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Abstract

Cereals accumulate starch in the endosperm as their
major energy reserve in the grain. In most cereals the
embryo, scutellum, and aleurone layer are high in oil,
but these tissues constitute a very small part of the
total seed weight. However, in oat (Avena sativa L.)
most of the oil in kernels is deposited in the same
endosperm cells that accumulate starch. Thus oat
endosperm is a desirable model system to study the
metabolic switches responsible for carbon partitioning
between oil and starch synthesis. A prerequisite for
such investigations is the development of an experi-
mental system for oat that allows for metabolic flux
analysis using stable and radioactive isotope labelling.
An in vitro liquid culture system, developed for de-
tached oat panicles and optimized to mimic kernel
composition during different developmental stages in
planta, is presented here. This system was subse-
quently used in analyses of carbon partitioning be-
tween lipids and carbohydrates by the administration
of '*C-labelled sucrose to two cultivars having differ-
ent amounts of kernel oil. The data presented in this
study clearly show that a higher amount of oil in the
high-oil cultivar compared with the medium-oil cultivar
was due to a higher proportion of carbon partitioning
into oil during seed filling, predominantly at the earlier
stages of kernel development.

Key words: Avena sativa, carbon partitioning,
endosperm, lipid, oat, oil, starch, triacylglycerol.
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Introduction

Plant oils derived from oilseed crops represent an important
agricultural commodity that is used primarily for food and
feed purposes today (Patel et al., 2006). In recent years, the
demand for plant-derived oils as renewable alternatives to
fossil oil for use as biofuels and in industrial applications
has increased due to the rising cost of petroleum and the
increased concern about the environment. The world
production of vegetable oil increased with 61% between
1997-2007 (FAOSTAT, 2008). However, the supply of
vegetable oils today relies upon only a few crops; palm oil
(Elaeis guineensis), soy bean (Glycine max), rape seed
(Brassica napus), and sunflower (Helianthus annuus),
which in 2007 accounted for 83% of total world production
(FAOSTAT, 2008). The restricted supply of feedstock due
to the limited amount of oil crops is now one of the biggest
challenges in plant oil production (Durrett et al., 2008;
Thelen and Ohlrogge, 2002b). One way to generate new oil
crops that are economically viable is to redirect carbon flux
within plants from starch to oil. Increased knowledge of oil
biosynthesis in plants is therefore of crucial importance for
the development of novel oil crops for a sustainable plant
oil production in the future.

Plant seeds are designed to carry the genetic material and
all the nutrients that are required to establish the next
generation of the species. Degradation of the stored nutrients
provides the germination process with building blocks and
energy, and must last until photosynthetic activity takes
over, providing further growth and development for a mature
plant. During seed development, sucrose is transported from
source leaves to seeds where the reduced carbon is

* To whom correspondence should be addressed: E-mail: Asa.Ekman@]tj.slu.se

Abbreviations: DW, dry weight; TAG, triacylglycerol.

© 2008 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://jxb.oxfordjournals.org/open_access.html
http://creativecommons.org/licenses/by-nc/2.0/uk/

4248 Ekman et al.

channelled into different storage compounds. Typical
storage forms of carbon in seeds are starch, protein, and oil
(triacylglycerols; TAGs), the economically valuable prod-
ucts used for food, feed, and industrial applications. The
proportions of storage compounds differ between plant
species, depending upon physiological differences, and
master regulators of carbon partitioning within the seed.
Cereal seeds store carbon mostly in the form of starch and
protein in the endosperm, and as oil in the embryo which
usually constitutes a very small part of the seed structure.
However, the high oil content of some maize (Zea mays)
varieties is due to an enlarged embryo (Alexander and Seif,
1963). The oil palm is another monocot that stores a large
amount of oil in the kernel endosperm (Oo et al., 1985). Oil
seeds like rape typically store oil in the two cotyledons that
serve as the main source of energy available during
germination generated by the P-oxidation cycle. The
endosperm reserves in the mature non-endospermic oil seed
are depleted during seed development by the embryo and
then reorganized in the cotyledons (Da Silva et al., 1997,
Focks and Benning, 1998). There are also many dicot oil
seeds like castor bean (Ricinus communis) where the
endosperm is retained as a storage tissue in the mature seed
(Marriott and Northcote, 1975). Altogether, even though
plants share the same metabolic pathways for energy storage
and usage, there is a broad spectrum of variability in how
different species partition the fixed carbon within the seed.
Oat (A. sativa) is a unique cereal, due to the storage of oil
within the endosperm ranging between 3—18% oil amongst
different cultivars, whereas, in other cereals (i.e. wheat;
Triticum aestivum, barley; Hordeum vulgare) this range is
limited to 2-3% (Price and Parsons, 1975; Peterson and
Wood, 1997). Previous studies aiming to identify key
regulatory steps in the oil biosynthetic pathway established
that oil in oat seeds accumulates transiently and is
deposited in the same endosperm cells that produce starch
(Banas et al., 2007; Waheeb et al., 2008). This finding is
the basis for the suitability of oat endosperm as a model
system for studying carbon partitioning in cereal seeds. In
contrast to oil seeds like Arabidopsis thaliana and rape
where the oil is synthesized during the later developmental
stages at the expense of transiently accumulated starch
(Focks and Benning, 1998; Vigeolas et al., 2004), in oat
seeds, a major part of the oil is accumulated at an early
stage of development and starch accumulation continues
throughout seed development. The ability to redirect carbon
flux from starch to oil within the endosperm may enhance the
oil levels in cereals to give an oil productivity exceeding that
of rape since cereals are, in general, much higher yielding
crops. If normal wheat yielding approximately 6 tonnes ha ™
could be converted to an oil crop with 25% oil, this oil-
wheat would yield 4.5 tonnes ha™"' (the energy density of oil
being approximately double compared with that of starch)
giving 1.1 tonnes oil ha~' which is comparable to oil yields
of winter rape. Rape seed, which is today the only

economically viable oil crop in northern Europe, requires
a considerably higher input of pesticides and fertilizers and
longer crop rotation periods than most cereals.

A prerequisite for such investigations is the development
of an experimental system that allows metabolic flux
analysis using stable and radioactive isotope labelling in
oat seeds. In this study, an in vitro liquid culture system
with a defined growth medium for detached oat panicles
was established and optimized to mimic kernel composition
during different developmental stages in planta. In order to
gain a more detailed understanding of oil deposition in oat,
seed filling was examined at many more developmental
stages than previously reported (Banas et al., 2007). To
illustrate the differences in carbon partitioning between
carbohydrates and lipids in oat cultivars with differing oil
concentrations, '*C-labelled sucrose was administered in an
in vitro system and the accumulation of label in seeds was
measured. Distribution of '*C among different lipid classes
was determined to estimate differences in carbon flux
between TAG and membrane lipids.

Materials and methods

Plant material, growth conditions, and seed sampling

Two oat cultivars, cv. Matilda with 10% oil in mature seeds, and cv.
Freja with 6% oil (Svalov Weibull AB, Svalov), were grown in
Conviron growth chambers (CEFa UC Davis, CA) under fluores-
cent light (200 pmol m~2 s~' photosynthetically active radiation)
under a 16/8 h light/dark photoperiod at 21/18 °C temperature and
70% humidity. Seeds were harvested at five developmental stages
from anthesis (stage A) to maturity (stage J) defined by the size,
colour, texture, and endosperm consistency of the seeds as
described in Supplementary Table S1 at JXB online. The sampled
developmental stages can be compared to approximately 4, 10, 14,
20, and 30 d post anthesis. Seeds were harvested, weighed, and
subsequently were either frozen in N, (1) and stored at —80 °C prior
to lipid analysis, or dried at 80 °C for dry weight (DW) and starch
determination. Starch concentration in seeds was determined
enzymatically (Megazyme, Wicklow, Ireland). All analyses were
on three biological replicates, each consisting of three seeds from
one panicle.

In vitro culture of seeds on detached oat panicles

Panicles were detached from plants at anthesis. To eliminate sucrose
contribution from leaf photosynthesis in order to achieve a more
careful control of carbon supply, stems were cut to approximately
15 cm (panicle not included) and over the first node to exclude all
leaves. Cut stems were incubated for 20 min in 0.5% chlorine for
surface sterilization and transferred to 15 ml plastic tubes. All stems
were cut under water to eliminate cavitation. These stems were then
placed in tubes with sterile nutrient solution with various sucrose
concentrations to determine the optimum concentration required for
seed filling, starting from anthesis to fully matured seeds. Based on
these findings, the optimum sucrose concentration was established
to be 15 g 17! sucrose. In addition to sucrose, the media contained
0.5 g 17! 2[N-morpholino] ethane sulphonic acid, 0.8 g1
glutamine, and 1.47 g 1™' Murashige-Skoog medium (all chemicals
from Duchefa, Harleem, The Netherlands). Glutamine was chosen
as the nitrogen source since it gives higher seed filling of wheat



seeds developed in vitro compared with other nitrogen sources
investigated in combination with sucrose (Singh and Jenner, 1983).
Tubes containing the stems were covered with parafilm and
incubated at light intensities and climate conditions similar to those
used for the in planta grown panicles. The nutrient solution was
changed and stems were cut again up to 2—4 mm every second day.
Once a week, stems were surface-sterilized using 0.5% chlorine
solution. Seeds were harvested at five different developmental
stages (stage C, D, E, G, and J) similar to seeds developed in
planta (see above). Seeds matured in vitro germinated with the
same frequency as those developed in planta (results not shown).

Radioactive isotope labelling in oat seeds

Seeds on detached oat panicles were developed from anthesis to
a certain stage of development by feeding panicles with nutrient
medium containing non-radioactive sucrose. At various develoAp-
mental stages, panicles were fed with medium containing U-'*C
sucrose (Amersham, Buckinghamshire, UK) with a specific radio-
activity of 30 dpm nmol~! and were further incubated for 48 h and
the seeds were then harvested for analysis. Whole seeds were
sampled from four different developmental stages (stage C, D, E,
and G). At stage E and G, seed samples were split into
embryo+scutellum and endosperm. Subsequently, these tissues
along with whole seed samples were collected.

Lipid analysis and radioactivity measurements

Total lipids were extracted from seeds according to Bligh and Dyer
(1959) resulting in one chloroform phase containing the lipids, and
one water/methanol phase containing the starch, sugars, cell-walls,
and proteins. A small fraction of the chloroform phase was
methylated using 2% sulphuric acid in methanol and analysed with
gas-liquid chromatography (Schimadzu, GC-17A, BergmanLabora,
Sweden) using a WCOT fused silica 50 mx0.32 mm ID capillary
column coated with CP-Wax 58-CB DF=0.2 (Chrompack Inc., The
Netherlands) with methyl-heptadecanoate as the internal standard to
determine the total fatty acid amount.

In the case of radio-labelled seeds, an aliquot of the chloroform
phase was evaporated and resuspended in the scintillation solvent
(Ultima Gold F, Perkin Elmer, Shelton, USA). The water/methanol
phase (including starch, sugars, cell-walls, and proteins) was vortexed
and an aliquot was transferred into a scintillation solvent vial (Ultima-
Flo M, Perkin Elmer, Shelton, USA). Fractions of total lipid extracts
were separated using thin layer chromatography (TLC) on silica 60
plates (Merck, Darmstadt, Germany) in hexane:diethylether:acetic acid
in volumes of 35 ml:15 ml:10 pl. Lipids were identified (TAGs, polar
lipids, and the rest) and scraped from plates to vials with scintillation
solvent (Ultima Gold F, Perkin Elmer, Shelton, USA). Radioactivity
was determined using a liquid scintillation counter (PW 4700, Philips,
Almelo, The Netherlands) and corrected for quenching.

Statistical analysis of data

Data were analysed by analysis of variance (ANOVA) using the
general linear model at level 5% (MINITAB 14; Minitab, State
College, PA, USA) in which all factors were fixed. Since interactions
between parameters were the standard case in all datasets, pairwise
comparisons using the method of Tukey of all treatments were made
at the 5% level. All the stated differences are significant at P <0.05.

Results

Comparison of seed filling in planta and in vitro

When using oat seeds developed in vitro as a model
system for carbon partitioning in cereal seeds, it is of
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crucial importance that the kernel development reflects the
normal physiological development of the seed. Therefore,
dry weight, starch, and oil concentration of seeds developed
in planta and on detached panicles in vitro were compared
at various developmental stages from shortly after anthesis
to maturity (Fig. 1; for definitions of the developmental
stages see Supplementary Table S1 at JXB online). Among
the sucrose concentrations tested in the in vitro system of
detached oat panicles, 15 g 17! gave the highest seed filling
at maturity (approximately 60% compared to mature seeds
developed in planta) and therefore this concentration was
used in all experiments. At this sucrose concentration, the
rate of seed development followed that of seeds in planta
with approximately 30 d from anthesis to maturity. Higher
sucrose concentrations in vitro induced earlier senescence
of panicles as compared to in planta (results not shown),
a potential contributing factor for seed filling ratios below
60% as compared with seed filling in planta.

Seed dry weight in vitro was similar to that in planta up
to stage E; thereafter, however, it showed a lower seed
filling rate (Fig. 2a, b). No difference in seed weight
between cv. Matilda and Freja at different developmental
stages was observed. This finding is in agreement with
previous reports (Banas et al., 2007) and enable us to
compare absolute amounts of storage products per seed
between cultivars directly.

The cultivar differences in oil concentration present
in planta were also observed in vitro (Fig. 2e, f). This
observation is of central importance for the physiological
relevance of data obtained from this model system as an
example of carbon partitioning between starch and oil in
the cereal seed. Total fatty acid content was similar at
stage C between the two cultivars, but thereafter, the
differences increased throughout seed development. It
should be noted that the major portion of total fatty acids
at stage C were likely to be from membrane lipids and not
from the TAG fraction. The final oil concentrations on
a dry weight basis (calculated from the amount of fatty
acids assuming that they all were TAGs) for cvs Matilda
and Freja in seeds developed in planta were 10.5% and
6.4%, and in vitro were 12.0% and 7.7%, respectively.

Starch filling continued throughout seed development
from anthesis to maturity in planta, whereas in vitro starch
accumulation almost ceased after stage E (Fig. 2c, d). No
difference in starch concentration between cultivars could
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Fig. 1. Oat seeds (cv. Matilda developed in planta) at developmental
stages A—J. Upper row, crease side; lower row, underside.
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Fig. 2. Comparison of dry weight (DW), starch, and oil concentration of oat seeds during development in planta (a, c, €) and in vitro (b, d, f) from an
early stage (stage C) to mature seeds (stage J) of cv. Matilda (filled bars/symbols) and Freja (open bars/symbols). Results are the mean *standard

deviation for three samples.

be observed. The in vitro levels of starch reached 54% of
the levels achieved in mature seeds in planta in both
cultivars. On the other hand, oil amounts in vitro reached
65% and 78% for cvs Freja and Matilda, respectively,
compared to oil levels in seeds in planta.

"4C-sucrose incorporation and partitioning between
lipids and carbohydrates

Detached oat panicles were fed with radioactive labelled
"C-sucrose for 48 h at four different developmental
stages. The '*C accumulation in lipid fractions compared
with total '*C accumulation in seeds therefore reflect the
net accumulation of lipids (lipid synthesis minus degrada-
tion) at those four stages of development, assuming that

the developmental stage of the seeds is not significantly
altered during the 48 h incubation. It should be noted that
cultivar differences found in '*C accumulation in lipids
might be due to differences in either synthesis or
degradation pathways. Further metabolic flux studies
should include time-courses of '*C incorporation and
pulse labelling of oat seeds to elucidate the turnover rates
of different seed components. Moreover, the carbon
contribution from glutamine has not been corrected in this
study, thus the accumulation of total carbon in the non-
lipid pool is underestimated in the experimental data.

It is also pertinent to note in this context that one-third
of the carbons in the sucrose are lost by decarboxylation
in fatty acid synthesis as reported for rape (Schwender and
Ohlrogge, 2002) and sunflower (Alonso et al., 2007).



Although green seeds refix much of this carbon for lipid
synthesis (Ruuska et al., 2004), the oat endosperm lacks
chloroplasts. Therefore, this carbon is probably lost for
lipid synthesis in the endosperm, but might be refixed in
the green seed coat. Thus, it is likely that the proportion of
carbon channelled into lipids may be up to 30% higher
than the values given here.

Of the two cultivars, seeds of cv. Matilda assimilated more
sucrose compared with cv. Freja at all stages of development
as measured by '“C accumulation from fed '*C sucrose
(Fig. 3). The early stage of seed development (stage C)
showed the highest incorporation of carbon to seeds on
a DW basis for both cultivars, suggesting that this is one of
the most active stages in the seed-filling period.

In the analysis of '*C accumulation in lipids and non-
lipids (including starch, sugars, cell-walls, and proteins) of
whole seeds developed in vitro, the difference between the
high-oil cv. Matilda and medium-oil cv. Freja was
striking. At the early stage of development (stage C), cv.
Matilda incorporated 37% of total "*C accumulation into
the seed as lipids, whereas cv. Freja only incorporated
15% of total '*C in lipids (Fig. 4a, b). In seeds of cv.
Matilda at stage D, the proportion of '*C recovered in
lipids was as high as in stage C, whereas in seeds of cv.
Freja the proportion increased from 15% in stage C to
approximately 29% in stage D (Fig. 4a). The proportion of
'*C recovered in lipids gradually decreased from stage E
to stage G where both cultivars accumulated approxi-
mately 15% of total "*C in lipids.

To determine whether total seed lipid accumulation
during the later stages of development is as a result of lipid
accumulation in the embryo+scutellum (which is an oil-
dense tissue in all cereals) or in the endosperm, '‘C
accumulation in lipids and non-lipids of total "*C label at
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Fig. 3. Total "*C accumulation in seeds developed in viro on detached

oat panicles of cv. Matilda (filled bars) and Freja gopen bars) fed with '*C-

labelled sucrose (specific activity 30 dpm nmol™ ). Seeds were harvested

at different developmental stages after a 48 h incubation with '*C-sucrose.
Results are the mean *standard deviation for three samples.
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stages E and G was measured in those parts of the seeds
(Fig. 5). Of the total "*C incorporation in seeds at stage E,
21% and 9% was found in endosperm lipids in cvs Matilda
and Freja, respectively (Fig. 5a). At stage G, when seeds
were almost totally yellow and endosperm had started to
solidify, the proportion of "C found in endosperm lipids of
cv. Matilda had decreased to approximately 12% of total
e incorporation in the seed. However, this proportion was
still 5.4% higher than in cv. Freja endosperm. In the
embryo+scutellum, no cultivar differences in the propor-
tions of '*C accumulation were found, neither in lipids
(approximately 5% of total "*C incorporation in the seed,
Fig. 5a) nor in non-lipid metabolites (approximately 10%
of total '*C incorporation in the seed, Fig. 5b). There were
no differences in '*C accumulation in the embryo+scutel-
lum between development stages E and G.

Carbon partitioning to TAG in oat seeds

To investigate the channelling of carbon into various seed
lipid species, '*C incorporation into TAG, polar lipids,
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Fig. 4. Proportions of 4C accumulation in lipids (a) and non-lipids (b).
Seeds were developed in vitro on detached oat panicles of cv. Matilda
(filled bars) and cv. Freja (open bars) and harvested at different
developmental stages after a 48 h incubation with '*C-sucrose. Non-
lipid fractions include starch, sugar, cell-wall, and protein. Results
(mean *standard deviation for three samples) are percentages of the
total '*C accumulation in the whole seed.
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incubation with '“C-labelled sucrose. Non-lipid fractions include starch,
sugar, cell-wall, and protein. Results (mean *standard deviation for
three samples) are percentages of the total '*C accumulation in the
whole seed.

and ‘other lipids’ (non-polar lipids other than TAGs,
including diacylglycerol and free fatty acids) was mea-
sured. Of '*C accumulation in total seed lipids at stage C,
70% and 55% was found in TAG in cvs Matilda and
Freja, respectively (Fig. 6a). The proportion of '“C
recovered in TAG relative to total lipids decreased
gradually throughout seed development, reaching 30% at
stage G for both cultivars, with concomitant increased
proportions of "*C found in other non-polar lipids as well
as polar lipids (Fig. 6b, c).

In the embryo+scutellum, approximately 18% of '*C
accumulation in total lipids in seeds was found in TAG
with no significant differences between cultivars or de-
velopmental stages (Fig. 7a). In contrast to the embryo+
scutellum, in the endosperm nearly twice the proportion
(32%) of *C was recovered in TAG relative to total lipids
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Fig. 6. Proportions of '*C accumulation in different lipid classes in
seeds developed in vitro on detached oat panicles of cv. Matilda (filled
bars) and cv. Freja (open bars) at different developmental stages.
Results (mean *standard deviation for three samples) are percentages
of the 'C accumulation in total lipids of the whole seed. TAG,
triacylglycerol; other lipids, non-polar lipids other than TAG.

in seeds of cv. Matilda compared to cv. Freja (18%) at
stage E. This proportion decreased in the endosperm from
stage E to stage G in both cultivars to a level that was
comparable to the proportion of '*C accumulation in TAG
in the embryo+scutellum at stage G (Fig. 7).

Overview on carbon incorporation into oat seed
components

Data sets are displayed as overview maps to illustrate the
differences found in carbon partitioning into different
components of oat seeds. The first map comparing 4c
accumulation in whole seeds of the two cultivars at the
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very early and at the late stage of development (Fig. 8)
demonstrates that the biggest differences were found at
the early stage, when a much higher proportion of 4c
accumulated in lipids as well as in TAG in cv. Matilda
compared with cv. Freja. The second map comparing '*C
accumulation in different parts of the seeds at stage E
represents the latest stage of development where the two
cultivars still show differences in '"*C accumulation in
endosperm lipids before maturation (Fig. 9).

Discussion

Oat seeds developed on detached panicles as
a model system for carbon partitioning in cereal seeds

Redirection of carbon flux from starch to oil in the cereal
seed can provide for new high-yielding oil crops. Using
oat as a model system, we would enhance our un-
derstanding of carbon partitioning from starch to oil in
a cereal endosperm. Such studies require a method of
studying these metabolic fluxes with radioactive and
stable isotope labelling. This research details the success-
ful implementation of an in vitro culture system for oat
seeds that allows the examination of metabolic flux
throughout development.

The in vitro system used in this study utilizes detached
oat panicles fed with sucrose and nutrient solution through
the transpiration stream. Maximum filling of oat seeds in
vitro in this study (60% compared with in planta) was
achieved at 15 g 1”! sucrose (44 mM) and 0.8 g 17!
glutamine. As a comparison, the in vivo sucrose concentra-
tion in the crease phloem of developing wheat grains is
approximately 150-300 mM (Fisher and Wang, 1995). The
seed filling was somewhat less than that reported pre-
viously in similar growth systems for Oryza sativa (Lee
et al., 2000) and Triticum aestivum (Singh and Jenner,
1983). However, and more importantly, oat seeds in vitro
displayed comparable developmental growth rates and
cultivar differences in oil accumulation as those in planta.
Oil concentrations, both in vitro and in planta, were also
comparable to the levels detected under greenhouse and
field conditions (Banas et al., 2007; www ffe.slu.se).

Cultivar differences in starch concentrations were not
observed under our growth conditions in planta or on
detached panicles. This is in contrast to previous data,
where cv. Freja accumulated a higher starch level as
compared to cv. Matilda under greenhouse (Banas et al.,
2007) and field growth conditions (A Ekman, unpublished
data). This inverse relationship between starch and oil
levels in oat seeds was also shown in the field in a selection
of 25 oat lines with elevated oil levels (Peterson and Wood,
1997). It is probable that the environmental conditions used
in this study promoted a shift in sucrose import rate into the
cv. Matilda seeds compared to greenhouse or field
conditions. However, the weight ratios between starch and
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than TAG. Values are mean values for three samples.

oil in cvs Matilda and Freja are only marginally changed
depending on growth condition (cv. Freja; field 8:1, growth
chamber 8:1, in vitro 5:1 and for cv. Matilda, field 4:1,
growth chamber 5:1, in vitro 3:1). This finding clearly
illustrates that the cultivar differences in partitioning of
carbon between starch and oil are present under our
experimental conditions.

A potential explanation on why the in vitro-grown seeds
did not reach seed weight levels of those achieved in
planta may be due to decreased starch deposition during
the later stages of the in vitro development. Oil accumu-
lation that peaks during the early stages of development
was unchanged in vitro as compared to in planta
conditions. However, the in vitro system can be regarded
as a reasonable qualitative, though not quantitative, model
system for storage filling throughout seed development.

Carbon partitioning between lipids and carbohydrates
in oat seeds

The in vitro system of oat seed development on detached
oat panicles was used for the first time in analyses of
carbon partitioning between lipids and non-lipids in
a cereal seed.

Cultivar differences clearly show that the high-oil cv.
Matilda accumulated a much higher proportion of total c
incorporation in the seed into lipids (37%) than the
medium-oil cv. Freja (15%) at the very early stage of seed
development. The proportion of *C recovered in lipids
relative to total seed incorporation decreased in both
cultivars with increasing maturity. This is in agreement
with a study where oat plants were fed '*CO, at different

developmental stages (Beringer, 1971). If a possible turn-
over of lipids is disregarded, the data suggest that the
proportion of sugar channelled towards lipid synthesis
contributes to the double amount of lipids observed in the
mature seeds of cv. Matilda as compared to cv. Freja.
Whether cultivar differences in the turnover of endosperm-
specific lipids also play a role in the final levels of oil
stored in the endosperm remains to be elucidated, although
turnover of lipids in oat seeds during development has been
suggested (Banas et al., 2007). Degradation of fatty acids
through B-oxidation in the endosperm may be possible in
premature monocot seeds when endosperm cells have yet
to undergo programmed cell death (Young and Gallie,
2000). The turnover of lipids has been characterized in
dicot oil seeds during normal seed development (Poirier
et al., 1999; Sarmiento et al., 1998).

Despite the reduction in '"*C accumulation in lipids
throughout seed development, seeds accumulate rather high
¢ at later stages of development, potentially due to lipid
synthesis in the oil-dense tissues of the embryo-+scutellum
which expands after the midstage of seed development
(Banas et al., 2007). Nevertheless, the main part of 4c
accumulation in lipids is still carried out in the endosperm,
but with differences between cultivars: after the midstage of
development, the high-oil cultivar was accumulating a sig-
nificantly higher proportion of total "*C in the seed into
endosperm lipids compared to the medium-oil cultivar.

Carbon partitioning to TAG in oat seeds

Differences in lipid accumulation between cultivars were
not only found at the level of carbon partitioning to total
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lipids, but also at the level of carbon partitioning to
different lipid classes. In fact, the basis for the different oil
content between the two cultivars, if not taking turnover
of lipids into account, is because cv. Matilda incorporates
more carbon into the seeds and also channels a sub-
stantially higher proportion of that carbon into lipids. At
the very early developmental stage cv. Matilda accumu-
lated sucrose up to 850 nmol seed™' 48 h™' in TAG
whereas cv. Freja accumulated only up to 250 nmol
seed ! 48 h™! (estimated from '*C accumulation). The
ratio of carbon accumulation in TAG relative to other
lipids decreased in both cultivars at the later stages of
development, establishing altered oil metabolism in
matured seeds.

Contrary to the embryo+scutellum, the major part of the
lipids accumulating in the endosperm during the later
stages of development (stage E and G) was not TAG but
polar lipids, i.e. membrane lipids. However, proportions
of carbon accumulation in TAG relative to other lipids in
the endosperm still differed between cultivars at the earlier
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stage of development when seeds were still green. These
differences were minimized to almost equal levels at the
stage when seeds were almost yellow. The embryo+scu-
tellum showed no differences in the ratio of carbon
accumulation in TAG relative to other lipids after the
midstage of development and these proportions were the
same for both cultivars, suggesting that differences in lipid
metabolism are most probably explained predominantly
by differences in the endosperm tissue. It should be noted
that the proportion of '*C found in TAG compared to
other lipids was considerably less than what was found by
mass analysis at all stages (Banas et al., 2007). The most
plausible explanation for this is that the 48 h labelling
may not be long enough to generate a steady-state
labelling pattern since there is a flux of fatty acids to
TAG via polar lipids (Stymne and Stobart, 1987).

Putative reasons for higher carbon partitioning to oil

The regulation of oil synthesis in developing seeds can
occur at multiple levels in the biochemical conversion of
photosynthetically fixed carbon into TAG. Sucrose trans-
port in conjunction with the regulatory mechanisms in the
endosperm play a central role in determining the final
amount of oil in the endosperm. Sucrose from source
organs is imported into the seed and degraded to pyruvate
through glycolysis, both in the cytosol and in the plastid
(Plaxton and Podesta, 2006). Pyruvate subsequently enters
de novo fatty acid synthesis in the plastid and finally is
acylated to the glycerol backbone in the endoplasmatic
reticulum to give rise to TAG. Starch is synthesized in the
plastid from hexose sugars upstream in glycolysis with
less metabolic cost for the plant as compared to oil
synthesis. This raises the following questions: does the
high-oil oat cultivar have a lower starch synthesizing
capacity, or does the higher oil result from a more
efficient oil synthesis in the two competing pathways?
The key force behind ‘sink strength’ (the capacity to
attract sucrose) is the combined activity of different
isoforms of invertases and sucrose synthase that cleaves
sucrose in sink tissues (Sturm and Tang, 1999). Since
these enzymes also regulate the sucrose/hexose ratio, they
have been implicated as important factors in carbon
partitioning into different biochemical pathways (Weber
et al., 1996; Cheng and Chourey, 1999; Sturm and Tang,
1999; Weschke et al., 2003). The high-oil cv. Matilda
exhibited increased sink strength under our experimental
conditions as suggested by the higher sucrose incorpora-
tion together with the higher energy content contained in
the accumulated oil plus starch as compared to cv. Freja.
This may be, in part, due to alterations in enzyme
activities involved with sucrose cleavage in the endo-
sperm. However, this difference in total energy content of
oil plus starch is not seen in these cultivars grown under
greenhouse conditions, regardless of those differences
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seen in oil content (Banas er al., 2007). It is therefore
likely that the most upstream biochemical component
responsible for the difference in oil content between the
cultivars is in the competition in sugar utilization between
glycolysis and synthesis of starch and other sugar
polymers in the endosperm cells.

Attempts to increase oil production of oil seeds include
the following alternative approaches: (i) increasing fatty
acid synthesis by modifying the activity of acetyl-CoA
carboxylase (ACC) in Arabidopsis thaliana (Thelen and
Ohlrogge, 2002a), (ii) increasing the supply of glycerol-3-
phosphate through the overexpression of G3P dehydroge-
nase in rape seeds (Vigeolas ef al., 2007), or (iii) increasing
the transfer of acyl groups to the glycerol backbone through
the overexpression of lysophosphatidate acyl transferase
(Taylor et al., 2002) and diacylgycerol acyltransferase
(Weselake et al., 2008) in rape seed. A major quantitative
trait locus (QTL) for oil content in oat has been linked to
an ACC gene (Kianian et al., 1999). ACC catalysis is the
first committed step in fatty acid biosynthesis. However,
this step is far downstream from the utilization of glucose
for starch synthesis, which makes it unlikely to be the
single determining enzyme for the switch from starch to oil
synthesis in the endosperm cells.

Transcription factors regulating oil synthesis in plants are
promising targets to engineer crops to produce higher oil
yields. Candidate transcription factors that regulate oil
synthesis that have been characterized in plants include
WRINKLEDI1 in Arabidopsis thaliana (Cemac and
Benning, 2004; Masaki et al., 2005; Baud et al., 2007).
Mutants lacking this gene have a deficiency in oil bio-
synthesis of up to 80% due to reduced glycolytic enzyme
activity (Focks and Benning, 1998). Similar results have
been reported for A. thaliana overexpressing the LEC2
gene (Santos-Mendoza et al., 2008), a gene proposed to act
upstream of WRII (Baud et al., 2007). Other examples are
the dof-type transcription factors from soybean (Glycince
max) GmDof4 and GmDofl 1, that by overexpression in A.
thaliana induce the expression of one of the subunits of
acetyl CoA carboxylase (Wang et al., 2007).

In this study, the high accumulation of carbon in oil
found in the high-oil oat cv. Matilda compared to the
medium-oil oat cv. Freja during the very early stages of
development suggests that the regulation of genes or
proteins involved with oil biosynthesis and/or breakdown
is different in the endosperms of these cultivars. Global
gene expression studies using novel methods for ultra-
deep EST sequencing of oat endosperm (Schuster, 2008)
is likely to identify key events regarding gene expression
as well as to identify enzymatic pathways regulating the
carbon flux into oil in oat endosperm. These studies, in
combination with metabolic flux analyses and the silenc-
ing of identified genes through antisense ODN (Sun et al.,
2007), will improve our understanding of those factors
which contribute to the accumulation of starch and oil in

oat endosperm. It is this understanding that will enable us
to engineer enhanced pathways into plants that have the
potential to redirect fixed carbon from photosynthesis into
oil.

Supplementary data

Supplementary data are available at JXB online.
Table S1. Definitions of stages A-J of seed develop-
ment in planta.
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