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ABSTRACT

Motivation: High-resolution mass spectrometry (MS) is among
the most widely used technologies in metabolomics. Metabolites
participate in almost all cellular processes, but most metabolites still
remain uncharacterized. Determination of the sum formula is a crucial
step in the identification of an unknown metabolite, as it reduces its
possible structures to a hopefully manageable set.
Results: We present a method for determining the sum formula
of a metabolite solely from its mass and the natural distribution of
its isotopes. Our input is a measured isotope pattern from a high
resolution mass spectrometer, and we want to find those molecules
that best match this pattern. Our method is computationally efficient,
and results on experimental data are very promising: for orthogonal
time-of-flight mass spectrometry, we correctly identify sum formulas
for >90% of the molecules, ranging in mass up to 1000 Da.
Availability: SIRIUS is available under the LGPL license at
http://bio.informatik.uni-jena.de/sirius/
Contact: anton.pervukhin@minet.uni-jena.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
High-resolution mass spectrometry (MS) allows determining the
mass of sample molecules with very high accuracy (1–5 p.p.m.),
and has become one preferred method of analyzing metabolites.
The output of a mass spectrometer, after preprocessing, consists of
peaks that ideally correspond to the masses of the sample molecules
and their abundance. This brings into play the natural isotopic
distributions of the elements: several peaks in the output correspond
to the same type of sample molecule, reflecting its isotope pattern.
In this article, we use this isotope pattern to identify the sample
molecule by determining its molecular formula or sum formula, i.e.
the number of atoms of each element.

The term “metabolite” is usually restricted to small molecules
that are intermediates and products of the metabolism. These small
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molecules participate in almost all cellular processes such as signal
transduction, stress response, catabolism, or anabolism. Today,
databases mostly contain primary metabolites directly relevant for
growth, development, and reproduction of a cell or an organism.
In contrast, most of the metabolites not directly involved in the
aforementioned functions are yet uncharacterized. The majority of
known metabolites have mass <1000 Da: 96.5% of sum formulas in
the KEGG COMPOUND database (Kanehisa et al., 2006) fall into
this mass range. To identify a sample metabolite, its mass spectrum is
compared to spectra in a reference database. This method is limited
to identifying metabolites and chemical compounds that have been
included in some reference mass spectra library. Hence, de novo
interpretation of metabolite mass spectra is highly sought.

Our input is a list of masses M0,...,MK with intensities f0,...,fK ,
normalized such that

∑
i fi =1. We extract this data from a high-

resolution mass spectrum in a preprocessing step, and assume that
it corresponds to the isotope pattern of a sample molecule. Note
that for molecular mixtures, separating isotopic peaks that belong
to different molecules is mostly trivial in this case. Our goal is to
find the molecule, or rather its sum formula, whose isotope pattern
best matches the input. In the following, we use ‘molecule’ and
‘sum formula’ interchangeably. We stress that this method cannot be
used as-is to identify peptides or amino acid compositions, because
certain sum formulas correspond to multiple peptides.

To resolve the sum formula, Kind and Fiehn (2006) suggest
to proceed as follows: first, compute all sum formulas that share
monoisotopic mass with the input mass spectrum. For every such
candidate molecule, simulate its isotope pattern, and match and rank
it against the input isotope pattern. Several experimental studies
using this setup have been reported in the literature, the most
prominent by Iijima et al. (2008) who claim to have discovered
almost 500 novel metabolites in Tomato (Solanum lycopersicum).
Zhang et al. (2005) address a related problem for analyzing peptides,
but this approach heavily builds on several ad hoc rules regarding
admissible sum formulas and uses a heuristic search. Böcker and
Rasche (2008) present a method for the automated interpretation of
metabolite tandem mass spectra but ignore isotope patterns.

In this article, we present efficient algorithms for all steps of
the analysis pipeline suggested above. We limit our presentation
to the elements most abundant in living beings, but note that our
methods also work for other sets of elements. We first show how to
use integer decomposition techniques (Böcker and Lipták, 2007)
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for decomposing real-valued masses, with large improvements
over naïve approaches. Second, we present a method for rapid
computation of isotope distributions and mean masses of isotope
peaks, improving on previously best known results (Rockwood
et al., 2004). Fast simulation of isotope patterns is vital due to
the large search space. Third, we show how to rapidly match and
rank such simulated spectra against the measured spectrum. We
then report on the application of our method to high-resolution
mass spectra. Finally, we present the software tool SIRIUS (Sum
formula Identification by Ranking Isotope patterns Using mass
Spectrometry) that implements all of the above algorithms and
combines them with an easy-to-use graphical user interface.

2 ISOTOPES AND ISOTOPE PATTERNS
The elements most abundant in living beings are hydrogen (H),
carbon (C), nitrogen (N), oxygen (O), phosphor (P) and sulfur (S).
Atoms with the same number of protons but different number of
neutrons are called isotopes of the element. Each of these isotopes
occurs in nature with a certain abundance, and we limit our attention
to these naturally occurring isotopes. The superscript preceding a
symbol denotes the mass number of the atom: the number of protons
plus the number of neutrons. The mass of an atom is measured in
Dalton (Da). An atom’s mass is roughly but not exactly equal to
its mass number, the difference being due to the binding energy in
the atom’s nucleus. The masses of the different isotopes and their
abundance are known up to very high precision (Audi et al., 2003)
(see Table 1 for the six elements described above). Note that unlike
their mass, natural abundances of isotopes are not physical constants.
Values may slightly vary depending on, say, the continent where a
sample was taken.

The nominal mass (also called nucleon number) of a molecule
is the sum of protons and neutrons of the constituting atoms. The
mass of the molecule is the sum of masses of these atoms. Clearly,
nominal mass and mass depend on the isotopes the molecule consists
of, thus on the isotope species of the molecule. The isotope species
where each atom is the isotope with the lowest nominal mass
is called monoisotopic. Likewise, the mass of the monoisotopic
species is called the monoisotopic mass of the molecule. Mass
defects and, hence, differences from the ideal mass depend on
the elemental composition of a molecule. For example, sucrose
(C12H22O11) has monoisotopic mass 342.116215 Da; whereas, the
short peptide Leu-Asn-Pro (C15H26N4O5) has monoisotopic mass
342.190321, while both molecules have monoisotopic nominal
mass 342.

The number of distinct isotope species for a molecule with iH
hydrogen, iC carbon, iN nitrogen, iO oxygen, iP phosphor and iS
sulfur atoms is (iC +1)(iH +1)(iN +1)

(iO+2
2

)(iS+3
3

)
. This follows

because for an element E with r isotope types, a molecule El
consisting of l atoms of the element has

(l+r−1
r−1

)
different isotope

species. The probability that a certain isotope species occurs can
be computed by multiplying the probabilities of the underlying
isotopes.

Even with high-resolution MS, it is often impossible to resolve
isotope species with identical nominal mass. Instead, these isotope
species appear as one single peak in the MS output. For this reason,
we merge isotope species with identical nominal mass; we refer to
the resulting distribution as the molecule’s isotopic distribution.

Table 1. Natural isotopic distribution: relative abundance of isotopes and
their masses in Dalton

Element Isotope mass Mass difference Abundance (%)

Hydrogen 1H 1.007825 99.985
2H 2.014102 +1.006277 0.015

Carbon 12C 12.0 98.890
13C 13.003355 +1.003355 1.110

Nitrogen 14N 14.003074 99.634
15N 15.000109 +0.997035 0.366

Oxygen 16O 15.994915 99.762
17O 16.999132 +1.004217 0.038
18O 17.999161 +2.004246 0.200

Phosphor 31P 30.973762 100
Sulfur 32S 31.972071 95.020

33S 32.971459 +0.999388 0.750
34S 33.967867 +1.995796 4.210
36S 35.967081 +3.995010 0.020

For each element E we define two discrete random
variables, denoted XE and YE , representing the mass and the
mass number, respectively. For example, XC with state space
{12,13.003355}, YC with state space {12,13} and P(XC =12)=
P(YC =12)=0.98890, P(XC =13.003355)=P(YC =13)=0.01110
are the random variables of carbon. Given a molecule consisting of l
atoms, we assign to the i-th atom, i=1,...,l, two random variables Xi
and Yi, where Xi ∼XE and Yi ∼YE , with E being the corresponding
element. Now we can represent the molecule’s mass distribution
by the random variable X :=X1 + ...+Xl , and its nominal mass
distribution, or isotopic distribution, by Y :=Y1 + ...+Yl . In an
ideal mass spectrum, normalized peak intensities correspond to
the isotopic distribution of the molecule. Note that X and Y are
correlated, since XE can be viewed as a function of YE and E.

We refer to the peak at the monoisotopic mass as the monoisotopic
peak, which is followed by the +1, +2, … peaks. What is the mass
of the +k peak, which is a superposition of several isotope species?
It is reasonable to assume that its mass is the mean mass of all
isotope species that add to its intensity (Rockwood et al., 2004):
for a molecule with monoisotopic nominal mass N , let X =X1 +
···+Xl be the mass distribution and Y =Y1 +···+Yl be the isotopic
distribution. The mean peak mass of the +k peak is then mk =E(X |
Y =N +k). We refer to the isotopic distribution together with the
mean peak masses as the molecule’s isotope pattern.

3 METHODS AND ALGORITHMS

3.1 Real-valued decompositions
We first concentrate on the problem of decomposing the monoisotopic
mass M0. We want to find all molecules with monoisotopic mass in the
interval [l,u]⊆R where l :=M0 −ε and u :=M0 +ε for some measurement
inaccuracy ε. Formally, we search for all solutions of the integer knapsack
equation (Kellerer et al., 2004)

a1c1 +a2c2 +···+ancn ∈[l,u], (1)

where aj,j=1,...,n, are real-valued monoisotopic masses of elements
satisfying aj ≥0. We search for all solution vectors c= (c1,...,cn) such that
all cj are non-negative integers. We may assume a1 <a2 < ···<an.

A straightforward solution is to enumerate all vectors c with c1 =0 and∑
j ajcj ≤u and next to test if there is some c1 ≥0 such that

∑
j ajcj ∈[l,u].
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This results in �(M0
n−1) running time, for constant element masses.

Alternatively, we can compute all potential decompositions up to some upper
bound U during preprocessing, sort them with respect to mass and use
binary search; this results in �(Un) space requirement. These approaches
are unfavorable in theoretical complexity as well as in practice: for the
elements CHNOPS there exist more than 7×109 molecular formulas with
mass ≤1500 Da.

In the remainder of this section, we transform the integer knapsack
problem with real-valued coefficients into a problem instance with integer
coefficients. We will show in the next section how to efficiently solve such
instances. Choosing a blowup factor b∈R, corresponding to precision 1/b,
we can round coefficients by φ(x) :=�bx�, so a′

j :=φ(aj) and l′ :=φ(l), u′ :=
φ(u) form an integer knapsack. Precision 1/b is merely a parameter of the
decomposition algorithm and in principle independent of the measurement
mass accuracy ε. To avoid rounding error accumulation, precision is usually
set one to two orders of magnitude smaller than the measurement accuracy.
Now, certain solutions c of the integer coefficient knapsack are no solutions
of the real-valued coefficient knapsack and vice versa. We can easily sort
out false positive solutions by checking (1), resulting in additional running
time. We now concentrate on the more intriguing problem of false negative
solutions that are missed by the integer coefficient knapsack.

Clearly
∑

j ajcj ≥ l implies
∑

j a
′
jcj ≥ l′ since all a′

j are integers. We have
to increase the upper bound u′ to guarantee that all solutions of (1) are
generated. We define relative rounding errors

�j =�j(b) := �baj�−baj

aj
for j=1, ...,n

and note that 0≤�j ≤ 1
aj

. Let �=�(b) :=max{�j}. If c satisfies
∑

j ajcj ≤u

then
∑

j a
′
jcj ≤bu+�u: clearly,

∑
j a

′
jcj ≤bu+∑

j(a
′
j −baj)cj and our claim

follows from

0≤
∑

j

(a′
j −baj)cj =

∑
j

�baj�−baj

aj
ajcj

≤
∑

j

�jajcj ≤�
∑

j

ajcj ≤�u.

One can easily check that this bound is tight. So, we re-define the
integer interval by u′ :=
bu+�u�. Without rounding correction we have to
decompose (u−l)b integers, but rounding correction forces us to decompose
an additional �u integers, independent of the interval size u−l. As an
example, consider the elements CHNOPS and blowup factor b=105, then
�(b)=�H(b)=0.492936. So for M0 = 1000, we have to decompose an
additional 492 integers. Clearly, increasing b usually decreases �(b). We
stress that the running time of this approach is dominated by the number of
decompositions of these integers, and not by the number of integers itself.

3.2 Integer decompositions
Assume that both the element masses a1,...,an and the query mass m
are positive integers. We are looking for all non-negative integer vectors
(c1,...,cn) satisfying (1) (with l=u=m). This is a well-studied problem,
referred to in its different variants as Coin Change Problem, Change Making
Problem or Money Changing Problem, and can be solved with a simple
dynamic programming algorithm in pseudo-polynomial time (Martello and
Toth, 1990). The main disadvantage of this approach is rather large memory
requirement, which again depends on the maximal mass U we want to
decompose.

Böcker and Lipták (2007) present an algorithm for determining all such
decompositions with running time O(na1 ·γ (m)) and space O(na1), where
a1 is the smallest mass and γ (m) the number of decompositions of mass m.
We briefly sketch the algorithm. Given integer masses a1 ≤ ...≤an, a data
structure of size na1, referred to as Extended Residue Table (ER table), is
computed in a preprocessing step. Entry ER(r,i), for r =0,...,a1 −1 and i=
1,...,n, is the smallest number congruent r modulo a1 which is decomposable
over a1,...,ai. Thus, the last column ER(·,n) of the table gives, for each
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Fig. 1. Number of decompositions over the elements CHNOPS for intervals
of width 0.001 Da. Minima and maxima taken in intervals of width 1 Da. True
number of decompositions in comparison with approximate (2) (approx). As
is shown in the inlay, γ (m) varies with a periodic function of period ∼1 Da.

residue r, the smallest number congruent r modulo a1 that is decomposable
over a1,...,an. Computation time is O(na1). All decompositions of the
query m are then recursively generated, limiting the number of unsuccessful
paths by using information from the ER table. As a result, the running
time of the algorithm is proportional only to the size of the table na1

and the number of decompositions γ (m), and does not depend directly
on the input m. For decomposing molecule masses, this decomposition
technique has several advantages over classical dynamic programming, such
as improved running times and preprocessing independent of the largest
mass we want to decompose in the future. Regarding the application of
decomposing molecule masses, this approach uses only one fifteenth of
memory and shows better running times.

The number of decompositions γ (m) for an integer mass m over coprime
integers a1,...,an asymptotically behaves like a polynomial of degree n−1
in m (Wilf, 1990). Following Beck et al. (2001), we can approximate the
number of molecules over the elements CHNOPS with real mass in the
interval [M,M +ε] by

γ̂ (M,ε)≈3.10657 ·10−9εM5 +8.22867 ·10−7εM4

+8.05088 ·10−5εM3.
(2)

We can also approximate the number of molecules with mass up to M by
integrating (2). In Figure 1, we plot the number of decompositions for masses
of up to 1500 Da over the elements CHNOPS.

3.3 Simulating isotope patterns
We first observe that for elements CHNOPS, all molecules have isotopic
distributions that decrease rapidly with increasing mass. In particular, we can
restrict ourselves to computing the first K non-zero values of the distribution,
for rather small K such as K =10. For example, amongst 11 479 entries in
the KEGG COMPOUND database with mass ≤3000 Da, no molecule has
intensity of the +10 peak larger than 0.00007.

The atoms hydrogen, carbon and nitrogen have only two natural isotopes.
Thus, the isotopic distribution of a molecule El consisting of l identical atoms
of type E with E ∈{H,C,N} follows a binomial distribution: let qk denote
the probability that El has nominal mass N +k, where N is the monoisotopic
nominal mass of El . Then, qk =( l

k

)
pl−k(1−p)k , where p is the probability of

the monoisotopic isotope. The values of the qk can be computed iteratively,
since qk+1 = l−k

k+1 · 1−p
p qk for k ≥0, thus computation time is O(K).

Where an element E has r >2 isotopes (such as oxygen and sulfur), the
isotopic distribution of El can in theory be computed as follows: let pi for
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i=0,...,r−1 denote the probability of occurrence of the i-th isotope. Then,
the probability that El has nominal mass N +k is

∑( l
l0,l1,...,lr−1

)·∏r−1
i=0 pli

i ,

where the sum runs over all l0,...,lr−1 ≥0 satisfying
∑r−1

i=0 li = l and
∑r−1

i=0 i ·
li =k (Hsu, 1984). However, this computation is infeasible in practice.

Given two discrete random variables Y and Y ′ with state spaces �,�′ ⊆N,
we can compute the distribution of the random variable Z :=Y +Y ′ by folding
the distributions,

P(Z =N)=
∑

k
P(Y =k) ·P(Y ′ =N −k).

If we restrict ourselves to the first K values of this distribution, we can
compute it in time O(K2). Kubinyi (1991) suggests to compute the isotopic
distributions of oxygen Ol and sulfur Sl by successive folding of the
respective distribution: using a Russian multiplication scheme for the folding,
this results in an algorithm with running time O(K2 logl). In applications, we
do not compute these distributions on the fly but during preprocessing, for all
l≤L fixed. This results in O(KL) memory for every such element, where L is
small: The 128 oxygen atoms already have mass of about 2048 Da, exceeding
the relevant mass range. For molecules consisting of different elements, we
first compute or look up the isotopic distributions of the individual elements,
and then combine these distributions by folding in O(n ·K2) time.

Using Fourier transforms of isotope distributions, we can multiply Fourier
transforms instead of folding these distributions (Rockwood and Van Orden,
1996). Doing so we can eventually replace the K2 factor in the algorithm’s
running time by a K logK factor. As we limit our attention to small K such
as K =10, this will not result in a speedup of the algorithm in practice. Also,
this approach may face the problem of numerical errors.

We now come to the more challenging problem of efficiently computing
the mean peak masses of a distribution. Doing so using the definition
mk =E(X |Y =N +k) is highly inefficient, because we have to sum up
over all isotope species. Pruning strategies have been developed to speed
up computation (Yergey, 1983), but pruning leads to a loss of accuracy
(Rockwood et al., 2004). We now present a simple recurrence for computing
these masses analogous to the folding of distributions: let Y =Y1 +···+
Yl and Y ′ =Y ′

1 +···+Y ′
L be isotopic distributions of two molecules with

monoisotopic nominal masses N and N ′, respectively. Let pk :=P(Y =N +k)
and qk :=P(Y ′ =N ′ +k) denote the corresponding probabilities, mk and m′

k
the mean peak masses of the +k peaks. Consider the random variable
Z =Y +Y ′ with monoisotopic nominal mass Ñ =N +N ′.

Theorem 1. The mean peak mass m̃k of the +k peak of the random
variable Z =Y +Y ′ can be computed as:

m̃k = 1∑k
j=0 pjqk−j

·
k∑

j=0

pjqk−j

(
mj +m′

k−j

)
. (3)

Note that
∑k

j=0 pjqk−j =P(Z = Ñ +k). Since by independence, P(Y1 =
N1,...,Yl =Nl)=∏

i P(Yi =Ni), the theorem follows by rearranging
summands. We omit the formal proof.

The theorem allows us to ‘fold’ mean peak masses of two distributions
to compute the mean peak masses of their sum. This implies that we can
compute mean peak masses as efficiently as the distribution itself. This
improves on the previously best known method (Rockwood et al., 2004),
replacing the linear running time dependence on the number of atoms by its
logarithm.

3.4 Scoring candidate molecules
We want to discriminate between (tens of thousands of) candidate molecules
generated by decomposing the monoisotopic mass. To this end, we compare
the simulated isotopic distribution with the measured peaks. Matching peak
pairs between the spectra is trivial for this application.

Zhang and Chait (2000) and Zhang et al. (2002) suggest to use Bayesian
Statistics to evaluate mass spectra matches:

P(Mj|D,B)= P(Mj|B) ·P(D|Mj,B)∑
i P(Mi|B)P(D|Mi,B)

, (4)

where D is the data (the measured spectrum), Mi are the models (the
candidate molecules) and B stands for any prior background information.

Regarding this background information, we set the prior probability
P(Mj|B) to zero for all molecules but the decompositions of the
monoisotopic mass. We also assign prior probability zero to molecular
formulas that cannot correspond to a molecule, because of chemical
considerations: Senior’s third theorem states that the sum of valences has
to be greater than or equal to twice the number of atoms minus one (Senior,
1951). Molecules violating Seniors third theorem are rare, particularly
for natural compounds: in the KEGG COMPOUND database, <0.16% of
substances violate this rule. We also filter out radicals with odd sum of
valences. We refrain from using further priors such as the hetero-to-carbon
ratio (Kind and Fiehn, 2007) because this might rather reproduce what is
already known.

Next, we assign probabilities to the observed masses and intensities.
Assuming independence (in particular from background information) we
calculate

P(D|M,B)=
∏

j
P(Mj|mj)

∏
j
P(fj|pj). (5)

Here, P(Mj|mj) is the probability to observe peak j at mass Mj when its true
mass is mj , and P(fj|pj) is the probability to observe peak j with intensity fj
when its true intensity is pj . Clearly, the independence of peak intensities is
violated because these intensities sum to one, but this product can be seen
as a rough estimate of the true probability.

Mass spectrometrists assume that the mass error of a device is roughly
normally distributed with mean zero. If the mass accuracy α of the
measurement (in p.p.m.) is given, then we can set the standard deviation
1
3 α10−6 Mj for peak j, assuming that >99.7% of measurements fall into the
specified mass range. But we also observe that peaks of low intensity show
less mass accuracy than those with high intensity, which can be attributed
to the difficulties of separating a peak of low intensity from the background
noise. Our data indicate a roughly linear dependence between peak intensity
and mass accuracy. To this end, two mass accuracies α1 (at full intensity)
and α0 (at minimal intensity) are provided by the user, and we set

σj := 1
3

(
pj α1 +(1−pj)α0

)·10−6 Mj .

We want to estimate the probability that, given a peak with true mass mj ,
a peak at mass Mj is observed in the measured spectrum: more precisely,
the probability of observing a mass difference of |Mj −mj | or larger. We can
compute this probability using the complementary error function ‘erfc’:

P(Mj|mj)=erfc
( |Mj −mj|√

2σj

)
= 2√

2π

∫ ∞

z
e−t2/2dt (6)

with z := |Mj−mj |
σj

.

Even for high-resolution MS, spectra show a systematic mass shift due
to calibration inaccuracies. We can easily eliminate this shift for all masses
but the monoisotopic mass: we do not compare masses of the +1, … peaks
directly but instead the difference to the monoisotopic peak, Mj −M0 versus
mj −m0 for j≥1.

Regarding peak intensities, we have to cope with a systematic error in
the measured spectra: we observe in our data that peaks of low intensity are
under-estimated in the measured spectrum, whereas peaks of high intensity
are over-estimated, (Supplementary Fig. 1). We ascribe this problem to
inaccurate peak intensity determination: vendor software estimates peak
intensities as signal-to-noise ratio or height above some baseline. The
baseline, in turn, is determined using several ad hoc rules, and its estimate
can be inaccurate. Unfortunately, such inaccuracies have unequal effects on
peaks of different intensities. We correct this error by adding some user-
defined parameter off to the measured intensities fi, and by subsequent
re-normalization. We found that for both of our datasets, the same parameter
off =+0.02 leads to excellent results.

Computation of P(fj|pj) is done analogously to that of P(Mj|mj). Our
data indicates that after correction, log ratios between measured and
predicted peak intensity log(fj/pj) roughly follow a normal distribution.
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Again, precision parameters β1 (at full intensity) and β0 (at minimal intensity)
are provided by the user (in percent). We compute

σ̂j := 1
3 log

(
1+pj

β1
100 +(1−pj)

β0
100

)

as our precision interval, such that >99.7% of log intensity ratios
log(fj/pj) fall into the range [−σ̂j,+σ̂j]. Now, P(fj|pj) can be estimated
analogously to (6).

4 EXPERIMENTAL RESULTS

4.1 Datasets
To evaluate our method we used two datasets measured on
two instruments. Mass spectra with single charge were measured
from several organic (macro)molecules, composed of the elements
CHNOPS. For every such spectrum, the sum formula of the sample
molecule is known. The spectra were acquired over a period of
2 years; the molecules range in mass from 117 Da to ∼1000 Da.
Peak detection and estimation of peak masses and intensities were
conducted using vendor software.

The first dataset consists of 153 mass spectra. Electrospray
ionization (ESI) experiments were performed using the Fourier
Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer
APEX III (Bruker Daltonik GmbH, Bremen, Germany). The FT-MS
was equipped with a 7.0 T, 160 mm bore superconducting magnet,
infinity cell and interfaced to an external (nano)ESI ion source. All
mass spectra were externally mass calibrated. The five analysis
parameters were chosen as α1 =3, α0 =6, β1 =10, β0 =90 and
off =+0.02.

The second dataset consists of 86 mass spectra. ESI experiments
were performed using the oa-TOF mass spectrometer MicrOTOF
(Bruker Daltonik GmbH, Bremen, Germany). Quasi-internal mass
calibration was used, by measurement of an infused calibrant prior
to the compound of interest. For the oa-TOF analysis, we set α1 =5,
α0 =6.5, β1 =10, β0 =90 and again off =+0.02.

4.2 Identification accuracy
Every input ‘mass spectrum’ consists of masses M0,...,Mk and
intensities f0,...,fk . For every such spectrum, we computed all
molecules such that the monoisotopic mass m0 has relative mass
difference of at most α1 p.p.m. Next, we discarded molecules
violating Senior’s third theorem and radicals with odd sum of
valences. For each remaining molecule, we computed its theoretical
isotopic distribution (with K =10) and compared it to the measured
isotopic distribution. We ranked the molecules according to resulting
probabilities. We did not use any other background information to
identify the molecule.

For the 153 mass spectra in our FT-ICR dataset, 89 resulted in
a correct identification; in 86% of the mass spectra, the correct
interpretation was found in the TOP 10 explanations. There is a
clear correlation between mass and identification accuracy, confer
Table 2. For mass spectra ≤700 Da, the true interpretation was
always found in the TOP 10 explanations, except in one case
where it had rank 13. For 86 mass spectra in the oa-TOF dataset,
the correct sum formula was found in the TOP 10 interpretations
in all but two cases. Moreover, 79 out of 86 compounds were
correctly identified, which correspond to an identification rate of
>90%, (Table 2). Better identification results on the oa-TOF dataset
with lower mass accuracy show the crucial importance of including

Table 2. Number of correct sum formulas at certain positions of the output
list, for the FT-ICR dataset and the oa-TOF dataset

Mass range No. sp. Rank in output list No. sum formulas

1 2 3–5 6–10 11+ Int. Real Chem. Time

FT-ICR dataset

200–300 13 11 2 0 0 0 67 37.2 8.6 1.5
300–400 37 28 5 2 2 0 200 109 10.4 4.3
400–500 57 39 6 6 5 1 579.5 318.2 22.8 13.5
500–600 7 5 2 0 0 0 1800.4 990.3 59.6 40.1
600–700 4 3 0 0 1 0 2668.5 1454 37.3 55
700–800 5 0 1 1 1 2 8797.8 4812 247 232
800–900 14 3 2 1 3 5 14781.6 8101 534.6 485
900–1000 16 0 1 1 1 13 31805.7 17448 1570 1281

Mass range No. sp. Rank No. sum formulas

1 2–6 11+ Int. Real Chem. Time

oa- TOF dataset

100–200 7 7 0 0 11.3 7.4 1.9 0
200–300 21 21 0 0 60.1 40.1 4.6 1.4
300–400 27 26 1 0 297.8 199.7 22.6 8.1
400–500 15 14 1 0 725.6 484.1 32.4 17.3
500–600 10 7 2 1 1479.1 988.9 54.3 36
600–700 1 1 0 0 4600 3080 276 130
700–800 2 1 1 0 10336 6909 578 461
800–900 3 2 0 1 18172.3 12146 914.3 757

We report the number of spectra in this mass range (no. sp.), as well as the average
number of sum formulas over all molecules in the mass range (no. sum formulas).
We distinguish between the number of integer decompositions (int.), the number of
real decompositions (real) and the number of those sum formulas that pass Senior’s
third theorem (chem.). Finally, we give the average running time in milliseconds per
spectrum (time).

intensity measurements into the candidate evaluation. We note that
the intensity accuracy of the oa-TOF instrument is significantly
higher than that of the FT-ICR. We have also tested the variation of
identification rates with different scoring parameters: identification
results are relatively stable for small disturbances of parameter
values, see supplementary material. Parameter estimation could be
automated using a small training set. We are planning to include this
feature in future implementations.

4.3 Running times
We analyzed all 239 mass spectra on a Pentium M 1.5 GHz processor
with blowup b = 5×104, using only a few Megabyte of memory.
This results in running times of <1.3 s per spectrum for the complete
analysis of one mass spectrum. Clearly, running times depend on
molecule masses, see again Table 2. Increasing the blowup beyond
5×104 increased running times, presumably because the smaller
table can be kept in the processor cache.

5 IMPLEMENTATION
We have developed a java-based graphical tool called SIRIUS.
At the SIRIUS core lie efficient algorithms for generating all
elemental compositions for a given mass and error, calculating
isotope patterns for all chemically relevant compositions, and
matching and ranking the candidate molecules against the input
spectrum. SIRIUS combines these algorithms with a powerful
graphical user interface. An extensive management system allows
simplified data handling and offers an easy way to integrate new
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Fig. 2. Screenshot of the SIRIUS software, available from http://bio.informatik.uni-jena.de/sirius/.

algorithms and data structures into the framework. Through a user-
friendly interface, SIRIUS allows the user to import datasets in
most common mass spectrometry file formats. It supports automatic
recognition of molecular ion adducts present in the input spectrum,
handy visualization of identified sum formulas and their isotope
patterns and customizable export of identification results to common
human-readable file formats. Finally, the software provides a basic
functionality to search for sum formulas identified by the algorithm
in NCBI PubChem Database.1

Preparation of a new analysis run can be divided into the following
steps: initializing input data and instrument parameters, setting up
algorithm parameters and extracting isotope patterns from the input
peaklist. Input peaklist and machine settings can be reused for
multiple analyses on the same data. SIRIUS provides the user with
reasonable default values for algorithm parameters. The program
also offers to save all algorithm and mass spectrometer settings. To
this end, SIRIUS creates a persistent workspace that can be used to
store local settings and to automatically reload them on request.

We use the ProteomeCommons.org IO Framework (Falkner et al.,
2007) to import mass spectrometry data, which allows reading
most MS data formats including mzData and mzXML. We parse
the peaklist and divide it into signal groups related to different
compounds. A peaklist can also contain several signal groups
belonging to the same compound, modified by different molecular
ion adducts. Identifying modifications is done by calculating mass
differences between monoisotopic peak masses. In view of the small
number of adducts, we apply a simple exhaustive search to find all

1http://pubchem.ncbi.nlm.nih.gov/

matching mass differences. If there is no prior knowledge on the
source of modification, the user can choose one or more adduct
types for an isotope pattern.

The output of the algorithm is a list of candidate sum formulas
for each compound. Sum formulas are listed in the summary table,
sorted in decreasing order of likelihoods. To view an entry in more
detail, the user can select and compare theoretical and measured
isotope patterns visually, (Fig. 2). Analysis results can be exported to
the application workspace and opened for further evaluation. Export
file formats include plain text, PDF and XML documents.

6 CONCLUSION
We presented an approach to determine the sum formula of an
unknown metabolite solely from its high-resolution isotope pattern.
Our approach allows us to reduce the number of potential sum
formulas to only a few candidates; in many cases we were able
to determine the correct molecular formula. The approach is time-
and memory-efficient and can be executed on a regular desktop PC.
We further presented methods for the efficient simulation of isotope
patterns. This is vital for larger molecules where the search space
increases rapidly.

Results on experimental data clearly show the potential of our
approach, in particular for oa-TOF data. In our evaluation, we have
deliberately ignored some information such as prior probability of
the elements or hetero-to-carbon ratio (Kind and Fiehn, 2007). We
believe that such information should rather be used in a ‘post-
processing’ step by an expert, instead of automatically filtering out
certain sum formulas a priori. Finally, we introduced a user-friendly

223

http://bio.informatik.uni-jena.de/sirius/


S.Böcker et al.

software called SIRIUS, which implements all of the methods
presented.
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