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ABSTRACT

Summary: Genetic data obtained on population samples convey
information about their evolutionary history. Inference methods
can extract part of this information but they require sophisticated
statistical techniques that have been made available to the biologist
community (through computer programs) only for simple and
standard situations typically involving a small number of samples.
We propose here a computer program (DIY ABC) for inference based
on approximate Bayesian computation (ABC), in which scenarios
can be customized by the user to fit many complex situations
involving any number of populations and samples. Such scenarios
involve any combination of population divergences, admixtures
and population size changes. DIY ABC can be used to compare
competing scenarios, estimate parameters for one or more scenarios
and compute bias and precision measures for a given scenario
and known values of parameters (the current version applies to
unlinked microsatellite data). This article describes key methods
used in the program and provides its main features. The analysis of
one simulated and one real dataset, both with complex evolutionary
scenarios, illustrates the main possibilities of DIY ABC.
Availability: The software DIY ABC is freely available at http://www.
montpellier.inra.fr/CBGP/diyabc.
Contact: j.cornuet@imperial.ac.uk
Supplementary information: Supplementary data are also available
at http://www.montpellier.inra.fr/CBGP/diyabc

1 INTRODUCTION
Until now, most literature and software about inference in population
genetics concern simple standard evolutionary scenarios: a single
population (Beaumont, 1999; Griffiths and Tavaré, 1994; Stephens
and Donnelly, 2000), two populations exchanging genes (De Iorio
and Griffiths, 2004; Hey and Nielsen, 2004) or not (Hickerson
et al., 2007) or three populations in the classic admixture scheme

∗To whom correspondence should be addressed.

(Excoffier et al., 2005; Wang, 2003). The main exception to our
knowledge is the computer program BATWING (Wilson et al., 2003)
which considers a whole family of scenarios in which an ancestral
population splits into as many subpopulations as needed. However,
in practice, population geneticists collect and analyse samples which
rarely correspond to one of these standard scenarios. If they want to
apply methods developed in the literature and for which computer
programs are available, they have to select subsets of samples (to fit
these standard situations), at the price of lowering the power of the
analysis. The other solution is to develop their own software, which
requires specific skills or the right collaborators. Rare examples of
inference in non-standard scenarios can be found in O’Ryan et al.
(1998) including three populations and two successive divergences,
or Estoup et al. (2004) (10 populations that sequentially diverged
with initial bottlenecks and exchanging migrants with neighbouring
populations).

Inference in complex evolutionary scenarios can be performed
in various ways, but all are based on the genealogical tree of
sampled genes and coalescence theory. A first approach used in
programs such as IM (Hey and Nielsen, 2004) or BATWING consists
of starting from a gene genealogy compatible with the observed
data and exploring the parameter and genealogy space through
MCMC algorithms. One difficulty with this approach is to be sure
that the MCMC has converged, because of the huge dimension
of the parameter space. With a complex scenario, the difficulty is
increased. Also, although not impossible, it seems quite challenging
to write a program that would deal with very different scenarios.
A second approach pioneered by Beaumont (2003) consists in
combining MCMC exploration of the scenario parameter space with
an importance sampling (IS)-based estimation of the likelihood.
The strength of this approach is that the low number of parameters
ensures a (relatively) fast convergence of the MCMC. Its weakness
is that the likelihood is only approximated through IS, sometimes
resulting in poor acceptance rates.

When dealing with complex situations, the two previous
approaches raise difficulties which mainly stem in the computation
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of the likelihood. Consequently, a line of research including the
works of Tavaré et al. (1997), Weiss and von Haeseler (1998),
Pritchard et al. (1999) and Marjoram et al. (2003) developed a
new approach termed approximate Bayesian computation (or ABC)
by Beaumont et al. (2002). In this approach, the likelihood
criterion is replaced by a similarity criterion between simulated
and observed datasets, similarity usually measured by a distance
between summary statistics computed on both datasets. Among
examples of inference in complex scenarios given above, all but one
(the simplest) have used this approach, showing that it can indeed
solve complex problems.

The ABC approach presents two additional features that can be of
interest for experimental biologist. One characteristic, already noted
by Excoffier et al. (2005), is the possibility to assess the bias and
precision of estimates for simulated datasets produced with known
values of parameters with little extra computational cost. To get
the same information with likelihood-based methods would require
a huge amount of additional computation whereas, with ABC, the
largest proportion of computation used for estimating parameters can
be recycled in a bias/precision analysis. The second feature is the
simple way by which the posterior probability of different scenarios
applied to the same dataset can be estimated (e.g. Miller et al., 2005;
Pascual et al., 2007).

In its current state, the ABC approach remains inaccessible to
most biologists because there is not yet a simple software solution.
Therefore, we developed the program DIYABC that performs ABC
analyses on complex scenarios, i.e. which include any number of
populations and samples (samples possibly taken at different times),
with populations related by divergence and/or admixture events
and possibly experiencing changes of population size. The current
version is restricted to unlinked microsatellite data. In this article, we
describe the rationale for some methods involved in the program.
Then we give the main features of DIYABC and we provide two
complete example analyses performed with this program to illustrate
its possibilities.

2 KEY METHODS INVOLVED IN DIY ABC
Inference about the posterior distribution of parameters in an ABC
analysis is usually performed in three steps (see Figure S1 in
Supplementary Material). The first one is a simulation step in which
a very large table (the reference table) is produced and recorded.
Each row corresponds to a simulated dataset and contains the
parameter values used to simulate the dataset and summary statistics
computed on the simulated dataset. Parameter values are drawn from
prior distributions. Using these parameter values, genetic data are
simulated as explained in the next section. The summary statistics
correspond to those traditionally used by population geneticists
to characterize the genetic diversity within and among samples
(e.g. number of alleles, genic diversity and genetic distances).
The idea is to extract maximum genetic information from the
data, admitting that exhaustivity or sufficiency are generally out of
reach. The simulation step is generally the most time-consuming
step, since the number of simulated datasets can reach several
millions. The second step is a rejection step. Euclidian distances
between each simulated and the observed dataset in the space
of summary statistics are computed and only the simulated data
sets closest to the observed dataset are retained. The parameter
values used to simulate these selected datasets provide a sample of

parameter values approximately distributed according to their own
posterior distribution. Beaumont et al. (2002) have shown that a
local linear regression (third step = estimation step) provides a better
approximation of the posterior distribution.

This synoptic of ABC is well established and we now concentrate
on more specific issues that are implemented in DIYABC.

2.1 Simulating genetic data in complex scenarios
Thanks to coalescence theory, it has become easy to simulate
datasets by a two-steps procedure. The first step consists of building
a genealogical tree of sampled genes according to rather simple
rules provided by coalescence theory (see below). The second
step consists of attributing allelic states to all the nodes of the
genealogy, starting from the common ancestor and simulating
mutations according to the mutation model of the genetic markers.
In a complex scenario, only the first step needs special attention and
we will concentrate on it now.

In a single isolated population of constant effective size, the
genealogical tree of a sample of genes is simulated backward in time:
starting from the time of sampling, the gene lineages are merged
(coalesced) at times that are drawn from an exponential distribution
with rate j(j−1)/4Ne, when there are j distinct lineages and the
(diploid) effective population size is Ne. The genealogical tree is
completed when there remains a single lineage.

Consider now two isolated populations (effective population sizes
N1 and N2, respectively) that diverged td generations before their
common sampling time. Since the two populations do not exchange
genes, lineages within each population will coalesce independently.
Coalescence simulation will stop either when there remains a single
lineage or when the simulated time is beyond the divergence
(looking back in time). In the latter case, the coalescence event
is simply discarded. At generation td , the remaining lineages are
simply pooled and will coalesce in the ancestral population. Because
of the memoryless property of the exponential distribution, the time
to the first coalescence in the ancestral population is independent of
the times of the last coalescence in each daughter population and can
be simulated as in the single isolated population above. Again, the
genealogical tree is completed when there remains a single lineage
in the ancestral population. Note that the two populations need not
be sampled at the same generation since this has no bearing on the
simulation process.

Consider now the classic admixture scenario with one admixed
and two parental populations, as in Figure 1 in Excoffier
et al. (2005). Simulating the complete genealogical tree can be
achieved with the following steps: (i) coalesce gene lineages in
each population independently until reaching admixture time, (ii)
distribute remaining lineages of the admixed population among
the two parental populations, each with a Bernoulli draw with
probability equal to the admixture rate, (iii) coalesce gene lineages
in the two parental populations until reaching their divergence time,
(iv) pool the remaining gene lineages of the two parental populations
and place them into the ancestral population and (v) coalesce gene
lineages in the ancestral population.

We first note the modular form of this algorithm which involves
only three modules:

(1) a module that performs coalescences in an isolated constant
size population between two given times,
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Fig. 1. First example: the three evolutionary scenarios. The dataset used as
an example has been simulated according to scenario 1 (left). The parameter
values were the following: all populations had an effective (diploid) size
of 1000, the times of successive events (backward in time) were t1 = 10,
t2 = 500, t3 = 10 000, t4 = 20 000 and t5 = 200 000, the two admixture rates
were r1 = 0.6 and r2 = 0.4. Scenario 1 includes six populations, the four that
have been sampled and two left parental populations in the admixture events.
Scenario 2 and 3 include 5 and 4 populations, respectively. Samples 3 and
4 have been collected 2 and 4 generations earlier than the first two samples,
hence their slightly upward locations on the graphs. Time is not at scale.

(2) a module that pools gene lineages from two populations (for
divergence),

(3) a module that splits gene lineages from the admixed
population between two parental populations (for admixture).

We also note that the last two modules are quite simple and that
the first one might be extended to include population size variations.

We have introduced a fourth module that proves useful in many
instances. It performs the (simple) task of adding a gene sample
to a population at a given generation. The interest of this module
is to allow for multiple samples of the same population taken
at different generations. By combining the aforementioned four
modules, it is possible to simulate genetic data involving any
number of populations according to a scenario that can include
divergence, admixture events as well as population size variations.
In addition, populations can be sampled more than once at different
times. Compared with our previous definition of complex scenarios,
the only restriction so far concerns the absence of migrations
among populations. If migrations have to be taken into account,
coalescences in two (or more) populations exchanging migrants are
no longer independent and should be treated in the same module.
Such a module would require to consider simultaneously two kind
of events, coalescences of lineages within population and migrations
of gene lineages from one population to another. In the current stage
of DIYABC, this has not yet been achieved.

2.2 Two ways of simulating coalescence events
Simulating coalescences can be performed in two ways. The most
traditional way is based on the usually fulfilled assumption that the
effective population size is large enough so that the probability of
coalescence is small and hence that the probability that two or more
coalescences occur at the same generation is low enough so that it
can be neglected (e.g. Nordborg, 2007). Time is then considered as a
continuous variable in computations. The corresponding algorithm,
called here the continuous time (CT) algorithm, consists in drawing
first times between two successive coalescence events and then
drawing two lineages at random at each coalescence event.

However, in practice, population size can be so small (e.g. during
a bottleneck) that multiple coalescences at the same generation
become common, including with the same parental gene (producing
multifurcating trees). Simulating gene genealogies with multiple
coalescences is possible, (e.g. Laval and Excoffier, 2004). In effect,
lineages are reconstructed one generation at a time: lineages existing
at generation g are given a random number drawn in U[1,2Ne] and
lineages with the same number coalesce together. The latter is termed
here the generation by generation (GbG) algorithm.

The CT algorithm is much faster in most cases and is used in most
softwares, but in some circumstances, the approximation becomes
unacceptable. The solution taken in DIYABC is to swap between
the two algorithms according to a criterion based on the effective
population size, the time during which the effective size keeps its
value, and the number of lineages at the start of the module. The
criterion is such that the generation per generation (GbG) algorithm
is taken whenever it is faster (this occurs when the effective size is
very small) or when the CT algorithm overestimates by more than
5% on average the number of lineages at the end of the module.

A specific comparison study has been performed to establish
this criterion. For different time periods counted in number of
generations (g), effective population sizes (Ne) and number of
entering lineages (nel), coalescences have been simulated according
to each algorithm 10 000 times and the average number of remaining
lineages at the end of the period have been recorded as well as
the average computation duration of each algorithm. Our results
(Figure S2) show that the following rules optimize computation
speed, while keeping the relative bias in coalescence rates under
the 5% threshold:

if (1<g≤30) do CT if nel/Ne <0.0031g2 −0.053g+0.7197
else do GbG

if (30<g≤100) do CT if nel/Ne <0.033g+1.7 else do GbG

if (100<g) do CT if nel/Ne <5 else do GbG

2.3 Comparing scenarios
Using ABC to compare different scenarios and infer their posterior
probability has been performed in two ways in the literature. Starting
with a reference table containing parameters and summary statistics
obtained with the different scenarios to be compared (or pooling
reference tables, each obtained with a given scenario), datasets are
ordered by increasing distance to the observed dataset.Afirst method
(termed hereafter the direct approach) is to take as an estimate of
the posterior probability of a scenario the proportion of datasets
obtained with this scenario in the nδ closest datasets (Miller et al.,
2005; Pascual et al., 2007). The value of nδ is arbitrary and unless
the results are quite clear cut, the estimated posterior probability
may vary with nδ .

Following the same rationale that introduced the local linear
regression in the estimation of posterior distributions for parameters
(Beaumont et al., 2002), we perform a weighted polychotomous
logistic regression to estimate the posterior probability of scenarios,
termed hereafter the logistic approach (see also Beaumont, 2008;
Fagundes et al., 2007). In the estimation of parameters, a linear
regression is performed with dependent variable the parameter
and predictors the differences between the observed and simulated
statistics. This linear regression is local at the point (in the
predictor space) corresponding to the observed dataset, using an
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Epanechnikov kernel based on the distance between observed and
simulated summary statistics [see formula (5) in Beaumont et al.,
2002]. Parameters values are then replaced by their estimates at that
point in the regression.

Keeping the differences between observed and simulated statistics
as the predictor variables in the regression, we consider now the
posterior probability of scenarios as the dependent variable. Because
of the nature of the ‘parameter’, an indicator of the scenario number,
a logit link function is applied to the regression. The local aspect
of the regression is obtained by taking the same weights as in the
linear adjustment of parameter values as described in Beaumont
et al. (2002). Confidence intervals for the posterior probabilities
of scenarios are computed through the limiting distribution of the
maximum likelihood estimators. See Annex 1 in Supplementary
Material for a detailed explanation.

2.4 Quantifying confidence in parameter estimations
on simulated test datasets

In order to measure bias and precision, we need to simulate datasets
(i.e. test datasets) with known values of parameters and compare
estimates with their true values. In the ABC estimation procedure,
the most time-consuming task is to produce a large enough reference
table. However, when such a reference table has been produced,
e.g. for the analysis of a real dataset, it can also be used to quantify
bias and precision on test datasets as well.

Measuring bias is straightforward, but precision can be assessed
with different measures. In DIYABC, the latter include the relative
square root of the mean square error, the relative square root of the
mean integrated square error, the relative mean absolute deviation,
the 95% and 50% coverages and the factor 2. See Annex 2 in
Supplementary Material for more details.

3 DIY ABC: A COMPUTER PROGRAM FOR
POPULATION BIOLOGISTS

3.1 Main features
DIYABC is a program that performs ABC inference on population
genetic data. In its current state, the data are genotypes at
microsatellite loci of samples of diploid individuals (missing data
are allowed). The inference bears on the evolutionary history of the
sampled populations by quantifying the relative support of data to
possible scenarios and by estimating posterior densities of associated
parameters. DIYABC is a program written in Delphi running under
a 32-bit Windows operating system (e.g. Windows XP) and it has a
user-friendly graphical interface.

The program accepts complex evolutionary scenarios involving
any number of populations and samples. Scenarios can include any
number of the following timed events: stepwise change of effective
population size, population divergence and admixture. They can
also include unsampled as well as serially sampled populations
as in Beaumont (2003). The main restriction regarding scenario
complexity is the absence of migrations between populations.

Since the program has been written for microsatellite data,
it proposes two mutation models, namely the stepwise mutation
model (SMM) and the generalized stepwise mutation (GSM) model
(Estoup et al., 2002). Note that the same mutation model has to be
applied to all microsatellite loci, but these may have different values
of mutation parameters.

The historico-demographic parameters of scenarios may be of
three types: effective sizes, times of events (in generations) and
admixture rates. Marker parameters are mutation rates and the
coefficient of the geometric distribution (under the GSM only). The
program can also estimate composite parameters, such as θ =4Neµ

and τ = tµ, with Ne being the diploid effective population size, t the
time of an event and µ the mean mutation rate. Prior distributions are
defined for original parameters and those for composite parameters
are obtained via an assumption of independence of their component
prior densities. Priors for historico-demographic parameters can be
chosen among four common distributions: Uniform, Log-uniform,
Normal and Log-normal. Users can set minimum and maximum (for
all distributions) and mean and SD (for Normal and Log-normal).
In addition, priors can be modified by setting binary conditions
(>, <, ≥ and ≤) on pairs of parameters of the same category (two
effectives sizes or two times of event). This is especially useful to
control the relative times of events when these are parameters of the
scenario. For priors of mutation parameters, only the Uniform and
the Gamma distributions are considered, but hierarchical schemes
are possible, with a mean mutation rate or coefficient P (of the
geometric distribution in the GSM) drawn from a given prior and
individual loci parameter values drawn from a gamma distribution
around the mean.

Available summary statistics are usual population genetic
statistics averaged over loci: e.g. mean number of alleles, mean genic
diversity, Fst, (δµ)2, admixture rates, etc.

Regarding ABC computations, the program can (i) create a
reference table or append values to an existing table, (ii) compute
the posterior probability of different scenarios, (iii) estimate the
posterior distributions of original and/or composite parameters for
one or more scenarios and (iv) compute bias and precision for a given
scenario and given values of parameters . Finally, the program can
be used simply to simulate datasets in the popular Genepop format
(Raymond and Rousset, 1995).

3.2 Two examples of analysis with DIY ABC
3.2.1 Illustration on a simulated dataset In order to illustrate the
capabilities of DIYABC, we take first an example based on a dataset
simulated according to a complex scenario including three splits and
two admixture events (scenario 1 in Figure 1). The scenario includes
six populations: two of them have been sampled at time 0, the third
one at time 2 and the fourth one at time 4, the last two have not been
sampled. Each population sample includes 30 diploid individuals
and data are simulated at 10 microsatellite loci. This scenario is not
purely theoretical as it could be applied for instance to European
populations of honeybees in which the Italian populations (Apis
mellifera ligustica) result from an ancient admixture between two
evolutionary branches (Franck et al., 2000) that would correspond
here to population samples 1 and 4. Furthermore, in the last 50
years, Italian bees have been widely exported and sample 2 could
well correspond to a population of a parental branch that has been
recently introgressed by Italian queens. This example also stresses
the ability of DIYABC to distinguish two events that are confounded
in the usual admixture scheme: the admixture event itself and the
time at which the real parental populations in the admixture diverged
from the population taken as ‘parental’.

Our ABC analysis will address the following questions: (i)
Suppose that we are not sure that the scenario having produced our
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example dataset does include a double admixture and that we want to
challenge this double admixture scenario with two simpler scenarios,
one with a single admixture (scenario 2 in Figure 1) and the other
with no admixture at all (scenario 3). The questions addressed are:
(i) What is the posterior probability of these three scenarios, given
identical prior probabilities ? (ii) What are the posterior distributions
of parameters, given that the right scenario is known ? and (iii) What
confidence can we have in the posterior probabilities of scenarios
and posterior distributions of parameters?

First, a reference table is built up. Using different screens of
DIYABC, (i) the three scenarios are coded and prior distributions
of parameters are defined (Figure S3), (ii) based on previous studies
(e.g. Dib et al., 1996), the GSM model is selected and prior
distributions of mutation parameters are defined (Figure S4), (iii)
motif sizes and allele ranges of loci are set (Figure S5) and (iv)
summary statistics are selected (Figure S6). After some hours, a
reference table with 6 million simulated datasets (i.e. 2 million per
scenario) is produced.

To answer the first question, the nδ = 60 000 (1%) simulated
datasets closest to the pseudo-observed dataset are selected for the
logistic regression and nδ = 600 (0.01%) for the direct approach.
The answer appears in two graphs (upper row in Figure S7). Both
approaches are congruent and show that scenario 1 is significantly
better supported by data than any other scenarios.

To answer the second question, scenario 1 is chosen and posterior
distributions of parameters are estimated taking the 20 000 (1%)
closest simulated datasets, after applying a logit transformation
of parameter values. Here again, the output is mostly graphical.
Each graph provides the prior and posterior distributions of the
corresponding parameter (Figure S8). Below each graph are given
the mean, median and mode as well as four quantiles (0.025,
0.05, 0.95 and 0.975) of the posterior distribution (Table S1 in
Supplementary Material). Since the true values are known, we can
remark that some parameters are rather well estimated with peaked
posteriors such as the common effective population size and the two
admixture rates, whilst other including all time parameters suggest
that data are not very informative for them. Very similar results (data
not shown) have been obtained with 5000 and 40 000 simulated
datasets selected for the local linear regression, as well as when
using a smaller reference table (1 million datasets).

To evaluate the confidence that can be put into the posterior
probability of scenarios, 500 test datasets were simulated with each
scenario and known parameter values (i.e. the same values as those
used to produce the original dataset). Posterior probabilities of the
three scenarios were estimated as above and used to compute type
I and II errors in the choice of scenario. Results show that scenario
3 is always rightly chosen or excluded. Consequently type I error
for scenario 1 is identical to type II error for scenario 2 and vice
versa. For scenario 1, type I errors amount to 0.414 and 0.3 for the
direct approach and the logistic regression, respectively, whereas
type II errors amount to 0.014 and 0.020 (cf. Fig S9, S10 and S11
for detailed distributions of scenario probabilities). The 500 test
datasets simulated with scenario 1 have also been used to estimate
posterior distributions of parameters, taking the same proportion
(1%) of closest simulated datasets as above. Relative biases and
dispersion measures are given in Table S2 (upper part). It is clear
that several parameters are biased and/or dispersed, the worst case
being that of parameter t1. The bias is undoubtedly related to the lack
of information in the data, so that point estimates are drawn towards

the mean values of prior distributions. The effect of prior distribution
is also illustrated in the lower part of Table S2 that provides the same
measures, but obtained with different prior distributions for effective
size and time of event parameters.

3.2.2 Illustration on a real dataset Our second example concerns
populations of the Silvereye, Zosterops lateralis lateralis (Estoup
and Clegg, 2003). During the 19th and 20th century, this bird
colonized Southwest Pacific islands from Tasmania. The importance
of serial founder events in the microevolution of this species has
been questioned in a study based on a six microsatellite loci dataset
(Clegg et al, 2002).

Our analysis with DIYABC differs by at least four aspects from the
initial ABC analysis processed from the same dataset by Estoup and
Clegg (2003). First, all island populations are treated here in the same
analysis whereas, for tractability reasons, independent analyses were
made using all pairs of populations. Second, the initial treatment
was based on the algorithm of Pritchard et al. (1999), whereas
DIYABC uses the local linear regression method of Beaumont et al.
(2002), which allows a larger number of statistics (see below) and
hence makes a better use of data. Third, we have chosen here
non-informative flat priors for all demographic parameters. Fourth,
because DIYABC is able to treat samples collected at different times,
we did not have to pool samples collected at different years from
the same island and average sample year collection over islands. We
hence end up with a colonization scenario involving five populations
and seven samples, two samples having been collected at different
times in two different islands (Fig. 2). The sequence and dates
of colonization by silvereyes to New Zealand (South and North
Island) and Chatham and Norfolk Islands have been historically
documented. This allows the times for the putative population size
fluctuation events in the coalescent gene trees to be fixed, thus
limiting the number of parameters. Our scenario was specified by six
unknown demographic parameters: the stable effective population
size (NS) and the duration of the initial bottleneck (DB), both
assumed to be the same in all Islands and potentially different
effective number of founders in Norfolk, Chatham and South
and North Island of New Zealand (NF1, NF2, NF3 and NF4,
respectively). As in Estoup and Clegg (2003), we also assumed that
all populations evolved as totally isolated demes after the date of
colonization.

We chose uniform priors U[300,30000] for NS , U[2,500] for all
NFi and U[1,5] for DB. Prior information regarding the mutation
rate and model for microsatellites was the same as in the previous
example. Summary statistics included the mean number of alleles,
the mean genic diversity (Nei, 1987), the mean coefficient M (Garza
and Williamson, 2001), Fst between pairs of population samples
(Weir and Cockerham, 1984), and the mean classification index,
also called mean individual assignment likelihood (Pascual et al.,
2007). We produced a reference table with 1 million simulated
datasets and estimated parameter posterior distributions taking the
10 000 (1%) simulated datasets closest to the observed dataset for
the local linear regression, after applying a logit transformation to
parameter values. Similar results were obtained when taking the
2000 to 20 000 closest simulated datasets and when using a log or
log-tangent transformation of parameters as proposed in Estoup et al.
(2004) and Hamilton et al. (2005) (options available in DIYABC).

Results for the main demographic parameters are presented in
Table 1. They indicate the colonization by a small number of
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Fig. 2. Second example: screenshot of the scenario used in the analysis of the
Z. lateralis lateralis dataset. In 1830, Z. l. lateralis colonized the South Island
of New Zealand (Pop 2) from Tasmania (Pop 1). In the following years, the
population began expanding and dispersing, and reached the North Island by
1856 (Pop 3). Chatham Island (Pop 4) was colonized in 1856 from the South
Island, and Norfolk Island (Pop 5) was colonized in 1904 from the North
Island (historical information reviewed in Estoup and Clegg 2003). Sample
collection times are 1997 for Tasmania (Sa 1), South and North Island of New
Zealand (Sa 2 and Sa 3, respectively), Chatham Island (Sa 4) and Norfolk
Island (Sa 5), 1994 for the second sample from Norfolk (Sa 6), and 1992 for
the second sample from the North Island of New Zealand (Sa 7). Splitting
events and sampling dates in years were translated in number of generations
since the most recent sampling date by assuming a generation time of 3 years
(Estoup and Clegg, 2003). We hence fixed t1, t2, t3 and t4 to 31, 47, 47 and
56 generations, respectively.

Table 1. Second example: mean, median, mode, quantiles and SD of
posterior distribution samples for effective population sizes (original
parameters) for the Z.lateralis lateralis dataset.

Parameter mean median mode Q0.050 Q0.950 SD

NS 9399 7446 4107 2706 23 007 6273
NF1 19 18 16 9 33 8.7
NF2 202 173 108 55 435 118
NF3 197 168 112 55 430 116
NF4 293 288 278 129 470 105

founders and/or a slow demographic recovery after foundation
for Norfolk island only (median NF1 value of 18 individuals).
Other island populations appear to have been founded by silvereye
flocks of larger size and/or have recovered quickly after foundation.
In agreement with this, the bottleneck severity (computed as
BSi = DB ×NS/NFi) was more than one order of magnitude larger
for the population from Norfolk than for other island populations
(Fig. 3). These results are in the same vein as those obtained by
Estoup and Clegg (2003) and agree with their main conclusions.
Discrepancies in parameter estimation are observed however
(e.g. larger NS values and more precise inferences for NF2, NF3
and NF4 in the present treatment). This was expected due to the
differences in the methodological design underlined above. With
the possibility of treating all population samples together, DIYABC
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Fig. 3. Second example: posterior distributions of the bottleneck severity
(see definition in text) for the invasions of four Pacific Islands by Z.lateralis
lateralis. The four discontinuous lines with small dashes, dots, dash-dots and
long dashes correspond to Norfolk, Chatham, North Island and South Island
of New Zealand, respectively. The continuous line corresponds to the prior
distribution, which is identical for each island. This graph has been made
with the locfit function of the R statistical package (Ihaka and Gentleman,
1996), using an option of DIYABC which saves the sample of the parameter
values adjusted by the local linear regression (Beaumont et al., 2002).

allows a more elaborate and satisfactory treatment compared with
previous analyses (Estoup and Clegg, 2003; Miller et al., 2005).

4 CONCLUSIONS
So far, the ABC approach has remained inaccessible to most
biologists because of the complex computations involved. With
DIYABC, non-specialists can now perform ABC-based inference
on various and complex population evolutionary scenarios, without
reducing them to simple standard situations, and hence making a
better use of their data. In addition, this programs also allows them
to compare competing scenarios and quantify their relative support
by the data. Eventually, it provides a way to evaluate the amount
of confidence that can be put into the various estimations. The
main limitations of the current version of DIYABC are the assumed
absence of migration among populations after they have diverged
and the mutation models which mostly refer to microsatellite
loci. Next developments will aim at progressively removing these
limitations.
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