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ABSTRACT

Summary: Oscillations in mRNA and protein of circadian clock
components can be continuously monitored in vitro using
synchronized cell lines. These rhythms can be highly variable due
to culture conditions and are non-stationary due to baseline trends,
damping and drift in period length. We present a technique for
characterizing the modal frequencies of oscillation using continuous
wavelet decomposition to non-parametrically model changes in
amplitude and period while removing baseline effects and noise.
Availability: The method has been implemented as the package
waveclock for the free statistical software program R and is available
for download from http://cran.r-project.org/
Contact: thomas.price@iop.kcl.ac.uk
Supplementary information: Supplementary figures are available at
Bioinformatics online.

1 INTRODUCTION
Animals and plants adapt to the daily light:dark cycle through
the action of endogenous biological clocks. Circadian rhythms in
mammals are coordinated by a central pacemaker located in the
suprachiasmatic nucleus (SCN) but autonomous circadian clocks are
also present in peripheral tissues (Stratmann and Schibler, 2006).
After serum shock, cellular models of clock function—such as
transformed cell lines, mouse embryonic fibroblasts and dissociated
SCN neurons—recapitulate oscillator function and allow continuous
monitoring of the concentration of clock components through the
use of reporter genes either as transcriptional (promoter-driving
luciferase or GFP) or translational fusions (e.g. Per2::Luciferase)
(Hastings, 2005; Yoo et al., 2004). Although oscillations in cell
cultures can persist for up to 20 days (Yoo et al., 2004), the amplitude
of the overall signal becomes damped due to desynchronization
as the period of individual cells drifts over time (Nagoshi et al.,
2004; Rougemont and Naef, 2007). Another challenge for stable
measurement is the initial spike following serum shock. Finally,
these cellular models are increasingly being challenged with small
molecules, as well as environmental and genetic perturbations, all
of which can impact oscillator function. Many of these perturbagens
have decay properties that change over the course of an experiment
(e.g. pharmacodynamics of small molecules, ρH). The analytic
problem, therefore, is how to characterize a progressively damped
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signal of non-constant period in the presence of random noise and
experimental challenge.

2 METHODS
Continuous wavelet transformation is a multiscale smoothing technique that
projects the unidimensional time-series data into two-dimensional time-
frequency space. In this transformed space, circadian oscillations typically
appear as a ridge of slowly changing frequency with decreasing amplitude
over time. We used nonparametric methods to identify these ridges and
perform a reverse transformation to reconstruct the modal frequencies in
the original signal.

We chose to use the complex-valued Morlet wavelet which preserves
phase information and mainly smoothes over the time dimension allowing
finer resolution in the frequency domain (Torrence and Compo, 1998). The
correspondingly coarse resolution in the time dimension matters little in
terms of feature detection since we expect slow changes in frequency and
amplitude. A drawback of this approach is that it perpetuates ‘edge effects’
by which spurious features can be introduced by smoothing beyond the
boundaries of the time dimension.

To locate ridges in the time-frequency space, we employed the ‘crazy
climbers’ algorithm (Carmona et al., 1998). This algorithm uses a simulated
annealing method to identify features that are sharply defined in the frequency
dimension but smooth in the time dimension. These features are then linked
together to construct contiguous ridges that do not overlap. Finally, the modal
signals are reconstructed using a smoothing spline procedure that projects
each ridge back into a time series. In this way, the modal frequencies are
characterized without making parametric assumptions about how their period
and amplitude change over time.

The wavelet method requires no prior detrending or smoothing to remove
baseline effects and noise. The ridge-finding and mode-reconstruction
procedures will remove most random variability, which tends not to be
localized to any particular region of the time-frequency space, and if applied
within an appropriate bandwidth will ignore smooth baseline trends which
appear as low-frequency features. The maximum frequency signal that can
be detected is twice the sampling frequency. For the sake of computational
efficiency, our implementation of the wavelet transform requires that the data
series have regularly spaced time points. Consequently, missing data in the
series must be imputed by some means.

We packaged the wavelet analysis in a function waveclock that performs
these analytic steps in sequence, plots the results and returns several
useful summaries of the output. The default settings are optimized for
cell luminescence time-series cycling at circadian frequencies. The outputs
include the instantaneous period, amplitude and phase of each mode, the
mean and median period, and the variance of the reconstructed waves. By
default, these outputs exclude measurements within the ‘cone of influence’
within

√
2 wavelengths from the beginning and end of the data where edge
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effects may apply (Torrence and Compo, 1998). This means that the time
series must be at least 2

√
2 times the wavelength of the lowest modal

frequency in the signal. One approach to minimizing edge effects is to reflect
the data at the boundaries of the time series prior to conducting the analysis:
this is implemented in waveclock as a default procedure.

3 RESULTS
We demonstrated this analytic technique using experimental data
generated to investigate the robustness of the circadian clock
to genetic perturbations. Small interfering RNAs (siRNAs) were
used to knockdown clock components in immortalized human
osteosarcoma cells that are amenable to RNA interference (RNAi).
Cells stably expressing luciferase under the control of the Bmal1
promoter were synchronized with dexamethasone, and subsequently
had robust oscillations in bioluminescence with a period length
of ∼24 h for more than 6 days in culture (Baggs et al.,
Elucidating network structures of the circadian clock underlying
robustness, Network features of the mammalian circadian clock).
The luminescence was measured every 10 min for 120 h. The dataset
and analytic functions are archived in the R library waveclock.

We demonstrated using a titration series that Bmal1 knockdown
diminishes the amplitude of the oscillation in a dose-dependent
manner (Supplementary Fig. 1A). Oscillations were both strong
and persistent in the negative siRNA condition, whereas in the
intermediate siBmal1 0.2X condition the oscillations were reduced
in initial amplitude and quickly damped. No rhythmicity was
detected in the siBmal1 1X condition. The instantaneous periods
and amplitudes output from the waveclock function can be displayed
graphically (Supplementary Fig. 1B). Also, the wavelet scalogram
(time-frequency plot) can be interpreted directly (Supplementary
Fig. 1C). Damping in the siBmal1 0.2X condition is evident from the
fading intensity of color over time at circadian periods: this denotes
decreasing amplitude. The modal frequency at close to 24 h period
is denoted by a solid line and slopes upward showing its increasing
period over time.

Although waveclock does not report error metrics for the estimates
of period, amplitude or phase, the quantitative outputs can be
used for hypothesis testing in a replicated experimental design.
For example, using the variance of the reconstructed wave as a
measure of the power at circadian frequencies, we showed not
only that knocking down single genes such as Bmal1 and Cry1
decreased the amplitude of circadian oscillation compared with
the negative siRNA condition, but also that their combinatorial
knockdown further suppressed circadian oscillation relative to the
single-gene conditions (Baggs et al., ibid.).

The measurement of period is granular: its precision is governed
by the number of ‘voices’ (frequency bins per octave) used in
the wavelet transform. The default setting of 96 voices gives fine
resolution in the frequency domain and is suitable for testing
hypotheses about subtle changes in period length. For example,
we were able to show that siCry1 knockdown decreases period
length and siCry2 knockdown increases period length in a dose-
dependent manner (Baggs et al., ibid.). Lowering the number of
voices gives a quicker and more robust analysis that can track modes
even during relatively fast shifts in period length, at the expense
of decreased precision. In an analysis of murine blood pressure
using 12 voices per octave, we detected ultradian rhythms of ∼2 h

period superimposed on the diurnal rhythm (Curtis et al., 2007;
Supplementary Fig. 2). In arrhythmic Bmal1 KO mice, the ultradian
rhythm is preserved but the diurnal rhythm is entirely absent. These
physiological measurements are noisier than the bioluminescence
data and the ultradian oscillations do not have a constant period,
making them much harder to characterize.

As a further example of how the wavelet technique can identify
superimposed oscillations at different frequencies, we detected both
24 h and 12 h rhythms in a transcript of the murine Dsc2 gene in
mouse liver taken from a 48 h series (http://bioinf.itmat.upenn.edu/
circa/; Supplementary Fig. 3).

4 DISCUSSION
Current commercial algorithms to measure circadian parameters
from cellular luminescence data fit simple parametric models that
assume either exponentially damped (e.g. Lumicycle; Actimetrics,
Evanston IL) or constant amplitude (e.g. FFT-NLLS; Izumo
et al., 2006) and fixed period length (Supplementary Fig. 1B).
Consequently the results are sensitive to the time window being
analyzed when the period drifts. The waveclock method presents an
attractive alternative by estimating period length and amplitude as
smooth functions over time: these quantities can then be summarized
as desired. The graphical display is useful as it can easily convey
extreme changes due to technical issues (e.g. an opened incubator),
or the presence of signals at other frequencies. Finally, we have
shown proof of concept that this technique can be used to analyze
physiological measurements, such as blood pressure and gene
expression data. In the interest of public dissemination of research,
we have made this application open source and available through
the R network.
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