sub-cellular localization and gene expression datasets using the
same kernels and parameters as in previous studies (Bleakley
et al., 2007; Yamanishi et al., 2005). We also added in datasets
from tandem affinity purification with mass spectrometry using the
diffusion kernel, and the integration of all kernels by summing them
after normalization, as in previous studies (Bleakley et al., 2007;
Yamanishi et al., 2005). The list of datasets used is shown in Table 1.

We performed 10-fold cross-validations and used the area under
the receiver operator characteristic curve (AUC) as the performance
metric. The cross-validations were done in two different modes.
In the first mode, as in previous studies (Bleakley et al., 2007;
Yamanishi et al., 2004), the proteins were divided into 10 sets. Each
time one set was left out for testing, and the other nine were used for
training. All known interactions with both proteins in the training
set were used as positive training examples. As required by some of
the previous approaches, the sub-network involving the proteins in
the training set was assumed completely known (Fig. 1c). As such,
all pairs of proteins in the training set not known to interact were

regarded as negative examples. All pairs of proteins with exactly one
of the two proteins in the training set were used as testing examples
(light gray entries in Fig. 1c). Pairs with both proteins not in the
training set were not included in the testing sets (dark gray entries
in Fig. 1c), as the original local modeling method cannot make such
predictions.

Since all protein pairs in the submatrix are either positive or
negative training examples, there are O(n2) training examples in
each fold. In the Pkernel approach, this translates to a kernel matrix
with O(n4) elements. It is in the order of 1012 for 1000 proteins,
which is too large to compute and to learn the SVC and SVR models.
We, therefore, did not include the Pkernel method in the experiments
that used the first mode of cross-validation.

Since some protein pairs treated as negative examples may
actually interact, the reported accuracies may not completely reflect
the absolute performance of the methods. However, as the tested
methods were subject to the same setting, the results are still good
indicators of the relative performance of the approaches.

In the second mode of cross-validation, we randomly sampled
protein pairs not known to interact to form a negative training set
with the same size as the positive set, as in previous studies (Ben-
Hur and Noble, 2005; Qiu and Noble, 2008). Each of the two sets
was divided into 10 subsets, which were used for left-out testing in
turn. The main difference between the two modes of cross-validation
is that the train-test split is based on proteins in the first mode and
protein pairs in the second mode. Since the training examples do not
constitute a complete submatrix, the kCCA, kML and em methods
cannot be tested in the second mode. The second mode represents
the more general case, where the positive and negative training
examples do not necessarily form a complete sub-network.

We used the Matlab code provided by Jean-Philippe Vert for the
unsupervised direct, kCCA, kML and em methods with the first
mode of cross-validation. We implemented the other methods with
both the first and second modes of cross-validation. We observed
almost identical accuracy values from the two implementations of
the direct approach in the first mode of cross-validation with the
negligible differences due only to random train-test splits, which
confirms that the reported values from the two sets of code can be
fairly compared. For the Pkernel approach, we used the kernel in
Equation (1).

We used the ε-SVR and C-SVC implementations of the Java
version of libsvm (Chang and Lin, 2008). In a preliminary study, we
observed that the prediction accuracy of SVR is not much affected
by the value of the termination threshold ε, while for both SVR
and SVC the performance is quite stable as long as the value of
the regularization parameter C is not too small. We thus fixed both
parameters to 0.5. For PP and KI , we used a grid search to determine
the value of the training set expansion rate p.

4.2 Results
Since we use datasets different from the ones used in previous
studies, the prediction results are expected to be different. To make
sure that our implementations are correct and the testing procedure
is valid, we compared our results on the DIP_MIPS_iPfam dataset
with those reported in Bleakley et al. (2007) as the size of this
dataset is most similar to the one used by them. Our results (available
at the Supplementary web site) display a lot of similarities with
those in Bleakley et al. (2007). For example, in the first mode of
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Table 2. Prediction accuracy (percentage of AUC) of the different approaches on the BioGRID-10 dataset

phy loc exp-gasch exp-spellman y2h-ito y2h-uetz tap-gavin tap-krogan int

Mode 1
Direct 58.04 66.55 64.61 57.41 51.52 52.13 59.37 61.62 70.91
kCCA 65.80 63.86 68.98 65.10 50.89 50.48 57.56 51.85 80.98
kML 63.87 68.10 69.67 68.99 52.76 53.85 60.86 57.69 73.47
em 71.22 75.14 67.53 64.96 55.90 53.13 63.74 68.20 81.65
Local 71.67 71.41 72.66 70.63 67.27 67.27 64.60 67.48 75.65
Local+PP 73.89 75.25 77.43 75.35 71.60 71.51 74.62 71.39 83.63
Local+KI 71.68 71.42 75.89 70.96 69.40 69.05 70.53 72.03 81.74
Local+PP+KI 72.40 75.19 77.41 73.81 70.44 70.57 73.59 72.64 83.59

Mode 2
Direct 59.99 67.81 66.18 59.22 54.02 54.64 62.28 63.69 72.34
Pkernel 72.98 69.84 78.61 77.30 57.01 54.65 71.16 70.36 87.34
Local 76.89 78.73 79.72 77.32 72.93 72.89 68.81 73.15 82.82
Local+PP 77.71 80.71 82.56 80.62 74.74 74.41 76.36 75.12 88.78
Local+KI 76.76 78.73 80.62 76.44 73.39 72.76 72.42 76.22 86.12
Local+PP+KI 77.45 80.57 81.93 78.92 74.14 74.01 75.59 76.59 88.56

The best approach for each kernel and each mode of cross-validation is in bold face.

cross-validation, local modeling outperformed the other previous
approaches when object similarity was defined by phylogenetic
profiles and yeast two-hybrid data. Also, the em method had the
best performance among all previous approaches with the integrated
kernel in both studies. We are thus confident that our results represent
a reliable comparison between the methods.

The comparison results for our main dataset, BioGRID-10, are
shown in Table 2. In the table PP, KI and PP+KI are written as
local+PP, local+KI and local+PP+KI, respectively, to emphasize that
the two training set expansion methods are used on top of basic
local modeling. Notice that the accuracies in the second mode of
cross-validation are in general higher. We examined whether this
is due to the presence of self-interactions in the gold-standard set
of the second mode of cross-validation but not in the first mode,
by removing the self-interactions and re-running the experiments.
The results (available at the Supplementary web site) suggest that
the performance gain due to the removal of self-interactions is
too small to explain the performance difference between the two
modes of cross-validation. The setting in the second mode may thus
correspond to an easier problem. The reported accuracies of the two
modes should therefore not to be compared directly.

From the table, the advantages of the training set expansion
methods over basic local modeling are clearly seen. In all cases,
the accuracy of local modeling was improved by at least one of the
expansion methods, and in many cases all three combinations (PP,
KI and PP+KI) performed better than basic local modeling. With
training set expansion, local modeling outperformed all the other
approaches in all nine datasets.

Inspecting the performance of local modeling without training
set expansion, it is observed that although local modeling usually
outperformed the other previous methods, its performance with
the integration kernel was unsatisfactory. This is probably due to
overfitting. When kernels are summed, the resulting embedded space
is the direct product of the ones defined by the kernels (Schölkopf
et al., 2004). Since the final kernel used for the integrated dataset
is a summation of eight kernels, the corresponding embedded space

is of very high dimension. With the high flexibility and the lack
of training data, the models produced by basic local modeling were
probably overfitted. In contrast, with the auxiliary training examples,
the training set expansion methods appear to have largely overcome
the problem.

Comparing the two training set expansion methods, in most cases
PP resulted in a larger performance gain. This is reasonable since
the input training examples were used in this method, but not in KI.

To better understand how the two training set expansion methods
improve the predictions, we sub-sampled the gold-standard network
at different sizes, and compared the performance of local modeling
with and without training set expansion using the second mode
of cross-validation. The results for two of the kernels are shown
in Figure 3, while the whole set of results can be found at the
Supplementary web site.

In general training set expansion improved the accuracy the most
with moderate gold-standard set sizes, at around 3000 interactions.
For PP, this is expected since when the training set was too
small, the local models were too inaccurate that even the most
confident predictions could still be wrong, which made propagation
undesirable. On the other hand, when there were many training
examples, there were few missing interactions, so that the augmented
training examples became relatively less important. The latter
argument also applies to KI, that it resulted in larger performance
gain when the gold-standard set was not too large. However, it is
surprising to see that using the integrated kernel (Fig. 3a), KI resulted
in a drop in accuracy when there were only 500 interactions. Since
the kernel remained the same at different gold-standard set sizes,
one would expect to see a stable performance gain for KI regardless
of the size of the gold-standard set. This stable performance gain
is indeed observed when the Gasch or phylogenetic profile kernel
was used (Fig. 3b and Fig. S1). In contrast, PP, being dependent on
the raw accuracy of local modeling, performed poorly when there
were only 500 interactions for all nine datasets. This suggests that
when the dataset is expected to contain a lot of missing interactions,
KI is potentially more useful, but it also depends on the feature
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Fig. 3. Prediction accuracy at different gold-standard set sizes. (a) Using int
kernel. (b) Using exp-gasch kernel.

used in learning. On the other hand, PP is more useful when the
dataset contains enough interactions for local modeling to achieve
a reasonable accuracy.

5 ANALYSIS
With the observed performance gain of training set expansion, we
would like to know what kind of correct predictions could it make
that were ranked low by other methods. To answer the question,
for each known interaction in the gold-standard positive set of
BioGRID-10, we computed the rank of it in the predictions made
by local+PP and local+KI using the integrated kernel in the first
mode of cross-validation. Then we computed the highest rank of
the interaction given by kCCA, kML, em and Local, and calculated
the difference between the two. If the former is much higher than the
latter (i.e. there is a large rank difference), then the interaction is
uniquely identified by training set expansion but not by any of the
four other methods.

Among the 2880 interactions in the gold-standard set that were
tested by both local+PP and the four comparing methods, the
ranks of 2121 of them are higher in the predictions made by
local+PP than in any of the four methods. For each of them, we
computed the minimum degree (number of known interactions in
the gold-standard set) of the two interacting proteins as an indicator
of the number of available training examples for the pair. Then
we correlated the minimum degree with the rank difference. The
resulting graph (Fig. 4) shows a significant negative correlation
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Fig. 4. Correlating the number of gold-standard examples and the rank
difference between local+PP and the four methods.

(Spearman correlation =−0.38,P<10−16), which confirms that
the correct predictions made by local+PP that were missed by
the other four methods correspond to the protein pairs with few
known examples. We have also tested the average degree instead
of the minimum, and the Pearson correlation instead of Spearman
correlation. The results all lead to the same conclusion (Fig. S2).

A concrete example of a gold-standard interaction predicted by
local+PP, but ranked low by the four methods is the one between
SEC11 and SPC1. They are both subunits of the signal peptidase
complex (SPC), and are reported to interact in BioGRID according
to multiple sources. In the BioGRID-10 dataset, SPC1 is the
only known interaction partner of SEC11, while SPC1 only has one
other known interaction (with SBH2). The extremely small numbers
of known examples make it difficult to identify this interaction.
Indeed, the best of the four previous methods could only give it
a rank at the 74th percentile, indicating that they were all unable to
identify this interaction. In contrast, local+PP was able to rank it at
the top 7th percentile, i.e. with a rank difference of 67% (Fig. 4). This
example illustrates that interactions with very few known examples,
while easily missed by the previous methods, could be identified by
using PP.

For local+KI, among the 2880 commonly tested gold-standard
interactions, 2025 received a higher rank from it than from any of
the four comparing methods. Again, there is a negative correlation
between the rank difference and the minimum degree and average
degree (Fig. S2), which shows that KI is also able to predict
interactions for proteins with few training examples. In addition,
there is a positive correlation with moderate significance between the
rank difference and the similarity between the interacting proteins
according to the kernel (Fig. S2, Spearman correlation =0.04,P =
0.04), which is expected as the KI method uses protein pairs with
high similarity as auxiliary positive training examples. Interestingly,
for local+PP, a negative correlation is observed between the rank
difference and protein similarity (Figure S2), which suggests that
the PP method is able to identify non-trivial interactions, where the
two interacting proteins are not necessarily similar according to the
kernel.

6 DISCUSSION
Training set expansion is a general concept that can also be applied to
other problems and used with other learning methods. The learning
method is not required to make very accurate predictions for all
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object pairs, and the data features do not need to define an object
similarity that is very consistent with the interactions. As long as
the most confident predictions are likely correct, PP is useful, and
as long as the most similar objects are likely to interact and the
most dissimilar objects are unlikely to interact, KI is useful. In many
biological applications at least one of these requirements is satisfied.

7 CONCLUSION
In this article, we have described the semi-supervised training
set expansion methods prediction propagation (PP) and kernel
initialization (KI) that alleviate the overfitting problem of local
modeling while preserving its modeling flexibility. The PP method
learns from the information-rich regions, and uses the learned
knowledge to help the information-poor regions. It is conceptually
related to co-training. The KI method treats the most similar and
dissimilar object pairs as positive and negative training examples,
respectively. Prediction results on several high quality protein–
protein interaction networks from yeast show great improvements
over basic local modeling by these methods, and the resulting
algorithms outperformed all other methods using any of the nine
genomic features. We have also identified cases that clearly illustrate
the effectiveness of the training set expansion methods in helping the
construction of local models. The concept of training set expansion
can be applied to other problems with small or uneven training sets.
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