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ABSTRACT

Motivation: The elucidation of biological pathways enriched with
differentially expressed genes has become an integral part of the
analysis and interpretation of microarray data. Several statistical
methods are commonly used in this context, but the question of
the optimal approach has still not been resolved.
Results: We present a logistic regression-based method (LRpath)
for identifying predefined sets of biologically related genes enriched
with (or depleted of) differentially expressed transcripts in microarray
experiments. We functionally relate the odds of gene set membership
with the significance of differential expression, and calculate adjusted
P-values as a measure of statistical significance. The new approach
is compared with Fisher’s exact test and other relevant methods in a
simulation study and in the analysis of two breast cancer datasets.
Overall results were concordant between the simulation study and
the experimental data analysis, and provide useful information to
investigators seeking to choose the appropriate method. LRpath
displayed robust behavior and improved statistical power compared
with tested alternatives. It is applicable in experiments involving two
or more sample types, and accepts significance statistics of the
investigator’s choice as input.
Availability: An R function implementing LRpath can be downloaded
from http://eh3.uc.edu/lrpath.
Contact: mario.medvedovic@uc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online and at http://eh3.uc.edu/lrpath.

1 INTRODUCTION
The identification of predefined sets of biologically related genes
(gene sets) enriched with differentially expressed genes (DEGs)
(Tavazoie et al., 1999) has become a routine part of the analysis and
interpretation of microarray data (Curtis et al., 2005). Sets of genes
associated with the same Gene Ontology (GO) term (Ashburner
et al., 2000; Harris et al., 2004) or the same KEGG pathway
(Kanehisa et al., 2006) are two commonly used collections of such
predefined groups.

The most commonly used approach to identifying enriched sets
of genes is based on counting the number of genes in such a set that
are also differentially expressed. The statistical significance of such
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overlap is then established using the Fisher’s exact (FE) or χ2-tests.
Various web-based or downloadable computer programs utilizing
these methods have been developed, such as Onto-Express (Draghici
et al., 2003; Khatri et al., 2005), David/EASE (Dennis, Jr et al.,
2003; Hosack et al., 2003), the Gostats package of Bioconductor
(Gentleman, 2005), GOMiner (Zeeberg et al., 2003, 2005) and
FuncAssociate (Berriz et al., 2003). Khatri and Draghici (2005)
provided a comparison of several such programs, and (Rivals et al.,
2007) presented a thorough review. The inherent limitation of
approaches that are based on counts of DEGs is the requirement
to choose a specific significance cutoff level to distinguish between
genes that are changed versus those that are not. Different threshold
choices may lead to dramatically different enriched categories, and
thus different biological conclusions (Pan et al., 2005).

Several methods have been proposed to overcome the limitations
of such basic procedures (Table 1). BayGO still uses significance
counts, but employs a Bayesian framework and accounts for which
genes are exclusive to which categories (Vencio et al., 2006). Gene
set enrichment analysis (GSEA) uses the complete distribution of
differential expressions of all genes, without categorizing them into
differentially and non-differentially expressed, to identify enriched
gene sets (Subramanian et al., 2005). sigPathway (Tian et al., 2005)
determines statistical significance of enrichment by comparing
the sum of association measures (standard t-statistics) between
genes and phenotype to the distribution of sums under the null
hypothesis of no association. A more recent method, ProbCD, has
the unique feature of allowing continuous probabilities both for
gene significance (differential expression) and category assignment,
based on uncertainty (Vencio and Schmulevich, 2007). This method
calculates an enrichment statistic based on a k × 2 contingency table
with the Goodman–Kruskal gamma, and assesses significance by
comparison to a null distribution estimated by permutations. Newton
et al. (2007) introduced a random-sets statistical framework which
facilitates a unified treatment of methods based on significance
counts and methods based on complete distributions of any
quantitative gene-level score. The random-sets method detects
enriched gene sets by comparing the summary score for the gene
list to the distribution of scores for randomly selected sets of the
same size. The method is implemented in the allez R-package.

Here, we introduce and validate a new logistic regression-based
method, LRpath, that functionally relates gene set membership
status (dependent variable) to the statistical significance of genes’
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Table 1. Methods included in comparisons

Methods Main statistical Input data User choice for
test DEG test?

LRpath Logistic regression- Significance levels Any
likelihood ratio for all genes

FE FE test Counts of significant and Any
non-significant genes

GSEA Weighted Kolmo- Normalized intensities for No
gorov–Smirnov all genes and all arrays

ProbCD Goodman–Kurskal Significance levels for Any
gamma all genes

BayGo Bayesian 3 × 2 Counts of significant and Any
contingency table non-significant genes

sigPathway t-test (2 hypotheses Normalized intensities for t-test or
tested) all genes and all arrays, Wilcoxon rank

or measures of association

Random-sets Score test Significance levels for Any
all genes

differential expression (independent variable). The basic question
asked by LRpath is, ‘Does the odds of a gene belonging to a
pre-defined gene set increase as the significance of differential
expression increases?’ Logistic regression is a natural extension
of the χ2-test, allowing the significance values to remain on
a continuous scale and not requiring the use of significance
thresholds. We compare the sensitivity and specificity of LRpath
to other relevant methods in identifying enriched GO terms using
simulated and experimental microarray data. Our simulation study
and experimental data analyses were structured so that the true
hierarchical GO structure is preserved, thus retaining the natural
correlations among categories. The results from experimental data
reinforce the simulation findings by additionally preserving the
natural correlations among gene expression profiles of experimental
microarray data. We circumvent the problem of unknown ‘truth’
in the experimental data comparisons by using two independent
datasets examining the same biological phenomenon and compare
methods based on the reproducibility of their findings. Our method
showed greater reproducibility in identifying enriched GO terms
than the other tested methods. Use of the new method is further
demonstrated by analyzing a previously published microarray
experiment comparing healthy subjects to those with idiopathic
pulmonary fibrosis (IPF) (Pardo et al., 2005). Results from two
additional datasets are available as Supplementary Material.

2 METHODS

2.1 LRpath model details
Suppose that for a given microarray experiment we have assigned the
statistical significance of the comparison of interest to each gene in terms
of P-values. Our logistic regression method proceeds as follows. For each
category (i.e. gene set) c, the dependent variable y is defined as 1 for
genes in c, and 0 for all other genes. We use the significance statistics,
defined as –log(P-values), as the explanatory variable x, although a different
significance measure could be used. If π is the proportion of genes
belonging to the category (y = 1) at a specified x value, then π/(1-π ) are
the corresponding odds that a gene with significance x is a member of this
particular category. If the log odds value increases as x increases, then we
conclude that the category is associated with the differential expression.
Logistic regression is used to model the log-odds of a gene belonging to the

specific category as a linear function of the statistical significance x:

log

(
π

1−π

)
=α+βx

where α is the intercept, β is the slope, and both α and β are estimated
from the data. The slope parameter, β, corresponds to the change in the log
odds of belonging to the specific category for a unit increase in x (or 10-fold
decrease in P-value). When β > 0, we conclude that the category of interest is
‘enriched’ with DEGs (or conversely that the category is ‘depleted’ if β < 0).
The evidence in the data that β > 0 (or < 0) for a specific category is assessed
by calculating the P-value for the null hypothesis that β = 0 against the
alternative that β �= 0 based on the maximum likelihood parameter estimates
and the Wald test. The Wald statistic, W, is calculated as:

W =
(

β̂

s
β̂

)2

where β̂ is the maximum likelihood (ML) estimate for s
β̂

is the standard

error of β̂, and the ML is estimated using the iteratively weighted least
squares (IWLS) algorithm. For testing β = 0, W can be shown to follow a
χ2-distribution with one degree of freedom and the P-value is calculated
assuming this null distribution. The P-values from the test of each category
c, are then adjusted for multiple testing either by controlling the false
discovery rate (FDR) (Benjamini et al., 1995; Storey and Tibshirani, 2003), or
controlling the family-wise error rate using Bonferroni. Most likely enriched
gene sets will be identified based on the P-value, or based on the odds ratio
if a ranking independent of category size is desired.

When multiple related comparisons are of interest (e.g. a time course
or multiple treatments versus a control) β may be modeled as a vector
(β1, …, βn) where each element is the slope at one time point or one
treatment. In this case, for each gene set one could test the null hypothesis:
β j – β i = 0. That is, a combined logistic regression may be performed to
identify if a category is significantly more affected by one treatment than
another. Alternatively, one could test for each gene set the null hypothesis:
β1 =β2 =···=βn =0 (odds ratios = 1 for all time points or dose levels) to
determine which categories are affected by any dose level or at any time in the
experiment. This type of analysis is illustrated in Supplementary Material.

2.2 Simulation design
Our simulation study imitates 6- and 10-slide, single-channel microarray
experiments with three (and five) treated samples and three (five) controls.
Gene expression values of DEGs were assigned to human Entrez Gene IDs
so that the desired enrichment level of chosen categories was obtained, with
the remaining gene expression values assigned to randomly chosen, unique
human Entrez Gene IDs. The Entrez Gene IDs were then mapped to all
of their assigned GO terms. This allowed the simulations to preserve the
actual correlations and gene distributions existing in the structure of the GO
database. All simulations were performed using 10 000 ‘genes’, with 500
(5%) genes, or in one set 1000 (10%) genes, designed to be ‘differentially
expressed’. The following variables were assessed in the simulations:

(1) Number of DEGs, d: (500, 1000)

(2) Distribution of true fold changes: N(0, 4σ 2
g) (or Uniform([–2.5,

–0.5]∪[0.5, 2.5]), where σ 2
g is defined below.

(3) Number of enriched categories, e: (2, 5).

(4) Level of enrichment, L: (25%, 50%, 75%, 90%) of genes in category
are differentially expressed.

(5) Number of array replicates: (3, 5).

The simulations proceed as follows:
For all 10 000 genes, g:

(1) Simulate gene variances, σ 2
g, assuming equal variance among

treatment groups, as random draws from the χ−1
(4) distribution.
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(2) Without loss of generality, assume that the first d genes are
differentially expressed:

a. Simulate actual mean log ratios, µg, as random draws from N(0,
4σ 2

g) (or Uniform([−2.5, −0.5]∪[0.5,2.5]).

b. For the remaining 10 000-d genes, set the actual mean log ratios,
µg = 0.

(3) Simulate normalized estimated expression levels as random draws
from N(µg,σ

2
g).

(4) Randomly select e GO terms to be ‘enriched’.

(5) Randomly assign L% of human Entrez Gene IDs from each enriched
GO category to DEGs.

(6) Randomly assign unique Entrez IDs to all other gene expression
values, including unassigned DEGs, as random draws from all human
Entrez IDs represented in GO.

(7) For all GO terms with 10–200 genes (1761 terms), calculate
significance statistics (P-values and q-values) for each tested
method.

All compared methods were applied with default parameters with the
following exceptions. For GSEA, we permuted genes rather than samples
for experiments with less than six replicates (as recommended for small
experiments). For BayGO we increased the number of simulations from 100
to 1000 for higher accuracy. For ProbCD, we defined all gene annotation
assignments with 100% probability. In the case of allez, we used the
z-transformed rankings of the genes based on the statistical significance as
input. Since the random-set method allows for the use of any measure of
differential expression, we chose z-transformed ranks as the score primarily
due to the prominent place that rankings was given in the manuscript
describing the procedure, and the fact that the z-transformed-ranks option of
allez is stated to improve the z-score quality in the allez documentation. Given
the underlying connection between the random-set analysis and the logistic
regression (see Section 3), we also directly compared the two procedures
using the –log(P-value) as the score for allez and using z-transformed ranks
as the input for LRpath.

3 RESULTS
We performed a comparison with the methods in Table 1 using
both simulated and experimental data. In the simulation study, we
know the truth about enriched GO terms, but the data lacks the
natural correlation structure found in experimental data and may
have unrealistic distributional properties. On the other hand, in the
breast cancer microarray data, the truth is unknown, but the other
issue is appropriately addressed. The concordant findings based on
simulated and experimental data analyses offer strong evidence that
our conclusions are valid and reproducible.

3.1 Simulation study
We applied seven methods (Table 1) to each simulated dataset. For
FE test, we used five different P-value cutoff levels for DEGs (0.001,
0.01, 0.05, 0.10 and 0.50), and for BayGO we used a 0.01 cutoff. For
sigPathway (NTK and NEK hypotheses) (Tian et al., 2005), we use
the provided ranking procedure that combines the two hypotheses
based on the sum of the two statistics, but separate P-values, because
combined P-values are not available. All methods were performed
using an R package when available, or R-code downloaded from
the original publication’s authors otherwise. Because GSEA tests
increased and decreased transcript levels separately, we modified
the program so that the absolute value of the measure of change

is used. The simulated data were first analyzed for detection of
DEGs using a standard t-test for input into LRpath, Fisher’s exact,
ProbCD and BayGO. Results improved when a Bayesian moderated
t-statistic (Sartor et al., 2006) was used in place of the t-test for
testing differential expression of genes (see the web Supplementary
Material).

For each simulation scenario, we simulated 30 datasets and
calculated: (i) the average ranks of GO terms ordered by statistical
significance and (ii) q-values of enrichment for all GO terms. We
compared performances of different methods by comparing the
average log-ranking of enriched categories (Fig. 1). To clarify the
exact values plotted in Figure 1, we provide the raw data in the
Supplementary Material (Table S1). The performance of all methods
was strongly affected by the level of enrichment (varied between
25% and 90%).

LRpath performed best overall in ranking the enriched GO terms
as most significant. Using the performance ranks of each method
across all simulation scenarios (based on values of Table S1), a
Wilcoxon rank test was used to test the significance of LRpath’s
performance over the next best methods, FE P < 0.10 and FE
P < 0.05, and was found to be significant(Wilcoxon rank test P = 2.2
x 10−4, as compared with FE P < 0.05 and P = 1.5 × 10−4 as
compared with FE P < 0.10). The performance of FE test varied
depending on which P-value cutoff was used to identify DEGs, as
previously seen (Pan et al., 2005). For most parameter sets, using
a more relaxed cutoff of P < 0.05 or 0.10 performed best. Thus,
for ranking enriched biological categories using FE test, one would
want to apply a less stringent P-value cutoff than would be justified
for identifying individual DEGs.

In agreement with Newton et al’s finding that FE is more likely
to outperform the corresponding averaging method when the level
of enrichment is small, we find that at least one FE test outperforms
allez for every set at the lowest (25%) enrichment level. Conversely,
allez outperforms FE tests more often for the highest level of
enrichment. The fact that LRpath still outperforms FE at the low
enrichment levels can be attributed to its use of the –log(P-value)
rather than z-transformed rankings as input. When the enrichment
level is low, the –log(P-value) statistic allows a small number of
highly significant genes to drive the enrichment test, whereas the
z-transformed rankings does not allow for such strong ‘outliers’.
Indeed, additional simulations using the same rankings input for
LRpath as for allez resulted in similar poorer performance by
LRpath. Conversely, when the default input for LRpath –log(P-
value) was used as input for allez, LRpath only slightly outperformed
allez based on a Wilcoxon rank test (P = 0.014) (Fig. 2).

For experiments with more statistical power, as illustrated by
our simulations of a 10-slide experiment, using a stricter P-value
cutoff for DEG detection may offer better performance. Indeed,
using P < 0.01 performed better than P < 0.05 in ranking GO terms
for two of the four parameter sets in the 10-slide experiment, and
the performance of the P < 0.001 cutoff increased substantially
compared with the smaller simulated experiment. As expected,
simulating higher actual fold changes for DEGs resulted in overall
better performance of all methods.

Simulating twice as many DEGs or increasing the number
of enriched categories from two to five had little effect on
the differences in methods’ performance, although there is some
indication of a slight overall decrease in performance among
methods. Of the other methods tested, BayGO, allez and FE with
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A B C D E

Fig. 1. Simulation results: ability to rank enriched GO terms log10-rankings of enriched GO terms were calculated to compare the ability of methods to
correctly rank these categories at the top of the list. Thus, lower ranking scores are better. Methods are LRpath, FE with the following three criteria for
detecting DEGs (P < 0.001, P < 0.01, P < 0.05, P < 0.10 and P < 0.50), BayGO, sigPathway (sigPath), allez and ProbCD. Initial four parameter sets (A) used
90%, 75%, 50% and 25% enrichment with DEGs, 500 total DEGs, normally distributed fold changes, two enriched categories and three replicates for treated
and control groups. Subsequent groups had the following differences: (B) 1000 DEGs, (C) DEGs with higher fold changes, (D) five enriched GO terms, (E)
five replicates. Data shown are averages from 30 simulation runs for each parameter set. LRpath performed significantly better than the next best methods
(P = 2.2 × 10−4 compared with FE P < 0.05 and P = 1.5 × 10−4 compared with FE P < 0.10) using a Wilcoxon rank test.

Fig. 2. Effect of input statistics on LRpath and allez. Graphed is the average
increase in log-rank of enriched GO terms relative to LRpath with –log(P-
values) as input, which ranked best. LRpath and allez produced very similar
results when given the same input. *P < 0.05 from Wilcoxon rank test
between allez and LRpath using –log(P). **P < 0.05 from Wilcoxon rank
test between allez and LRpath using z-transformed gene ranks.

the P < 0.05, 0.01 or 0.10 cutoff offered the next best performance,
depending on parameter values. Because P-values produced by
different methods are not directly comparable, we focused on the
rankings of enriched gene sets. However, we also offer a comparison
of the methods’ q-values for enriched GO terms as Supplementary
Material (Fig. S1), as well as a measure of bias in the P-values under
the hypothesis of no association between GO terms and differential
expression (Fig. S2).

3.2 Comparison of results from two breast cancer
microarray experiments

We also compared the performance of different methods based on
the reproducibility of their findings in two breast cancer datasets.

A frequently recurring concern with microarray data is its
generalizability. A better method is expected to demonstrate a
higher consistency between results obtained from independent
experiments studying the same biological phenomenon, despite
technical differences. To this end, we examined the consistency
of each method’s results between two datasets. The first dataset
(Sotiriou et al., 2006) consists of human breast carcinoma samples.
For this analysis, we used samples from non-treated patients with
positive estrogen receptor (ER) status and with histologic grades
1 (29 samples) or 3 (12 samples). The second dataset consisted
of the independent samples with positive ER status from another
primary breast tumor study, where each sample was also identified
as histologic tumor grade 1 (39 samples) or 3 (28 samples) using
the Elston–Ellis grading system (Miller et al., 2005).

Preprocessed data was downloaded from the NCBI Gene
Expression Omnibus (GEO) public repository (GEO accession
GSE2990), and we separately analyzed each dataset for GO
categories enriched with genes differentially expressed between the
histologic grade 1 and 3 samples. Results from standard t-tests were
used for input into LRpath, Bay GO and Fisher’s exact. In the first
dataset, 10 GO terms were identified with P < 0.005 by at least five
of the seven methods: cell division, M phase, mitosis, M phase of
mitotic cell cycle, spindle organization and biogenesis, regulation
of mitosis, condensed chromosome, mitotic checkpoint, cell cycle
checkpoint and regulation of progression through cell cycle.

For each method, concordance was measured in two ways: (i)
the degree of correlation in significance of GO terms between the
two datasets (Fig. 3A) and (ii) the number of overlapping GO terms
between the two datasets among top ranked lists (Fig. 3B). The
results shown in Figure 3 indicate that LRpath has the greatest
consistency between datasets. Consistent with the other analyses,
the concordance of FE test between datasets depended on the criteria
for DEG detection, with P < 0.01 and P < 0.10 criteria resulting in
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Fig. 3. Concordance of methods between two independent Breast Cancer
datasets. Reproducibility of the methods (LRpath, FE with cutoffs of
0.50, 0.10, 0.01 and 0.001 for DEGs, BayGO, GSEA, sigPathway, allez
and ProbCD, respectively) was tested by measuring the consistency of
results across two datasets, both comparing grade 3 to grade 1 tumors. (A)
Correlation between datasets for each method. As a measure of significance,
the –log(P-values) of GO term enrichment were calculated for each method
and dataset separately, and the Pearson correlation coefficients between
datasets were calculated. (B) Overlapping enriched GO terms by rank.
Ranked lists of GO terms were generated for each method and each dataset
separately. The number of overlapping GO terms was calculated between
datasets for each method for increasing length of ranked lists.

greater concordance than that of P < 0.50 or P < 0.001. Examining
the number of overlapping GO terms in the top ranked lists of each
method, overall we see LRpath performing best, allez second best
and probCD third (although FE with P < 0.01 performs as well for
the first 20 rankings), FE with the P < 0.001 or P < 0.50 criteria
for DEGs performed worst, and the other methods’ performances
relatively indistinguishable from each other. All methods except FE
with P < 0.001 performed markedly better than would be expected
by chance, indicating a true signal in answering the question as to
what gene sets are enriched between histologic grade 3 versus grade
1 primary breast cancer tumors. The overlapping GO terms among
the top 50 ranked for LRpath are listed in Table S3. Notably, this list
of 28 GO terms included all 10 of the GO terms identified by at least
five methods in the first dataset, and consistent with the findings of
Sotiriou et al. (2006), were mainly related to cell-cycle progression.

We again looked separately at the performance of the random-set
procedure with –log(P-value) as input and results were very similar
as in the simulation study. The correlation coefficient increased,
when compared to using transformed ranks (from 0.60 to 0.64),
but still remained below LRpath’s correlation. On the other hand,
there was no difference between LRpath and allez when plotting
overlapping GO terms by rank (Supplementary Fig. 4).

3.3 Application: results from human IPF dataset
Using a human IPF study (Pardo et al., 2005), we demonstrate the
ability of LRpath to implicate important biological pathways and
functional groupings missed by the most commonly used analytical
approach. The 11 normal and 13 IPF lung tissue samples were
analyzed for DEGs using a standard t-test or an empirical Bayes
test, Intensity-based moderated t-test (IBMT) (Sartor et al., 2006),
and then tested for enriched gene sets using LRpath and FE test.
Six KEGG pathways were significant at the FDR < 0.05 level
using LRpath with IBMT, including altered ‘Cell cycle’, decreased
‘Blood vessel development’ and a decrease in ‘Cytokine–cytokine
receptor interaction’ (Table S4). FE test with IBMT resulted in no
significant pathway when using a P < 0.01 cutoff for DEGs and only
1 (complement and coagulation cascades) when using a P < 0.05
cutoff. No enriched KEGG pathways were identified with the t-test
in conjunction with Fisher’s exact. The significant KEGG pathways
identified with LRpath involves several findings consistent with
what has been reported in human IPF, and a thorough discussion
of these findings is provided as Supplementary Material.

4 DISCUSSION
Identifying predefined gene sets enriched with DEGs has become a
routine part of microarray analysis, and provides investigators with
greater biological insight than significant gene lists alone. Our aim
was to develop a method that (i) does not require the choice of a
significance cutoff, (ii) allows the investigator to choose different
methods for detecting DEGs, (iii) provides unbiased assessment of
statistical significance and (iv) similar to FE test has an intuitive
interpretation in terms of odds ratios. The method we developed,
LRpath, uses logistic regression to model the relationship between
gene set membership and differential expression in terms of odds
ratios of enrichment. The basic question addressed by LRpath is
whether the odds of a gene belonging to a predefined gene set
increases as the significance of differential expression increases.
Unlike the χ2-type of methods, our model allows the data resulting
from tests of differential expression to remain on a continuous scale.
This removes the need to choose a significance cutoff, and has the
advantage of taking into account the distribution of significance
levels for genes not belonging to, as well as belonging to, the gene
set of interest. If expression of genes from a specific biological
pathway is affected in the experiment, we would expect that genes
with significant P-values are more likely to be members of this
pathway than genes with less significant P-values, although we may
not know exactly where, or want, to draw a line between ‘significant’
and ‘non-significant’ differential expressions.

Led by the communication from Michael Newton about
underlying similarities between the logistic regression and the
random-sets framework, we further examined the relationship
between the two methods. Our results indicate that the differences
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between the two procedures, when using the same score are very
small. Actually, it can be shown that the random-sets method of
allez is nearly identical (see Supplementary Material) to performing
logistic regression and using the score test for significance, which
is asymptotically equivalent to the statistical test used by LRpath.
Thus, small observed differences could be due to small differences
in the performance of the score and the Wald tests in this context
of logistic regression. Regardless of which of the two procedures
are used, one seems to be better off using –log(P-values) instead of
using the z-transformed ranks.

We performed an in-depth comparison with other relevant
methods using both simulated and experimental data. In the
simulation study, we know the exact truth about enriched GO terms,
but the simulated data lacks the natural correlation structure found in
experimental data and may have unrealistic distributional properties.
On the other hand, the exact truth is unknown in the breast cancer
microarray data we analyzed, but the other issues are appropriately
addressed. This comparison of independent experimental datasets
is both inherently free of bias, and addresses the question of
which methods provide the most reproducible results. The observed
concordance of the results in these different analyses offers strong
evidence that our conclusions are valid and reproducible. Results of
our simulation study indicate that, as expected, the power to detect
enriched GO terms depends greatly on the level of enrichment, and
to a lesser extent on several other parameters tested. For FE test, we
conclude that both the significance cutoff used to define DEGs and
the test used to detect DEGs (data not shown) affect the results of
gene enrichment testing. Overall, LRpath performed better than the
other methods tested based on all criteria.

Using the concordance between the two independent larger
sample breast cancer datasets, we showed that LRpath again resulted
in the best performance. The results from these analyses were
generally in agreement with results of the simulation study. In
both cases, allez and ProbCD performed favorably, and FE with
a fairly relaxed cutoff also performed well. ProbCD may offer an
additional advantage in situations when the gene set assignments
are probabilistic. Newton et al. showed that selection methods (e.g.
FE test) and averaging methods (e.g. allez) each have a ‘domain of
superiority’ in the space of possible enrichment problems. In general,
averaging methods are superior when the differential expression
effects are relatively small and are most advantageous when the
enrichment level is also high. Based on our results for the breast
cancer experiments, it seem likely that these criteria held true,
and that the disadvantage of the averaging method can be at least
partially offset by using an input measure, such as –log(P-value),
that allows a smaller number of highly DEGs to help drive the
enrichment process. Further comparisons will be necessary to assess
the performance of other gene score measurements as input, such as
log-fold change or t-statistics, and to what extent their performances
are dataset dependent.

Using the breast cancer (Miller et al., 2005; Sotiriou et al.,
2006) and IPF (Pardo et al., 2005) datasets, we also uncovered
novel insights into the biological mechanisms of these diseases.
In breast cancer, we demonstrate the use of LRpath and other
methods to detect consistent GO terms distinguishing histologic
grade 3 and grade 1 primary breast tumor samples from two
independent datasets. In IPF, we demonstrate the use of LRpath
to detect over-represented biological categories not presented in
the original analysis and which would not have been identified

by FE test (i.e. identifying additional pathways including altered
‘Cell cycle’, decreased ‘Blood vessel development’ and a decrease
in ‘Cytokine–cytokine receptor interaction’.)

We have implemented LRpath as an R function (Ihaka et al.,
1996, and Supplementary Material) which can be downloaded
along with all other Supplementary Material from our supporting
website http://eh3.uc.edu/lrpath. The function is designed to
automatically test the categories of GO terms or KEGG Pathways,
but can be modified for use with user-defined categories. Current
implementation accepts as input significance statistics of the
investigator’s choice and allows for duplicate and missing gene
identifiers.
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