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SUMMARY

Consider a set of baseline predictors X to predict a binary outcome D and let Y be a novel marker
or predictor. This paper is concerned with evaluating the performance of the augmented risk model
P(D = 1|Y, X) compared with the baseline model P(D = 1|X). The diagnostic likelihood ratio,
DLRX (y), quantifies the change in risk obtained with knowledge of Y = y for a subject with base-
line risk factors X . The notion is commonly used in clinical medicine to quantify the increment in risk
prediction due to Y . It is contrasted here with the notion of covariate-adjusted effect of Y in the augmented
risk model. We also propose methods for making inference about DLRX (y). Case–control study designs
are accommodated. The methods provide a mechanism to investigate if the predictive information in Y
varies with baseline covariates. In addition, we show that when combined with a baseline risk model and
information about the population distribution of Y given X , covariate-specific predictiveness curves can
be estimated. These curves are useful to an individual in deciding if ascertainment of Y is likely to be
informative or not for him. We illustrate with data from 2 studies: one is a study of the performance of
hearing screening tests for infants, and the other concerns the value of serum creatinine in diagnosing
renal artery stenosis.

Keywords: Biomarker; Classification; Diagnostic likelihood ratio; Diagnostic test; Logistic regression; Posterior
probability.

1. INTRODUCTION

One of the goals of current biomedical research is to develop better methods for individual risk prediction.
New genomic, proteomic, and imaging technologies in particular promise to provide tools for accurate
assessment of risk. These tools could be used in diagnostic settings to determine which patients are at
high risk of having disease and who therefore are candidates for invasive, costly diagnostic procedures. In
prevention settings, they could be used to identify subjects at high risk of future onset of diseases, such
as cancer or diabetes, or of future catastrophic events, such as heart attack or stroke. Formally, we define
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a risk prediction marker in a rather general sense: it is information gleaned from a patient that is used to
calculate his probability of having or getting a condition which we denote by D, D = 1 for condition
present and D = 0 for condition absent.

The statistical evaluation of risk prediction markers is a subject of current debate. The area under
the receiver operating characteristic (ROC) curve is often used in practice (Wilson and others, 2005;
Wang and others, 2006) to summarize predictive accuracy but has been severely criticized by us (Pepe
and others, 2004; Pepe, Janes, and Gu, 2007) and others (Cook, 2007). The ROC curve itself is also
problematic because it does not explicitly display risk, the very entity that risk prediction markers are
supposed to elucidate (Pepe, Feng, and Gu, 2008; Pepe and others, 2008). An alternative approach is to
evaluate changes in risk induced by knowledge of the patient’s marker value compared with not knowing it
(Cook and others, 2006; Cook, 2007; Pencina and others, 2008). This can be quantified by the diagnostic
likelihood ratio (DLR), a notion we exploit in the current paper.

Let X denote baseline predictor data, Y a novel marker of interest, and D the binary outcome. For
example, with D = ‘a cardiovascular event within 10 years’ and X = (age, systolic blood pressure,
hypertension, smoking status, cholesterol, and high-density lipoproteins), Cook and others (2006) inves-
tigated Y = C-reactive protein as a risk prediction marker. Novel markers for breast cancer risk might
employ factors in the Gail model (Gail and others, 1989; Chen and others, 2006) as baseline predictors
(X ) for predicting 5-year incidence of breast cancer. In the context of prostate cancer screening, one might
employ factors in the risk calculator of Thompson and others (2006) as baseline predictors, X = (age,
prostate specific antigen level, digital rectal exam results, prior biopsy), to predict the chance of finding
D = ‘high-grade prostate cancer from a needle biopsy’. Studies are currently ongoing to discover novel
biomarkers (Y ) that would add meaningfully to this risk calculator. One data set analyzed in this paper
concerns the diagnosis of renal artery stenosis (D) in patients with therapy-resistant hypertension. The
diagnostic procedure, renal angiography, is costly and invasive. Therefore, there is interest in having an
algorithm available to calculate a patient’s risk of having a positive diagnosis with the procedure based
on clinical characteristics so that patients can decide whether or not to undergo the procedure. Janssens
and others (2005) were interested in evaluating the additional information in Y = serum creatinine over
and above standard risk factors (X ) that included age, gender, hypertension, body mass index (BMI),
abdominal bruit, and presence of atherosclerotic vascular disease. A second data set analyzed here con-
cerns passive tests for hearing impairment that can be applied to infants. We investigate if the predictive
information in the test varies with age of the child and location in which the testing is undertaken.

Early evaluations of new markers are typically undertaken with case–control study designs (Pepe and
others, 2001). Case–control studies are smaller and less expensive than cohort studies, especially for low-
prevalence diseases. Therefore, we focus on case–control studies of a novel marker. The study may or
may not be nested in a larger cohort on whom baseline predictor and outcome data are measured.

2. DIAGNOSTIC LIKELIHOOD RATIOS

2.1 Background

The covariate-specific DLR of a predictor Y for a binary outcome is

DLRX (Y ) = P(Y |D = 1, X)

P(Y |D = 0, X)
, (2.1)

where P denotes a probability density if Y is continuous and a probability mass if Y is discrete and the
covariates X are baseline predictors. DLRX (Y ) is the likelihood that test result Y would be expected in
a patient with the target condition compared with the likelihood that the same result would be expected
in a patient without the target condition, in the subpopulation defined by baseline predictors X . It is a
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likelihood ratio in the strict statistical sense with values in (0, ∞). If DLRX (y) is above unity, Y = y is
more likely to be seen in cases and we consider ruling in disease. Similarly, if DLRX (y) is less than 1, we
consider ruling out disease because Y = y is more likely to be observed in controls.

The term ‘Bayes factor’ is also used for DLRX (Y ) because using Bayes theorem it is the factor that
relates the prior probability of disease, P(D = 1|X), to the posterior probability after knowledge of Y is
obtained, P(D = 1|Y, X), through the relationship

logitP(D = 1|Y, X) = logitP(D = 1|X) + log DLRX (Y ). (2.2)

We refer to P(D = 1|X) as the pretest risk and P(D = 1|Y, X) as the posttest risk, using terminology
from diagnostic testing where the “test” gives rise to the marker Y .

Clinicians have long argued for using DLR to quantify marker performance (Boyko, 1994; Giard and
Hermans, 1993) because of its direct use in clinical decision making. Given a subject’s baseline risk,
which is often based on the clinician’s intuition rather than on an existing statistical model, DLRX (y)
quantifies how that risk should be modified by knowledge that Y = y. The clinical literature on test or
marker evaluation is typically highly simplified by employing dichotomous markers and assuming that
the DLR does not depend on X . See, for example, the series The Rational Clinical Examination in the
Journal of the American Medical Association. A recent article in the series by Bundy and others (2007) is
illustrative. For diagnosis of appendicitis in children, it reports simply the positive and negative DLR for
a dichotomized version of each marker. The authors comment that the predictive information in a marker
may in fact vary with the child’s age and suggest future study of this issue. In other words, one should
examine the effect of the covariate age on the DLR. We describe methods to fit regression models to the
DLR in Section 3 and illustrate with an application in Section 4. The methods apply to tests that are not
necessarily dichotomous.

Public health researchers typically evaluate risk prediction markers using ROC curves. Difficulties
with these methods for evaluating risk prediction markers have been noted (Pepe and others, 2008), par-
ticularly in the cardiovascular literature (Cook, 2007). Interestingly, the notion of DLR ties in closely
with ideas currently emerging from the cardiovascular research community for evaluating risk prediction
markers in terms of their capacities to reclassify individuals according to their risk (Cook, 2007; Pencina
and others, 2008). The suggestion is to compare risk calculated without knowledge of the marker, the
pretest risk, to that calculated with knowledge of the marker, the posttest risk, and identify the fractions
of subjects that cross clinically relevant risk thresholds. Goldman and others (1982) suggested a similar
exercise more than 20 years ago. He argued that ascertaining Y for a subject is only worthwhile if there is
a good chance that his posttest risk will lead to a different therapeutic decision than his pretest risk. This
chance can be calculated for an individual with X = x using the distribution of Y given X = x in addi-
tion to the function DLRX (y). That is, the covariate-specific DLRX (y) is a stepping stone to calculating
the likely impact of ascertaining Y for a subject with covariate X . We illustrate this application of DLR
regression models in Section 5.

2.2 Odds ratios and DLRs

It is important to note the distinction between the covariate-adjusted odds ratio for Y in the model for
P(D = 1|Y, X) and the covariate-specific DLR for Y , DLRX (Y ). The former compares the risk associated
with one value of Y versus another value, namely (Y − 1), in a population with covariate value X . The
latter considers the same population but compares the risk associated with knowing the marker value Y ,
P(D = 1|Y, X), with not knowing the marker value, P(D = 1|X). Since P(D = 1|X) = E{P(D =
1|Y, X)|X}, DLRX (Y ) compares the risk P(D = 1|Y, X) with the average risk in the covariate-specific
population.
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The distribution of Y conditional on X impacts DLRX (Y ) but not the covariate-adjusted odds ratio,
which implies that a covariate-adjusted odds ratio for Y may be large but the impact of ascertaining
Y could be small. For example, if Y is highly correlated with X , for most subjects in the population
P(D = 1|Y, X) will be close to the average risk E{P(D = 1|Y, X)}, and the magnitude of log DLRX (Y )
will tend to be small for them. Intuitively, knowing Y adds little extra information about risk over and
above what is already known on the basis of X alone, if the value of Y is predicted well by X .

To illustrate, we simulated outcome data, D, and marker data, (X, Y ), with the covariate-adjusted odds
ratio for Y fixed but varying the correlation between X and Y . Specifically, we generated (X, Y ) accord-
ing to a bivariate normal distribution with mean (µ,µ) in cases, mean (0, 0) in controls, and variance–

covariance � =
(

1 ρ
ρ 1

)
in both cases and controls. Assuming disease prevalence is p, the pretest and

posttest risks are given by

logitP(D = 1|X) = log(p/(1 − p)) + µX − µ2/2,

logitP(D = 1|X, Y ) = log(p/(1 − p)) + µX/(1 + ρ) + µY/(1 + ρ) − µ2/(1 + ρ).

Figure 1 displays pretest and posttest risks for 1000 observations. For the simulations, we choose the
prevalence p = 0.2, correlation ρ = 0.1, 0.5, and 0.9, and µ = (1 + ρ) log(10) so that the covariate-
adjusted odds ratio for Y is equal to 10 throughout. As expected, the distribution of log DLRX (Y ) is more
concentrated about 0 when ρ is larger (Figure 1 panel (a)), and accordingly there is less spread of points
about the 45◦ line in the scatter plots (Figure 1 panel (b) through (d)).

To see the impact on risk reclassification, we choose thresholds of 0.2 and 0.8 to define low and high
risk, respectively. Observe that when ρ is large, only a few subjects have risks that cross the thresholds
by augmenting the predictor X to include Y . In contrast, when ρ is small, large numbers of subjects are
reclassified as low, medium, and high risk. Interestingly, many risk reclassifications are in the “wrong
direction,” with cases having lower risks and controls having higher risks after including Y in the risk
calculation. This crucial point has been discussed previously by Pepe, Janes, and Gu (2007) and Janes
and others (2008).

3. ESTIMATING THE COVARIATE-SPECIFIC DLR FUNCTION

For binary markers, Janssens and others (2005) proposed that log DLRX (Y ) could be estimated by fitting
2 logistic regression models, one to the pretest risk and one to the posttest risk:

logitP(D = 1|X) = β∗
0 + β∗

X X,

logitP(D = 1|X, Y ) = β0 + βX X + βY Y + βXY XY .

For convenience, we write these as simple models in X and Y , but more general model forms could be
employed. The covariate-specific DLR estimate is then given by the difference, which under these simple
linear models is

log D̂LRX (Y ) = (β̂0 − β̂∗
0 ) + (β̂X − β̂∗

X )X + β̂Y Y + β̂XY XY .

This is clearly a valid approach for continuous markers too.
Observe that this approach to estimation accommodates case–control sampling. Only the intercept of

the logistic model is affected by simple case–control designs, it is shifted by the factor logit(p)−logit(pS),
where p is the population prevalence and pS is the sample prevalence of cases. Since log DLRX (Y )
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Fig. 1. Data simulated from a logistic regression model with normally distributed predictors (X, Y ) that are correlated
to varying degrees. Shown are the population distributions of covariate-specific log DLRX (Y ) in panel (a), and scatter
plots of post- versus pretest risks in panel (b) ρ = 0.1, (c) ρ = 0.5, and (d) ρ = 0.9. High- and low-risk thresholds
at 0.8 and 0.2 are displayed. In panel (a), the solid curve is the distribution of log DLRX (Y ) when ρ = 0.1, the
dashed curve is for ρ = 0.5 and the dotted curve is for ρ = 0.9. In panels (b) through (d), solid circles indicate case
observations and diamonds indicate controls.

involves the difference in the 2 intercepts, the adjustment factors cancel. A straightforward extension of
this argument implies that case–control studies employing frequency matching with respect to baseline
covariates are also accommodated by the methodology. Although both β̂X and β̂∗

X cannot be estimated,
their difference can.

Though coefficients in the DLR model can be directly estimated by fitting 2 logistic models and sub-
tracting one from the other, it is not immediately clear how to make inference about the coefficients. Here,
we adapt methods described by Pepe and others (1999). They consider simultaneously fitting multiple
different regression models to the same outcome variable. They call the models “marginal with respect
to covariates” to distinguish from the more familiar use of multiple models employing the same covari-
ates but different outcome variables (Liang and Zeger, 1986), models that are “marginal with respect
to outcome variables.” Estimating equations yield a sandwich variance–covariance matrix for coefficient
estimates in the different models. Here, the common outcome variable is D and the method provides
a variance–covariance matrix �β for (β̂∗

0 , β̂∗
X , β̂0, β̂X , β̂Y , β̂XY ). It follows that the estimated variance–

covariance matrix for the coefficients in the model for log DLRX (Y ) is given by A�̂β AT , and the vari-
ance of log D̂LRX (Y ) can be estimated with v̂ar(log D̂LRX (Y ) = (1 X Y XY )A�̂β AT (1 X Y XY )T ,
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where

A =
⎛
⎝−I I 0

˜
0
˜

0
˜

I

⎞
⎠ ,

I denotes the (d + 1)× (d + 1) identity matrix, 0
˜

denotes a (d + 1)× (d + 1) matrix of zeros, and d is the
dimension of X . Steps required to simultaneously fit 2 logistic regression models are detailed in Appendix
A. In Tables 1 and 2, p-values for coefficients in the DLR models were obtained using this technique.

Note that if a factor enters into both logistic models with the same coefficient, it drops out of the DLR
model. This indicates that the change in risk incurred by knowledge of Y does not depend on that factor.
One can formally test hypotheses that elements of βX − β∗

X are equal to 0 by comparing the regression
coefficients in the DLR model with their estimated standard errors. A reduced model can then be fit to
log DLRX (Y ) by forcing corresponding coefficients in the logistic models to be equal. Again, details are
provided in Appendix A.

Here, we emphasize again the distinction between DLRX (Y ) and the covariate-adjusted effect of Y
in the posttest risk model. Observe that only if β∗

0 = β0 and β∗
X = βX , can one conclude that the

covariate-adjusted effect of Y in the augmented model, P(D = 1|Y, X), is the same as the change in odds
of disease incurred with knowledge of Y . The former is more relevant to etiologic research, while the
latter is more relevant to diagnostic and prediction research.

One concern with fitting 2 logistic regression models to the same data is that the 2 models may not
be compatible in the sense that their inherent relationship is ignored. An alternative approach is to fit a
model to the posttest risk, P(D = 1|X, Y ), and to the distribution of Y conditional on X , F(Y |X), and to
calculate the pretest risk using the relationship

P̂(D = 1|X) =
∫

P̂(D = 1|X, Y )dF̂(Y |X).

This has the advantage that F(Y |X) and P(D = 1|X, Y ) are functionally independent. However, the
approach is not only numerically more complicated but most importantly does not apply to case–control
studies. We expect that by using sufficiently flexible models for pretest and posttest risk models and by
using goodness-of-fit procedures for each model, issues with incompatibility will not arise.

Table 1. Baseline (pretest) and augmented (posttest) models for risk of hearing impairment based on a
nested case–control substudy of the Neonatal Audiology for test B. Shown are log odds ratios for P(D =
1|X) and P(D = 1|X, Y ) and coefficients for covariates in the corresponding model for logDL RX (Y ).
Age is centered at 35 weeks. p-values in parentheses are calculated by comparing estimates with standard

errors

Factor Pretest risk Posttest risk log DLRX (Y )

Intercept −0.05 (0.67) −0.58 (<0.001) −0.54 (1.00)
Age (weeks) −0.04 (0.04) −0.04 (0.05) 0.002 (0.27)
Location (booth versus room) 0.10 (0.49) 0.15 (0.34) 0.04 (0.72)
Age × location 0.07 (0.02) 0.07 (0.03) −0.005 (0.47)
Test result (Yes versus No) — 1.06 (<0.001) 1.06 (<0.001)
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4. COVARIATE EFFECTS ON A TEST FOR HEARING IMPAIRMENT

4.1 The study

The Neonatal Hearing Screening Study is a study of hearing screening in a cohort of high-risk newborn
babies (Norton and others, 2000). Each baby in the study was tested in each ear with 3 passive hearing
tests and evaluated with a gold standard behavioral test at 9–12 months of age. In the data set analyzed
by Leisenring and others (1997), the tests are dichotomized and covariates include gestational age of the
baby, location where the screening test was performed (hospital room or sound booth), and severity of
hearing impairment for deaf ears. Here, we analyze the test labeled “B” in the publicly available data set,
www.fhcrc.org/science/labs/pepe/dabs/. For simplicity, we restrict our analysis to the left ear only to avoid
issues with correlations between ears. In total, 356 subjects have hearing impairment in the left ear. To
illustrate our methodology, we simulate a nested case–control study from the cohort by selecting all 356
ears with hearing impairment and a random sample of 356 control ears with normal hearing.

4.2 The DLR of hearing test B

Overall in the population, test B has a true-positive rate, P(Y = 1|D = 1), of 61.5% and a false-positive
rate, P(Y = 1|D = 0), of 37.3%. Therefore, its positive DLR, DLR(1), is TPR/FPR = 1.65, while its
negative DLR, DLR(0), is (1 − TPR)/(1 − FPR) = 0.61. A clinician considering ordering test B for
a child may give him a subjective probability p of being hearing impaired. If he were to order test B
and it were positive, then according to (2.2) he would revise the probability to p+, where logit p+ =
logit p + log 1.65. For example, if p = 0.20, then a positive test would lead him to the revised probability
p+ = 0.29. A negative test on the other hand would lead to the revised probability p− = 0.13 since
logit p+ logDLR (0) = logit 0.2+ log 0.61 = logit 0.13. Interventions for families with infants suspected
of hearing impairment include counseling and education in regard to nonverbal communication skills.
Potential drawbacks of intervention are the social consequences associated with labeling a child as hearing
impaired. The clinician should only order the test if his recommendations about intervention will be
different when his assessment of the child’s chance of being hearing impaired is 0.29 or 0.13 versus
when his assessment of the chance is the baseline value 0.20.

We next evaluate if the DLRs of the test vary with age of the child or location where the test is
performed. That is, should the manner in which the physician uses the test result to update his assessment
vary with these factors? Table 1 displays logistic models fit to the case–control study data. Both models
fit the data well. Hosmer–Lemershow tests yielded a p-value of 0.31 for the pretest risk model and 0.72
for the posttest risk model. We see from Table 1 that gestational age of the child is associated with the
child’s risk of hearing impairment both in the absence and in the presence of knowledge of the test result.
There is also a significant interaction between location and age in both pretest and posttest risk models.
As expected, the newborn screening test result is strongly associated with risk of being hearing impaired.
Interestingly, the coefficients associated with age and location factors in the pretest model are essentially
unchanged when test result is added to the model. By subtraction, the coefficients associated with age and
location in the logDLR model are therefore close to 0, and none are statistically significant. That is, the
DLRs associated with the screening test result do not depend on the child’s age or on location of testing.
The clinician can therefore use the test result to update his assessments in the same manner regardless of
the child’s age or where the testing was done.

5. QUANTIFYING THE PERFORMANCE OF A MARKER

In this section, we are not interested in the covariate-specific DLR function for its own sake. Instead, we
use it as a stepping stone toward evaluating the predictive impact of a continuous marker.
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5.1 The renal artery stenosis study

In a study of 426 subjects undergoing renal arteriography reported by Janssens and others (2005), 98
(23%) were found to have significant stenosis. Baseline predictors of renal stenosis are shown in Table 2,
along with logistic regression coefficients estimated using the entire set of 426 subjects. Continuous co-
variates, namely, age and BMI, are centered at their means, so that the baseline risk relates to a person of
average age and BMI. All baseline covariates except gender are statistically significant risk factors.

We simulated a nested case–control marker study within this cohort by selecting all 98 cases and a
random sample of 98 controls from the 328 controls in the cohort. We assume that the novel marker Y ,
serum creatinine, is only available for these patients. We analyzed serum creatinine on a logarithmic scale
and standardized it to have mean 0 and standard deviation 1.

5.2 Results

We first show some key results pertaining to the incremental value of serum creatinine for risk prediction
in this data set. Novel methods to arrive at these results will be described below. In Table 2 (column 2),
coefficients of the log DLR model were obtained by subtracting coefficients of the pretest risk model from
those of the posttest risk model. Both models were fit to the case–control subset. Hosmer–Lemershow tests
yielded p-values of 0.16 and 0.92 for the pre- and posttest logistic regression models, indicating that both
models fit the data well. Figure 2 displays scatter plots of pretest and posttest risks for the 98 cases and
98 controls in this study. We see that there is a slight tendency for posttest risks calculated for cases
to increase relative to baseline (average change is 0.044), while risks decreased on average for controls
(average change is 0.011). However, large changes in positive and negative directions are evident for both
cases and controls. For illustration, suppose that a risk of 0.4 constitutes a high-risk threshold in the sense
that if a subject has risk above 0.4 he is recommended for renal arteriography. We see from the margins of
the scatter plots that in the absence of serum creatinine, 55% (95% confidence interval [CI] (0.43, 0.64)) of
cases are classified as high risk and 5% (95% CI (0.01, 0.11)) of controls are classified as high risk. In the
terminology of Pepe and others (2008), the true- and false-positive rates associated with the pretest risk
model are 0.55 and 0.05, respectively. When serum creatinine is added to the model, the true-positive rate

Table 2. Baseline model for risk of renal artery stenosis based on 426 patients and DLR model based
on a nested case–control substudy of serum creatinine. Shown are log odds ratios for P(D = 1|X)
and coefficients for covariates in the corresponding model for log DLRX (Y ). Continuous variables are
standardized to mean 0 and variance 1. p-values in parentheses are calculated by comparing estimates
with standard errors. Standard errors for coefficients in the logDLR model are calculated by adopting the

techniques described in the appendix

Factor Baseline risk log DLRX (Y ) log DLRX (Y )∗

Intercept −2.54 (<0.001) 0.06 (0.56) 0.07 (0.44)
Gender (female) 0.38 (0.18) 0.44 (0.01) 0.47 (0.01)
Age (per 10 years) 0.61 (<0.001) −0.18 (0.002) −0.18 (0.003)
Hypertension 0.66 (0.03) 0.03 (0.81) 0.00
BMI (kg/m3) −0.20 (<0.001) 0.03 (0.06) 0.03 (0.09)
Abdominal bruit 1.41 (<0.001) 0.33 (0.15) 0.00
Atherosclerosis disease 0.91 (0.002) −0.45 (0.01) −0.42 (0.01)
log serum creatine — 0.92 (<0.001) 0.91 (<0.001)

∗After setting to 0 coefficients for abdominal bruit and hypertension.



180 GU AND PEPE

Fig. 2. Scatter plots of risk estimates with and without serum creatinine as a predictor, for 98 cases and 98 controls
in the renal stenosis substudy. For illustration, low- and high-risk thresholds of 0.1 and 0.4 are displayed. Panel (a)
shows the pre- and posttest disease probabilities for cases, and panel (b) displays the probabilities for controls.

is increased from 55% to 62%. The false-positive rate is also increased slightly from 5% to 7%. Overall
in the population, we estimate that 20% of patients are classified as high risk using a model that includes
serum creatinine, while fewer, 17%, are classified as high risk in the absence of knowledge about their
serum creatinine levels. Thus, by using serum creatinine to calculate risk, a larger number of high-risk
individuals are identified, and importantly, a larger proportion of subjects with renal stenosis (cases) are
recommended for the diagnostic procedure.

Now, consider a subject with baseline risk P(D = 1|X). Two specific examples are considered in
Figure 3. The right panel concerns a man whose baseline risk is 0.27. The plots show estimates of the
probability distributions of posttest risk for him. The bottom curves are cumulative distributions con-
ditional on case or control status, while the upper curve shows the marginal distribution. Suppose his
personal risk tolerance is high and he will opt for renal arteriography only if his risk of stenosis is 0.40 or
more. We see that there is a 20% chance that after obtaining serum creatinine his posttest risk will be in
this high-risk range. If he has renal stenosis, that chance is 37%, while it is only 16% if he does not in fact
have renal stenosis. It appears that ascertainment of serum creatinine for him has a reasonable chance of
affecting his decisions about undergoing renal arteriography.

Suppose, however, that this subject has a low tolerance for risk and is inclined to opt for renal arteri-
ography unless his calculated risk is below 10%. We see from Figure 3 that there is a very small chance,
0.04, that his posttest risk will be < 10%, regardless of his true status. Therefore, there is no point in
obtaining the marker for this subject. His risk calculated with serum creatinine will not lead to a different
course of action from that calculated with the baseline factors only.

5.3 Methods

In this section, we describe methods to arrive at estimates of the posttest risks shown in Figure 2 and
the individual posttest risk distribution curves shown in Figure 3 using covariate-specific estimates of the
DLR function (Table 2).

Having fit a DLR regression model to the case–control data and a baseline risk model to the entire
cohort, we use the relationship (2.2) to calculate r̂(Xi , Yi ) = P̂(D = 1|Xi , Yi ) from D̂LRXi (Yi ) and
r̂(Xi ) for each subject in the case–control subset. Posttest risk estimates are displayed in Figure 2. Em-
pirical estimators of the marginal case and control posttest risk distributions follow. These are valid in
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Fig. 3. Estimates of covariate-specific distributions of risk in the renal artery stenosis study. Shown are curves for 2

individuals. Left panel is for a 57-year-old female whose BMI is 26.77 kg/m2 and has hypertension but no atheroscle-
rosis disease or abdominal bruit. Her baseline risk is 0.23. The right panel is for a 63-year-old male whose BMI is
30 kg/m2 and has hypertension and atherosclerosis disease but no abdominal bruit. His baseline risk is 0.27.

an unmatched case–control study. Under a frequency-matched case–control design, the estimators would
need to be weighted according to the population distributions of X in the case and control populations,
which can be estimated from the parent cohort. The cumulative distribution of posttest risk in the popu-
lation as a whole is the average of case and control posttest risk distributions, weighted according to the
population prevalence which is 23% in our example. Sampling variability in the risk estimates is assessed
with bootstrap resampling.

Now consider the estimated covariate-specific distributions of posttest risk shown in Figure 3, also
known as covariate specific predictiveness curves (Huang and others, 2007). To calculate these, we model
the distribution of Y as a function of X and case–control status using a semiparametric location scale
model (Heagerty and Pepe, 1999):

Y = g(η, X, D) + ε,

where g is a specified function and the cumulative distribution of ε, denoted by F0, is unspecified. The
model is used in conjunction with the covariate-specific DLRX (Y ) function and the baseline risk, r(X),
to calculate R1,X (t) and R0,X (t), the covariate-specific posttest risk distributions in cases and controls,



182 GU AND PEPE

Table 3. Effects of baseline covariates and outcome on the marker distribution in the renal artery
stenosis study

Factor Coefficient (p-value)

Intercept −0.20 (0.08)
Gender (female) −0.58 (<0.001)
Age (per 10 years) 0.17 (0.003)
Hypertension −0.07 (0.56)
BMI (kg/m2) −0.01 (0.29)
Abdominal bruit −0.18 (0.30)
Atherosclerosis disease 0.48 (0.001)
Renal artery stenosis 0.54 (<0.001)

respectively. In particular, let

I (X, t) = {y : log(DLRX (y)) + logit(r(X)) � logit(t)},
then

RD,X (t) =
∫

I (X,t)
dF0(y − g(η, X, D)).

The fitted DLR regression model and baseline risk value yield Î (X, t). The empirical distribution of resid-
uals from the fitted model for Y gives rise to F̂0. The estimated covariate-specific marginal distribution of
posttest risk is

r̂(X)R̂1,X (t) + (1 − r̂(X))R̂0,X (t).

In our analysis, we choose a linear link function g, and estimated coefficients are shown in Table 3.
Sampling variability is assessed with the bootstrap.

It is widely appreciated that the performance of a risk prediction model on the data used to fit the
model can be optimistically biased. We used 10-fold cross-validation to reduce bias in estimates of
the risks and their distributions. Results were almost identical. The results reported here did not employ
cross-validation.

5.4 Risk thresholds and decisions to ascertain Y

Implicit in the above discussion is the existence of threshold values for risk that are used to make deci-
sions, in this case for or against the renal arteriography procedure. Risk thresholds vary with the clinical
context and may additionally vary among individuals. How to choose a risk threshold? The classic de-
cision theoretic solution to choosing a risk threshold is fairly simple. Let C0 (and B0) denote the cost
(and benefit) associated with being classified as high risk (and low risk) if the subject is in fact a control.
Similarly, let B1 (and C1) denote the benefit (and cost) of being classified as high risk (and low risk) if the
subject is a case. Then, the expected benefit of high-risk classification for a subject whose risk of being a
case is given by r is r B1 − (1 − r)C0, where −C0 is interpreted as a negative benefit. His expected benefit
of low-risk classification is −rC1 + (1 − r)B0. The expected benefit with high-risk designation exceeds
that of low-risk designation if r/(1 − r) > (B0 + C0)/(B1 + C1). In other words, he can expect to benefit
from the high-risk designation if r > C0/(B1 +C0), where C0 = B0 +C0 is the net cost of high-risk clas-
sification for a control and B1 = B1 + C1 is the net benefit for a case. The appropriate high-risk threshold
is therefore C0/(B1 + C0), a direct function of the cost–benefit ratio, C0/B1. If a low-risk threshold is of
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interest, a similar exercise can be used to yield the value. In our example, the high-risk threshold of 0.4
corresponds to an implicit cost–benefit ratio of 2/3, while the cost–benefit ratio 1/9 corresponds to the risk
threshold of 0.1.

Now, suppose a subject has baseline risk r(X) and high-risk threshold τ = C0/(B1 + C0). How
should he formally decide to ascertain Y or not? Recall that if r(X) > τ , in the absence of Y he will
choose to undergo the intervention associated with high-risk status and his expected benefit is r(X)B1 −
(1 − r(X))C0. If he ascertains Y , the expected benefit is

r(X){B1(1 − R1,X (τ )) − C1 R1,X (τ )} + (1 − r(X)){−C0(1 − R0,X (τ )) + B0 R0,X (τ )} (5.1)

assuming that the cost associated with ascertaining Y itself is negligible. The first and second components
of (5.1) are the expected benefit for a case and a control, respectively. Observe that, by rearranging (5.1),
it can also be represented as

{r(X)B1(1 − R1,X (τ )) − (1 − r(X))C0(1 − R0,X (τ ))} + {(1 − r(X))B0 R0,X (τ ) − r(X)C1 R1,X (τ )}.

The first and second components are counterparts of r B1 − (1 − r)C0 and −rC1 + (1 − r)B0, the ex-
pected benefit of high- and low-risk classification, but now each element is weighted by the corresponding
probability of high- or low-risk designation conditional on case–control status.

By subtraction, we see that if r(X) > τ , he expects to gain more by ascertaining Y than not if

−r(X)(B1 + C1)R1,X (τ ) + (1 − r(X))(B0 + C0)R0,X (τ ) > 0.

Equivalently when r(X) > τ , there is benefit to be expected by ascertaining Y and basing the decision on
r(X, Y ) if

C0

B1
>

r(X)

1 − r(X)

R1,X (τ )

R0,X (τ )
.

A similar exercise indicates that when r(X) < τ , one should ascertain Y and base the decision on r(X, Y )
if

C0

B1
<

r(X)

1 − r(X)

(1 − R1,X (τ ))

(1 − R0,X (τ ))
.

In our illustration for the man with risk 0.27 on the basis of baseline factors (Figure 3, right panel),
if his high-risk threshold is τ = 0.40, we found R1,X (0.40) = 0.63 while R0,X (0.40) = 0.84. Implicitly
for this subject, C0/B1 = 2/3 as his choice of high-risk threshold is τ = 0.4. Since his baseline risk
r(X) < τ , he should ascertain Y if

2

3
= C0

B1
<

r(X)

1 − r(X)

(1 − R1,X (τ ))

(1 − R0,X (τ ))
= 0.27

0.73

(1 − 0.63)

(1 − 0.84)
= 0.86.

This condition holds. Therefore, he should ascertain Y and base his decision on r(X, Y ) rather than on
r(X). On the other hand, if his high-risk threshold is τ = 0.10, C0/B1 = 1/9 and we found R1,X (0.10) =
0.05 and R0,X (0.10) = 0. He should not ascertain Y since the condition

1

9
= C0

B1
>

r(X)

1 − r(X)

R1,X (τ )

R0,X (τ )
= 0.27

0.73

0.05

0
= ∞

does not hold.
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6. DISCUSSION

We have studied the DLR function in this paper, a measure of test performance that is popular in clinical
medicine but is used in a simplified fashion in practice. We developed methods to make inference about
the covariate-specific DLR function and demonstrated 2 uses for the methodology. First, we illustrated
an investigation of covariate effects on DLR where the covariate effects themselves were of interest.
Leisenring and Pepe (1998) provide another approach to DLR regression that applies only to dichotomous
tests. Second, we showed how estimation of the covariate-specific DLR from a nested case–control study
can allow us to evaluate the posttest risk distributions that can be obtained with a marker. Methods for
making decisions about ascertainment of the marker follow.

We contrasted the covariate-specific DLR function with the covariate-adjusted association between
outcome and test result. The former pertains more to diagnostic and prediction research than to etiologic
research but is less familiar to biostatisticians. Since DLRX (Y ) is a function of Y , in and of itself it does
not provide a simple summary of test performance when Y is continuous. One might consider standardiz-
ing marker values relative to their covariate-specific distributions in controls to make DLRX (.) functions
comparable across markers (Huang and Pepe, 2008) and across populations with different covariates. De-
velopment of sensible summary indices will be needed to formulate test statistics for comparing markers
and subpopulations.
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APPENDIX A

A.1 An algorithm to simultaneously fit 2 logistic regression models

Suppose there are n subjects in the data set. Each subject has a record composed of disease status D,
marker Y , and covariate vector X .
Write the 2 logistic regression models as

logitP(D = 1|X) = β∗
0 + β∗

1 X

and
logitP(D = 1|X, Y ) = β0 + β1V,

where V is a vector of covariates that are functions of (X, Y ). Transformations and interactions as well as
linear terms can be introduced in V .

1. Rearrange the data for each of the n subjects into 2 replicate records of the form (Di , Xi , Vi ),
i = 1, . . . , n. The 2 records have the same outcome Di and covariate vectors.

2. Define an indicator variable Ii j in the j th data record of the i th subjects with Ii1 = 1 and Ii2 = 0.
3. Define a vector with 4 components Zi j = (1 − Ii j , (1 − Ii j )Xi j , Ii j , Ii j Vi j ) for the j th record for

subject i .
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4. Fit a logistic regression model to D with predictor Z using the rearranged data. Generalized estima-
tion equation methods are employed with independence as the working correlation structure.

5. A sandwich variance–covariance estimator for the regression coefficients is calculated that accounts
for the fact that each subject contributes a pair of observations (cluster) to the analysis.

Note that in order to restrict the models so that coefficients associated with components of X are the same
in the pretest and posttest risk models, one includes it as a single covariate Xi j rather than as 2 components
(1 − Ii j )Xi j and Ii j h(Xi j ) in step 3, where h(Xi j ) indicates all terms related to Xi j in Ii j Vi j .
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