
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Neutral network sizes of biological RNA molecules can be 
computed and are not atypically small
Thomas Jörg†1,2, Olivier C Martin†2,3 and Andreas Wagner*4,5,6,7

Address: 1Inria Saclay – Ile-de-France, INRIA, Parc Orsay Université 4, rue Jacques Monod 91893 ORSAY Cedex, France, 2Laboratoire de Physique 
Théorique et Modèles Statistiques, Université Paris-Sud, 91405 Orsay Cedex, France, 3UMR0320/UMR8120 Génétique Végétale, Université Paris-
Sud, F-91190 Gif-sur-Yvette, France, 4Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, 
5The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA, 6Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 
1015 Lausanne, Switzerland and 7University of New Mexico, Department of Biology, 167 Castetter Hall, Albuquerque, MSC03 2020, USA

Email: Thomas Jörg - Thomas.Jorg@roma1.infn.it; Olivier C Martin - olivier.martin@u-psud.fr; Andreas Wagner* - aw@bioc.uzh.ch

* Corresponding author    †Equal contributors

Abstract
Background: Neutral networks or sets consist of all genotypes with a given phenotype. The size
and structure of these sets has a strong influence on a biological system's robustness to mutations,
and on its evolvability, the ability to produce phenotypic variation; in the few studied cases of
molecular phenotypes, the larger this set, the greater both robustness and evolvability of
phenotypes. Unfortunately, any one neutral set contains generally only a tiny fraction of genotype
space. Thus, current methods cannot measure neutral set sizes accurately, except in the smallest
genotype spaces.

Results: Here we introduce a generalized Monte Carlo approach that can measure neutral set
sizes in larger spaces. We apply our method to the genotype-to-phenotype mapping of RNA
molecules, and show that it can reliably measure neutral set sizes for molecules up to 100 bases.
We also study neutral set sizes of RNA structures in a publicly available database of functional,
noncoding RNAs up to a length of 50 bases. We find that these neutral sets are larger than the
neutral sets in 99.99% of random phenotypes. Software to estimate neutral network sizes is
available at http://www.bioc.uzh.ch/wagner/publications-software.html.

Conclusion: The biological RNA structures we examined are more abundant than random
structures. This indicates that their robustness and their ability to produce new phenotypic variants
may also be high.

Background
Every cell is packed with solutions to the problems its
ancestors faced. These solutions are embodied in biologi-
cal macromolecules – RNA and proteins – which produce
energy from nutrients, neutralize external stressors, coor-
dinate cell division, defend cells against invaders, and so
on. Most of us think of these solutions as extremely rare-

fied: They would be difficult to find in the space of possi-
ble nucleotide or amino acid sequences, because they
occupy exceptionally small regions in this space. Their dis-
covery by living things was hard-won, through innumera-
ble generations of mutation and natural selection. Despite
this common wisdom motivated by stringent functional
constraints on biological molecules, we have little rigor-
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ous, quantitative understanding of how abundant or rare
the molecular structures of biological molecules are. The
fundamental reason is that our ability to characterize gen-
otypes (sequences) still vastly exceeds our ability to char-
acterize phenotypes (molecular structures and functions).
While it is simple to determine the nucleotide sequence of
a gene and even of entire genomes, the prediction of the
structure of individual proteins or RNA molecules, let
alone of their integrated behavior, is a major challenge.

If they are extremely rare, functional phenotypes may be
very difficult to find in a blind evolutionary search. How-
ever, the significance of phenotype rarity does not end
with this observation. The descendants of biological mac-
romolecules may give rise to molecules with new pheno-
types and functions – evolutionary innovations. The ease
with which they do is also called their evolvability [1].
Some molecules have been extremely prolific in this
regard – highly evolvable – whereas others have been less
so. The rarity of a molecule may affect its propensity to
evolve new structures and functions. To see why, it is use-
ful to consider that such molecules are usually part of
large networks of genotypes [2-6]. Most known structures
of protein and RNA molecules are adopted not by one
sequence, but by large sets of sequences. Many or all of
these sequences can be connected in sequence space
through series of nucleotide or amino acid changes that
traverse a large fraction of this space, yet leave the struc-
ture and function of the molecule unchanged. Such sets of
sequences are often referred to as neutral sets or neutral
networks [2]. Specifically, a neutral set is a set of
sequences with the same phenotype. A neutral set is called
a neutral network if all sequences in it can be connected
through series of single mutations that do not leave this
set. This distinction maintains the generality of our frame-
work. However, for the RNA phenotypes we study neutral
sets are almost always connected, so the two terms can be
used interchangeably. The size of a neutral set is a measure
of a phenotype's rarity in sequence space. The greater this
size, the easier it should be to find the phenotype in an
evolutionary search. We will refer to phenotypes with
large neutral sets as abundant or frequent phenotypes.

Evolutionary innovations arise when mutations that
explore variants of a functional phenotype strike a mole-
cule with a new and useful function. A large neutral net-
work can be of advantage in this process, because the
immediate neighborhood of a large neutral network in
sequence space contains many more phenotypic variants
than that of a smaller neutral network. Through neutral
evolution on large neutral networks, molecules can thus
get access to many molecular variants. This is why high
abundance of a phenotype can be argued to be beneficial
for evolutionary innovation [7]. Recent evolutionary work
on protein structures shows that abundant protein pheno-

types have indeed evolved greater functional diversity [8].
Other factors, such as neutral network topology may also
play a role in evolutionary innovation [9-11].

These observations motivate the need for approaches to
estimate the abundance of phenotypes in sequence space.
We here show how to solve this problem for a computa-
tionally accessible molecular phenotype, the secondary
structure of RNA molecules. RNA secondary structure is
required for the biological function of many RNA mole-
cules [12-14]. It is thus an important phenotype in its own
right. Because algorithms to predict RNA secondary struc-
ture from an RNA sequence are available [15-17] second-
ary structure is an important computational model to
understand the relationship between RNA genotypes and
phenotypes [2,4,10,18]. The computational challenge to
estimate whether an RNA phenotype is frequent or rare,
i.e., whether it is adopted by many or few sequences, is
formidable. For example, even for sequences of length L =
50 one has to estimate numbers smaller than 10-15

(expressed as a fraction of the size 4L of sequence space).
Below, we discuss the details of the method we developed,
which is based on a nested sampling of genotypes. We
then apply this method to multiple biological and ran-
dom RNA sequences. The results demonstrate that biolog-
ical RNA structures have a large number of sequences that
fold into them, much larger than for random phenotypes.
This number of sequences may also be moderately larger
than for structures produced from random genotypes.

Methods
Software for structure prediction and inverse folding
For our analyses, we used the Vienna RNA package (http:/
/www.tbi.univie.ac.at; [15]), including the routines fold,
which determines the minimum free energy (mfe) struc-
ture of a sequence, and inverse_fold, which creates
sequences folding into a given minimum free energy
structure, using a guided random walk through sequence
space that begins with a randomly chosen sequence. We
also used the utility bp_distance which calculates the
base-pair distance of two arbitrary structures.

Sampling neutral sets
In the literature, heuristic sampling of neutral sets has
been performed by using the inverse_fold routine imple-
mented in the Vienna RNA package (http://www.tbi.uni
vie.ac.at; [15]). To test this approach, we studied its statis-
tical bias by comparing its results to results obtained by
random sampling of compatible sequences – sequences
where only bases capable of pairing occur in the struc-
ture's stacks. We found that inverse_fold does not sample
the desired set of sequences uniformly: sequences that are
on the "boundary" of this set are sampled more fre-
quently. We thus refrain from using this approach when
uniform random sampling is necessary. For our study, the
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routine inverse_fold is used only in the initialization of
the Monte Carlo approach which quickly loses the mem-
ory of this initial choice.

Error estimates

To estimate a neutral set size for any given structure S, we
first carry out a very long run of the Nested Monte Carlo
procedure (at least 105 cycles of mutation and exchange at
each d) to estimate the size of the neutral set. We measure

the quantities Oi = χd(G)(i = 1, ... 50) that are the averages

in each of the fractional intervals [(i - 1) × 0.02, i × 0.02]
of the total run. That is, each Oi is computed from a frac-

tion of 2% of the total run. This gives 50 estimates of neu-
tral set size, where the global average is the actual
estimated size (e.g., Table 1). We then use the 50 values of
Oi to obtain the error in this estimate. As in all Markov

chain Monte Carlo methods, the 50 values Oi are not inde-

pendent. To address this problem, we apply the jackknife
method [19] which is a general way to compute errors
even for correlated and non-normally distributed data. In
this method, if one has k samples Oi, one first computes k

averages mi of these samples, omitting for each average the

single value Oi. The resulting set of values (m1, ..., mk) has

some standard deviation σ. The jackknife error estimate is

given by . It is that value we report as the error bar

on the neutral set size estimates.

In a similar vein, we obtained error estimates for P-values
as follows, again using the jackknife method. A structure's
P-value is determined from expression (10) for a sample
of M phenotypes. For each i = 1, ..., M, we remove the i-th
structure from this sample and recompute the P-value

according to (10) with this altered sample. If σ is the
standard deviation of these M estimates, then the Jack-

knife procedure specifies  as the error of these
estimates; this is the error we quote in Table 1.

Results
To determine neutral network sizes, one can in principle
enumerate all sequences and the structures they fold into,
or one can sample by ''brute force'' many sequences from
sequence space, and estimate the fraction of sequences
with a structure of interest. If one focuses only on
sequences compatible with a given structure – sequences
where only bases capable of pairing occur in the struc-
ture's stacks – then these approaches are practical for sin-
gle structures up to L ≈ 40. However, for our work we need
to do this kind of calculation for thousands of structures,
and for neutral set sizes that may exceed 1020. We thus

need a more sophisticated approach. In what follows we
describe a method that leads to reliable estimates for
much larger L. In addition, this method achieves uniform
sampling regardless of whether sequences adopting a
given structure fall into one neutral network, or into mul-
tiple, disjoint neutral networks. In a second part, we
explain how this approach can be used to quantify
whether a structure's neutral set is atypically large or
small.

Part 1: A Nested Monte Carlo approach to estimate the 
size of a neutral set
We are given a discrete space of 4L genotypes (RNA
sequences), where L is sequence length. We would like to
determine the number of genotypes in this space that have
a given "target" phenotype (structure) S*. To this end, we
have developed a Monte Carlo sampling approach. It
builds on the Metropolis algorithm [20] that can sample
connected spaces according to any predefined probability
measure. However, the sampling of a set does not yield an
estimate of its size. We overcome this shortcoming by
considering nested sampling. Our approach only assumes
that there exists a distance metric d(S, S*) among all phe-
notypes, or at least a measure of distance between any
phenotype S and the target S*. (We here used the base-
pair or bond distance calculated in the Vienna RNA pack-
age [15], and note that the choice of distance does not
affect the framework of our estimation method.) In prac-
tice, d will be an integer, ranging from 0 to some integer
dmax; d = 0 if and only if S = S*. We will call V(d) the
number of genotypes whose phenotype S satisfies d(S, S*)
≤ d, and we will refer to the set of these genotypes also as
V(d). Our quantity of interest is V(0), the size of S*'s neu-
tral set, be it connected or not. To compute this quantity,
we use the identity

Because V(dmax) = 4L is known, V(0) can be estimated from
the estimates of all the ratios V(d)/V(d+1). These ratios
can be estimated using the Metropolis algorithm by sam-
pling uniformly the space V(d+1), and measuring the
average of the indicator (characteristic) function χd of V(d)

Note that by construction the sets V(d) are nested, either
like Russian dolls, or in more complicated ways, since
each set need not be connected. The innermost set, V(0),
is the ultimate set of interest and its size is the desired neu-
tral set size; all the other sets are just of use to connect V(0)
to the known quantity V(dmax) = 4L.

k − 1s

M − 1s

V
V
V

V
V

V d
V d

V d( )
( )
( )

( )
( )

( max )
( max)

( )max0
0
1

1
2

1= −… (1)

c
c

d

d

G G V d

G G V d

( ) ( )

( ) ( )

= ∈
= ∉

1

0

if 

if 
(2)
Page 3 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:464 http://www.biomedcentral.com/1471-2105/9/464
To estimate the ratio V(d)/V(d+1) we sample V(d+1) uni-
formly using the Metropolis algorithm. Specifically, we
begin with an arbitrary genotype G1 in V(d+1), and pro-
duce a (Markov) chain, G1, G2 ... Gk ..., of genotypes. To
obtain Gk+1 from Gk, a random nucleotide in Gk is
changed, producing a mutated genotype G'; if G' ∈ V(d +
1), then Gk+1 = G', otherwise Gk+1 = Gk. At sufficiently large
k, the distribution of Gk is uniform in V(d+1), allowing for
unbiased statistical estimates of χd(G). To be precise, at
this stage the sampling is uniform but restricted to the
connected component of V(d+1) that contains G1.

As described so far, nested sampling estimates the ratios
V(d)/V(d+1) by performing independent Monte Carlo
simulations for each d, but the algorithm is sound only if
each set V(d) is connected. To guarantee soundness even
when this is not the case, we estimate all the ratios in (1)
simultaneously, introducing genotype ''swaps'' similar to
those used in the Exchange Monte Carlo approach
[21,22]. Specifically, we first initialize the Monte Carlo
procedure by establishing as many sequences in V(0) as
there are ratios to estimate in (1). It is simplest to initialize
all these sequences to the same element of the neutral set
which we assume to be non empty. Whether this initial
sequence is from an unbiased (i.e., uniform) distribution
does not matter. We thus use inverse_fold [15] to estab-
lish such a sequence. Each of these sequences will then
start a random walk that will be used to estimate one of
the ratios of (1). At each round of the Nested Monte Carlo,
there are now two steps. The first is a mutation step, in
which each random ''walker'' is mutated as described
above according to the Metropolis rule; it is thus confined
to the set V(d+1) used to estimate the ratio V(d)/V(d+1) (d
is different for every random walker). The second step
consists of a swap of two sequences: genotype 1 in V(d) is
exchanged with genotype 2 in V(d+1), if and only if geno-
type 1 also lies in V(d+1), and if genotype 2 also lies in
V(d). That a genotype lies in two sets is possible, because
the sets are nested. Just as in Exchange Monte Carlo, one
can prove that the detailed balance condition upon with
the success of the Metropolis algorithm rests [20] is still
satisfied with this procedure; thus the desired fractions
can still be computed in the same way as for the simple
sampling previously described.

While it may seem that this generalized Monte Carlo
method is simply a parallel version of our initial sam-
pling, the introduction of swaps has two important bene-
fits. First, as in all Markov chains, the successive sequences
of genotypes generated in the Metropolis algorithm are
correlated. This correlation leads to statistical errors and
thus is undesirable. The random swaps reduce this corre-
lation and thus lead to greater computational power. Sec-
ond, ergodicity – uniform sampling regardless of whether
the sets V(d) are connected or not – is guaranteed by the

modified Monte Carlo algorithm. The reason is as follows.
The detailed balance condition for each walker ensures
that all genotypes which can be reached are necessarily
sampled with equal probability. Now in the largest vol-
ume V(dmax) (the entire sequence space), the random walk
is ergodic, simply because the entire sequence space
V(dmax) is connected. Through swaps, walkers can reach
any genotype in V(dmax-1), so that the random walk in
V(dmax-1) is also ergodic. By recurrence, one can see that
the random walk in V(d) is ergodic for all d.

We note that the sampling scheme from (1) can also be
generalized to other nested sets of volumes that do not use
successive values of d as in (1). Greater efficiency could be
obtained by adapting the choice of d-values: Having too
many fractions to estimate in (1) leads to excessive com-
putational cost, while too few fractions lead to poor sam-
pling and large sampling variance. In our application to
RNA molecules below, we found that the simplest proce-
dure, of using all d up to dmax was adequate. Note also that
our approach will work not only for RNA genotypes, but
for any genotype space (discrete or continuous) as long as
a distance metric between phenotypes exists. Our software
to estimate neutral network sizes is available at http://
www.bioc.uzh.ch/wagner/publications-software.html.

Part 2: Evaluating the abundance of secondary structures
We now have described how to estimate the neutral set
size of an individual structure.

One of our goals is to find out whether biological struc-
tures have neutral sets that are atypical in size. Since evolv-
ability arguments suggest that these sizes might be large,
we shall ask whether biological neutral network sizes are
much larger than those of typical structures. Specifically,
we wish to test the null hypothesis H0 that a given second-
ary structure of a biological RNA molecule has an associ-
ated neutral set whose size could have been drawn at
random from the distribution of all neutral set sizes, i.e.,
from randomly chosen phenotypes. (Further below, we
shall also briefly consider phenotypes generated from ran-
dom genotypes.) This task requires us to estimate neutral
set sizes for many different structures. However, already
for moderate length L, there is an astronomical number of
structures, and we thus cannot enumerate them exhaus-
tively. We here demonstrate the theoretical foundation of
an enhanced sampling method that allows us to estimate
the comparative abundance of a phenotype.

Neutral set sizes NS follow some distribution P(NS = x),

defined as the probability that NS equals some integer x

(xmin ≤ x ≤ xmax). Although this distribution is discrete,

there are so many different structures that a continuous

notation with a corresponding probability density ρ(x) is
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appropriate. Note that . We would reject H0

if, for a specific phenotype S* and its neutral set size NS*,

i.e., we integrate over the right tail of the distribution, thus
performing a one-tailed test. If (3) holds for a neutral set,
we call the set atypically large at a confidence level of 0.05,
but this threshold can of course be reduced if a more con-
servative test is needed.

We next demonstrate an intimate link between the P-
value and the rank histogram of neutral set sizes, which
will lead us to a sampling scheme to estimate small P-val-
ues.

For very short sequences, one can calculate P-values by
exhaustive enumeration of sequences and structures. Con-
sider, for example Figure 1, which shows all 58 RNA sec-
ondary structures for L = 12 for which there exists at least
one sequence folding into the structure. (We never con-
sider structures for which the neutral set is empty, i.e. NS
= 0.) In this case with L = 12, each neutral set (network)
size is unique. In the figure, the structures are rank-
ordered with the largest neutral network size (lowest rank
of 1) to the right. For any given structure, we can immedi-

ately evaluate whether (3) holds by verifying whether it is
among the 5% of phenotypes with lowest rank. More pre-
cisely, if N is the total number of structures, and R is the
rank of a given structure S*, then the associated P-value
can also be thought of as a "relative rank" P(S*) = r: = R/
N. Ties, where two or more structures have the same neu-
tral set size, can be resolved by assigning these structures
successive ranks. Note that the most abundant, lowest
ranked structure in Figure 1 corresponds to the unfolded
"structure". Because that structure is of no interest for our
work, we shall not include it in our figures or data sets
hereafter.

For large L, such rank histograms cannot be computed,
because the number of structures scales exponentially
with L, so it is not generally possible to identify all struc-
tures. Our sampling approach avoids this problem,
thereby allowing the estimation of P-values at much larger
L. The key point is that the (absolute) rank of a structure
is not necessary, we only need an estimate of its relative
rank, and that can be obtained as follows. First, we gener-
ate M random structures, where each structure is obtained
with equal probability, compute their neutral set sizes,
and then sort these sizes. For the second step, consider a
structure S* of neutral set size NS*. Its (absolute) rank R is
unknown, but its relative rank R/N can be estimated as R'/
M where R' is the number of structures in the sample of size
M that have neutral sets at least as large as NS*. The asso-
ciated estimate of P(S*) is then simply R'/M.

A complication to this sampling approach comes from the
requirement of random (uniform) sampling of phenotypes.
For RNA secondary structures, phenotypes could be sam-
pled by random assignments of allowed base pairings
[23], but in other systems, such phenotypic sampling may
not be straightforward. In addition, some phenotypes
may have empty neutral sets, i.e., NS = 0, in which case the

phenotype is not "designable" [15,23-25]. Undesignable
phenotypes are of limited biological interest, but certain
knowledge that a phenotype is undesignable is hard to
come by. To overcome this challenge, and to avoid undes-
ignable phenotypes, one can perform random sampling
of genotypes instead. However, in this approach, the com-
putation of the P-value has to be modified because one
does not sample phenotypes uniformly, but only geno-
types. In effect, each phenotype S is chosen with a proba-

bility  that is linearly proportional to the size

NS of its neutral set. In such a sampling, phenotypes with

large neutral sets arise more frequently than those with
small neutral sets. In this sense, the sampling of pheno-
types is biased (non-uniform). Incidentally, this bias
focuses the sampling on structures with large neutral sets,

r( )x dx
0

1
∞

∫ =

P S x dx

NS

( *) ( ) .

*

= <
∞

∫ r 0 05 (3)

N NS SS∑
Validation of algorithmFigure 1
Validation of algorithm. For all 58 structures adopted by 
sequences of length 12, the horizontal axis shows neutral 
network sizes, the vertical axis shows the rank of each struc-
ture, as determined by neutral network size. This rank was 
determined in two different ways, by exact enumeration 
(black, solid circles), and by the Nested Monte Carlo 
approach (grey circles, error bars) described in the text.
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which allows us to estimate small P-values with a small
statistical error. We next explain how to calculate the P-
values of equation (3) with this sampling scheme.

Returning to our continuous notation, denote by μ(x)dx
the probability of obtaining a neutral set size in the inter-
val [x, x+dx] through this random genotype sampling. The
linear dependence of the sampling probability on neutral
set size leads to the following expression for μ(x):

The denominator is a normalization constant which
ensures that μ(s) is a proper probability density. Equation
(3) can be rewritten as

It follows from (4) that

Taking advantage of (6) to modify (5) yields

We can determine the value of the rightmost integral by
setting NS* to zero, because Equation (3) shows that in
this case P(S*) = 1. We then obtain

Finally, substituting (8) into (7) gives

In sum, we can use (9) to estimate P(S*) by sampling gen-
otypes at random (which is equivalent to sampling phe-

notypes with a probability density given by equation (4)).
In practical terms, in order to estimate the P-value of any
(biological) structure S* of interest, we first determine the
neutral set sizes (NS1, ..., NSM) for M structures obtained
from a sample of M random sequences, using the Nested
Monte Carlo approach. We then estimate the structure's
neutral set size NS*. Finally, we estimate the P-value of S*
as

Here, summation in the numerator extends over all struc-
tures in the sample whose neutral set is greater than that
of S*.

Analogous P-values can be estimated for related hypothe-
ses. For example, beyond testing for anomalously small
neutral set sizes, one can ask whether the neutral network
of a particular phenotype is significantly larger than neu-
tral networks associated with the phenotypes of random
genotypes; to test this hypothesis, no reweighting is neces-
sary and P(S*) is simply given by the fraction of random
genotypes that have neutral sets larger than S*. Additional
File 1 shows a comparison of our procedure with an exact
enumeration method that is tractable for very short
sequences.

Algorithm performance
The Nested Monte Carlo approach overcomes the diffi-
culty of measuring the tiny fraction V(0)/V(dmax) by
replacing it with the problem of measuring the series of
larger fractions V(d)/V(d+1). The cost paid is the need to
follow dmax random walkers rather than just one such
walker. For our RNA application, this cost is dominated
by the cost of folding sequences. In the Vienna package
[15], the time to fold a sequence of L bases grows as L3.
This is to be compared with the time to implement a ran-
dom mutation (O(1)) or to implement a swap (O(L)). It
is thus no surprise then that the Nested Monte Carlo pro-
cedure consumes nearly all its CPU time within the fold-
ing routine. In an individual run, at least 105 × L
mutations are carried out. On today's standard desktop
workstations (AMD Opteron, 2.4 GHz) it takes approxi-
mately 30 minutes to compute the neutral network size to
within 2% when L = 30, about 145 minutes when L = 50,
and more than 24 hours when L = 100. The longer the run,
the more precise the estimate becomes.

We have the choice of sampling the whole space of geno-
types, or of imposing any additional constraint on the
genotypes, as long as V(0) (the neutral set size, NS) is
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unaffected and the restricted V(dmax) can be computed. We
thus implemented in our software tool the ability to
impose the constraint of working only with "compatible"
sequences. We here use this ability. Specifically, we force
those bases which are paired in V(0) to always be "com-
patible" i.e., the pairs A-C, A-G and C-U are not allowed.
This constraint leads to a smaller sampling space in our
nested Monte Carlo approach, and thus to a smaller statis-
tical error.

Since the sampling is performed via a Markov chain, the
successive genotypes are highly correlated, because they
differ by only one mutation. One can observe these corre-
lations very clearly via the distance between a genotype at
mutation/swap cycle t and the genotype at cycle t+τ. These
correlations are expected to persist on a time scale that is
on the order of the number L of bases of the sequence. The
reason is that each base should be mutated at least once,
if the distances are to decorrelate completely; the inset of
Additional File 2 validates this expectation. Clearly, a
Monte Carlo run must be much longer than this decorre-
lation time, and even in that situation the statistical error
analysis requires some care. For illustration, we display in
Additional File 2 the estimator of V(0) as a function of the
cycle number, using window averages. The signal is clearly
noisy and on this time scale the short term memory (cor-
relation) is invisible.

Application to biological RNA sequences
We next applied the Nested Monte Carlo algorithm to 82
sequences of length 30 ≤ L ≤ 50 in the functional RNA
database fRNAdb [http://www.ncrna.org/frnadb, ref
[26]]. The database does not provide curated structures, so
we used the secondary structures predicted by the Vienna
package [15]. Only computational limitations prevented
us from studying a larger data set or a data set of longer
sequences. We determined both neutral set sizes and P-
values for secondary structures, where a structure's P-value
is, as defined above, the fraction of structures with a larger
neutral set. Table 1 shows one representative from each
functional category in this data set. It is evident that even
for the relatively short sequences considered here, neutral
set sizes are enormous. For example, there are more than
1022 sequences forming the predicted structure of a
snRNA of Pyrococcus abyssi (genbank ID AJ248287). How-
ever, even the collection of all these sequences constitutes
only a small fraction (1.1 × 10-9 = 1.1 × 1022/450) of the
vast sequence space. The computation of the P-value of
this structure gives 2.95 × 10-5. This means that fewer than
one in 30,000 (1/2.95 × 10-5 = 33,898) structures have a
larger network than this structure. Similar P-values arise
for the other structures in Table 1. We note that the error
estimates of both neutral set sizes and P-values are gener-
ally substantially smaller than the estimates themselves,
that is, the relative error is small. In the Supplementary

Material (Table S1), we give the neutral network sizes for
all 82 sequences examined.

Figure 2a shows a comparison of neutral network sizes
and P-values for randomly (i.e. uniformly) chosen RNA
secondary structures and biological RNA sequences. The
data for randomly chosen structures were obtained by
sampling 5000 random sequences of length L = 50, and
determining their neutral network size and P-value as
explained above. Superimposed are the corresponding
data for 38 biological RNA sequences of length L = 50.
Neutral network size estimation errors have been omitted
for clarity, but the median relative error did not exceed
2%. The median neutral network size among the biologi-
cal structures shown is 9.1 × 1021, with a 10th percentile of
6.4 × 1019 and a 90th percentile of 5.54 × 1023. The median
biological structure in this data set comprises a fraction
7.2 × 10-9 of sequence space. The median P-value is 3.81 ×
10-5 (10th percentile: 1.4 × 10-7; 90th percentile: 4.03 × 10-

3). This means that, on average only one in 26,247 (= 1/
3.81 × 10-5) random structures have a neutral network
greater than biological structures in this data set.

An analogous analysis can be performed by comparing
the neutral network sizes of biological structures to neu-
tral network sizes of random genotypes. Random geno-
types adopt phenotypes whose neutral network sizes are
larger than that of random phenotypes, because each phe-
notype is produced with a probability proportional to the

Biological RNA molecules have atypically large neutral net-worksFigure 2
Biological RNA molecules have atypically large neu-
tral networks. a) The horizontal axis shows neutral net-
work sizes, the vertical axis shows P-values determined for a 
random sample of 5000 RNA structures of length L = 50 
(grey circles), as well as all 38 RNA molecules of length L = 
50 from the functional RNA database (black circles) [26]. b) 
distribution of P-values, and c) distribution of neutral net-
work sizes, for structures in the functional RNA database 
with length L ≤ 50.
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size of its neutral network (see also the formulae in Part
2). In this analysis, we find that for random sequences of
length L = 50, the associated median neutral network size
is 3.64 × 1021 while the 90th percentile is 2.87 × 1023. Thus
the biological sequences we studied have larger neutral
networks than random sequences, but the difference is
less dramatic than for random phenotypes, and our sam-
ple sizes are too small to make statistical conclusions.

Because of the different sizes of sequence spaces for differ-
ent L, rank histograms like that of Figure 1 cannot be pro-
duced for sequences mixing different lengths. However, P-
values can be compared for such sequences, because their
meaning is length-independent. Figure 2b shows a histo-
gram of logarithmically transformed P-values for all 82
(Additional File 3) structures examined here. Again, this
larger data set also shows that biological structures have
atypically large neutral networks when compared to ran-
dom structures. The median P-value for all 82 structures is
5.7 × 10-5, with a 10th and 90th percentile of 4.1 × 10-7 and
4.4 × 10-3. In sum, fewer than one in 10,000 randomly
chosen structures have more associated sequences than
the typical biological RNA structure in our data set. Only
one out of 82 structures has a P-value of greater than 0.05,
and only four have a P-value greater than 0.01. Figure 2c
shows, for the same 82 structures, a histogram of neutral
network sizes, expressed as fractions of sequence space. As
in the above examples, the neutral networks of even such
highly abundant structures span only a tiny fraction of
sequence space. (Median/10th/90th percentile:1.4 × 10-7/
9.2 × 10-10/9.6 × 10-5). This can be understood from the
fact that even the set of sequences compatible with a sec-
ondary structure, which contains the neutral network,
encompasses only a tiny fraction of sequence space [4,27].

The mutational robustness of a sequence is the fraction of
its neighbors that are neutral (have the same phenotype as
it), or, equivalently, the fraction of mutations that leave a
sequence's structure unchanged [28,29]. Similarly, we can
define the mutational robustness Rμ of a structure as the
mean mutational robustness of the sequences belonging
to its neutral network. Figure 3 shows how Rμ depends on
neutral network size. For the 82 biological RNA sequences
we examined, mutational robustness increases (Spear-
man's r = 0.78) with increasing logarithm of the neutral
network size, NS. If we focus on structures of a given
length L, this association is even stronger (e.g., for L = 50
Spearman's r = 0.95; n = 38; P < 10-17; Figure 3, inset). The
partial correlation coefficient between the two quantities
(controlling for length) is r = 0.92 (P < 0.05). We also
observe that as neutral network size increases by eight
orders of magnitude (note the logarithmic scale on the
horizontal axis of Figure 3), mutational robustness
increases only modestly, i.e., by a factor of approximately
two.

Finally, given the computational cost of our Nested Monte
Carlo approach, it is reasonable to ask whether there are
good indicators of neutral network size that are more eas-
ily computed. Possibly the simplest candidate indicator is
the number of paired bases in a structure. In line with the
simple expectation that each base has a certain probability
of being paired in a random structure, one finds empiri-
cally that the mean number of paired bases grows linearly
with L. Similarly, the entropy of a structure, defined ther-
modynamically as the logarithm of the neutral network
size NS, is expected to grow linearly with L. As a conse-
quence, to compare indicators of neutral network size
across structures of different length L, it is useful to com-
pare these quantities to their mean or median values. For
that reason, we consider the association between log(NS)/
L and the fraction of paired bases. We find a significant
negative association (Figure 4a; Spearman's r = -0.63; P <
10-9). The more paired bases a structure has, the smaller is
thus its neutral network. However, this association
explains less than 40% of the variance of neutral network
size (coefficient of determination r2 = 0.39). We note that
omitting the length-normalization of neutral network size
or the number of paired bases leads to even lower associ-
ations. Previous work, partly based on artificial random
graphs, partly based on genotype-phenotype maps of

Mutational robustness correlates with neutral network sizeFigure 3
Mutational robustness correlates with neutral net-
work size. The horizontal axis shows the logarithm of neu-
tral network sizes divided by 4L for the biological RNA 
sequences examined here. The vertical axis shows Rμ, the 
average mutational robustnes of sequences belonging to a 
neutral network (see main text for definition of mutational 
robustness). Each data point for Rμ is based on 40000 
sequences obtained through the uniform sampling of one 
neutral set using the Nested Monte Carlo procedure. The 
inset shows only data for biological sequences with the same 
length of L = 50. The diagonal line was obtained by linear 
regression
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short sequences, points to reasons why such indicators
have limited value [27-32]. It also indicates that the min-
imum free energy itself may be an indicator of the biolog-
ical origin of a structure [30].

Recently, an easily computed contiguity statistic of neutral
network sizes was proposed [33]. This indicator adds a
structure's total bases in stem-loops to the number of
paired bases, and divides this sum by the number of
stacks. We find that this indicator is positively associated
with neutral network size (Figure 4b; Spearman's r = 0.36;
n = 82; P = 1.05 × 10-3), an association that decreases if
neutral network size is not length-normalized. The associ-
ation explains a fraction r2 = 0.16 of the variance. Our
observations above suggest that the biological RNA phe-
notypes we examined differ very significantly from ran-
dom phenotypes, which raises the possibility that the
previous indicators may work better or worse for random
RNA sequences. We find that this is in fact the case. For
example, in a random sample of 2500 sequences of length
40, Spearman's r = -0.58 for numbers of paired bases and
log-transformed neutral network size, and Spearman's r =
0.54 for the contiguity statistic and log-transformed neu-
tral network size (P < 10-17). However, the fractions of
explained variances are less than r2 = 0.4 and r2 = 0.3,
respectively. In sum, rapidly computed indicators of neu-
tral network size exist, but these indicators leave the
majority of neutral network size variance unexplained.

Discussion
The method we presented to compute neutral set sizes
makes direct estimation of astronomically large neutral
set sizes possible for the first time, but this ability comes
at a cost. With currently available computational
resources, the method can accurately estimate neutral set
sizes for individual RNA molecules up to length L = 100.
If one wants to estimate the relative abundance of an RNA
phenotype, this size reduces to L = 60 because one needs
to estimate relative ranks from a sufficiently large sample
of genotypes in the same sequence space, as we did in Fig-
ure 2a. Many functional RNA molecules are substantially
longer than that, so computational cost is currently a lim-
itation.

In earlier work, an RNA structure was called frequent if its
associated neutral set had a size greater than that of the
average neutral set [18,34]. Using our notation, such a fre-
quent structure has a P-value of P < 0.05. The 82 biological
structures from the functional RNA database [26] that we
examined here are vastly more abundant than that. Their
median P-value of 5.7 × 10-5 means that fewer than 1/P ≅
17,500 structures are more abundant than the average
biological structure. Despite their atypically large neutral
sets, these networks occupy only a very small (median)
fraction of 1.4 × 10-7 of sequence space. These observa-
tions show that a structure may both occupy a tiny frac-
tion of sequence space, and have a huge neutral set. The
reason is simply that sequence space is unfathomably
large, and has enough space for an astronomical number
of structures with enormous neutral sets. Being atypically
abundant and occupying a small fraction of sequence
space are thus no contradictions. This would hold even
more so for sequences longer than those we were able to
study. When comparing neutral network sizes of biologi-
cal structures to structures adopted by random genotypes,
we found the biological structures to have somewhat
larger neutral network sizes, but our sample sizes were too
small to draw statistically sound conclusions.

Why are structures of biological molecules not atypically
rare? Consider an evolutionary search in sequence space
that is successful only if it discovers a sequence with a
desirable structure, a structure that can be involved in
some biological function beneficial to the organism. If
both a rare and a frequent structure can satisfy these con-
straints, then the search will most likely find the frequent
structure first. In other words, the abundance of biological
structures suggests that solutions to problems that organ-
isms face will be more readily found among abundant
structures.

A high abundance of biological structures – if true gener-
ally – would have implications for the ability to find new
structural variants starting from any one structure S. Rare

Other indicators correlate modestly with neutral network sizeFigure 4
Other indicators correlate modestly with neutral 
network size. The horizontal axes show the logarithm of 
neutral network sizes for the 82 biological RNA sequences 
examined here, divided by their length L. a) The vertical axis 
shows the number of paired bases in each of these sequences 
divided by L. b) The vertical axis shows the contiguity statistic 
[33] described in the main text. The diagonal lines were 
obtained by linear regression.
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structures S have small neutral networks. Their immedi-
ate neighborhood-defined as all sequences that differ by
one nucleotide from a sequence on the network – will
contain few structures different from S. In contrast,
abundant structures have large neutral networks, in
whose neighborhood many structural variants reside. If
we accept that some small fraction of such variants may
be novel structures beneficial to the organism – evolu-
tionary innovations – then abundant structures may
have an advantage in discovering such innovations, sim-
ply because they have access to more structural variants.
A large neutral network may thus facilitate the produc-
tion of useful phenotypic variation [7,33,35,36]. (Inci-
dentally, among these structural variants, abundant
structures would again be more easily found.) In addi-
tion, it has been shown that populations of RNA mole-
cules which evolve under the influence of mutation and
selection to maintain their structure, can spread more
rapidly on a large neutral network. They thus gain access
to a greater amount of structural variants in their imme-
diate neighborhood [7]. All in all, structural abundance
can facilitate the production of structural variation, as
can other factors [27,28,37-40].

Our observations on average mutational robustness of
RNA sequences also speak to the importance of neutral
network size. RNA sequences with extremely high
mutational robustness have few new structures in their
neighborhoods [6]. One might thus think that RNA
phenotypes with large neutral networks would show
such extremely high robustness. However, for the 82
structures we analyzed here, mutational robustness is
modest and varies by a factor of less than two (Rμ =
0.23–0.52), whereas the corresponding neutral net-
work sizes vary by more than fourteen orders of magni-
tude (1.7 × 1011-2.2 × 1025). A similar observation has
been made previously in studies of random graphs that
can be used as models for the RNA genotype-phenotype
relationship [4]. It suggests that a modestly reduced
number of neighbors with different structures in large
neutral networks is much more than compensated for
by the vastly increased neutral network size observed in
abundant structures.

Some caveats to our findings are in order. First, while
they suggest that many biological RNA sequences may
have abundant structures, it is clear that there are bio-
logical RNA structures that are rare. The most promi-
nent example is the simple stem-loop (or hairpin),
which, unadorned by other structural elements, is a fre-
quent regulatory motif, for example in translational
regulation [41]. Because its many paired bases con-
strain its sequence severely, it is a rare structure. Sec-
ond, although for some regulatory RNA molecules,

only the secondary structure may be important, many
RNA molecules may evolve under substantial addi-
tional constraints. Consider, for example, the hammer-
head ribozyme [42], where some mutations that leave
the secondary structure intact may completely abolish
its biochemical activity; or the telomerase RNA, whose
interaction with telomerase is critical for telomerase
function [43]. For such RNA molecules, the set of muta-
tions that do not abolish RNA function will be substan-
tially smaller than the set of mutations that preserve the
secondary structure. However, even in that case, struc-
tures with a larger neutral network to begin with may
tolerate more sequence change. Third, for reasons of
computational limitations, we have considered only a
small sample of RNA structures. The most prominent
known functional RNA structures are much longer than
those we could study here, and it is an open question
whether the same observations will hold for longer
sequences. We hope that the method we propose here
will help answer this question.

Conclusion
We here presented a method to estimate the size of the set
of genotypes that adopt a given phenotype, and to esti-
mate the size of this set relative to other such sets.

Because the method is based on the Nested Monte
Carlo approach, it can estimate neutral set sizes even
where these sets are disconnected. Although we applied
the method to RNA molecules, the method is general
and can be applied to different systems, such as pro-
teins or biological networks, provided that two prereq-
uisites are met. First, for the study system it must be
possible to determine a phenotype from a given geno-
type. The number of genotype-phenotype maps where
this is possible is increasing, and includes not only
molecular phenotypes (e.g., lattice proteins and simple
peptides), but also phenotypes adopted by genetic net-
works [44-46]. Second, a notion of distance among dif-
ferent phenotypes must exist. This is generally not a
problem because such measures can be readily defined
for phenotypes as different as protein structures and
gene expression patterns. The overall computational
framework may also be of use in other disciplines such
as computer science or engineering.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
AW conceived the project, TJ and OCM designed the algo-
rithm, and TJ implemented it; all authors analyzed the
data and contributed to writing the manuscript. The
authors have read and approved the final manuscript.
Page 10 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:464 http://www.biomedcentral.com/1471-2105/9/464
Additional material

Acknowledgements
This work was supported by the Sixth European Research Framework 
(proposal number 034952, GENNETEC project). AW was supported 
through SNF grant 315200-116814.

References
1. Pigliucci M: Is evolvability evolvable?  Nature Reviews Genetics 2008,

9:75-82.
2. Schuster P, Fontana W, Stadler P, Hofacker I: From sequences to

shapes and back – a case-study in RNA secondary structures.
Proceedings of the Royal Society of London Series B 1994,
255(1344):279-284.

3. Bornberg-Bauer E: How are model protein structures distrib-
uted in sequence space?  Biophysical Journal 1997,
73(5):2393-2403.

4. Reidys C, Stadler P, Schuster P: Generic properties of combina-
tory maps: Neutral networks of RNA secondary structures.
Bulletin of Mathematical Biology 1997, 59(2):339-397.

5. Wagner A: Robustness and evolvability in living systems.  Prin-
ceton, NJ: Princeton University Press; 2005. 

6. Ancel LW, Fontana W: Plasticity, evolvability, and modularity
in RNA.  J Exp Zool 2000, 288(3):242-283.

7. Wagner A: Robustness and evolvability: a paradox resolved.
Proc Biol Sci 2008, 275(1630):91-100.

8. Ferrada E, Wagner A: Protein robustness promotes evolution-
ary innovations on large evolutionary time scales.  Proc Biol Sci
2008, 275(1643):1595-1602.

9. Fontana W, Schuster P: Shaping space: the possible and the
attainable in RNA genotype-phenotype mapping.  Journal of
Theoretical Biology 1998, 194(4):491-515.

10. Fontana W, Schuster P: Continuity in evolution: On the nature
of transitions.  Science 1998, 280(5368):1451-1455.

11. Stadler BMR, Stadler PF, Wagner GP, Fontana W: The topology of
the possible: Formal spaces underlying patterns of evolution-
ary change.  Journal of Theoretical Biology 2001, 213(2):241-274.

12. Dayton E, Konings D, Powell D, Shapiro B, Butini l, Maizel J, Dayton
A: Extensive sequence-specific information throughout the
CAR RRE, the target sequence of the human-immunodefi-
ciency-virus type-1 rev protein.  Journal of Virology 1992,
66(2):1139-1151.

13. Baudin F, Marquet R, Isel C, Darlix J, Ehresmann B, C E: Functional
sites in the 5' region of human-immunodeficiency-virus type-
1 RNA form defined structural domains.  Journal of Molecular
Biology 1993, 229(2):382-397.

14. Powell D, Zhang M, Konings D, Wingfield P, Stahl S, Dayton E, Dayton
A: Sequence specificity in the higher-order interaction of the
rev protein of HIV with its target sequence, the RRE.  J Acquir
Immune Defic Syndr Hum Retrovirol 1995, 10(3):317-323.

15. Hofacker I, Fontana W, Stadler P, Bonhoeffer L, Tacker M, Schuster
P: Fast folding and comparison of RNA secondary structures.
Monatshefte fuer Chemie 1994, 125(2):167-188.

16. Tacker M, Stadler P, BornbergBauer E, Hofacker I, Schuster P: Algo-
rithm independent properties of RNA secondary structure
predictions.  European Biophysics Journal with Biophysics Letters 1996,
25(2):115-130.

17. Zuker M, Sankoff D: RNA secondary structures and their pre-
diction.  Bulletin of Mathematical Biology 1984, 46(4):591-621.

18. Fontana W: Modelling 'evo-devo' with RNA.  Bioessays 2002,
24(12):1164-1177.

19. Efron B: The jackknife, the bootstrap, and other resampling
plans.  Volume 38. Philadelphia, PA: Society for Industrial and Applied
Mathematics; 1982. 

20. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E: Equa-
tions of state calculations by fast computing machines.  Jour-
nal of Chemical Physics 1953, 21:1087-1092.

21. Hukushima K, Nemoto K: Exchange Monte Carlo method and
application to spin glass simulations.  Journal of the Physical Society
of Japan 1996, 65:1604.

22. Marinari E, Parisi G: Simulated tempering: a new Monte Carlo
scheme.  Europhysics letters 1992, 19:451-455.

23. Hofacker I, Schuster P, Stadler P: Combinatorics of RNA second-
ary structures.  Discrete Applied Mathematics 1998, 88(1–
3):207-237.

24. Burghardt B, Hartmann AK: RNA secondary structure design.
Physical Review E 2007, 75(2):021920.

25. Aguirre-Hernandez R, Hoos HH, Condon A: Computational RNA
secondary structure design: empirical complexity and
improved methods.  BMC Bioinformatics 2007, 8:34.

26. Kin T, Yamada K, Terai G, Okida H, Yoshinari Y, Ono Y, Kojima A,
Kimura Y, Komori T, K A: fRNAdb: a platform for mining/anno-
tating functional RNA candidates from non-coding RNA
sequences.  Nucleic Acids Res 2007, 35(Database
issue):D145-D148.

27. Reidys CM, Stadler PF: Combinatorial landscapes.  SIAM Review
2002, 44(1):3-54.

28. Gruner W, Giegerich R, Strothmann D, Reidys C, Weber J, Hofacker
IL, Stadler PF, Schuster P: Analysis of RNA sequence structure
maps by exhaustive enumeration .2. structures of neutral
networks and shape space covering.  Monatshefte fur Chemie
1996, 127(4):375-389.

29. Gruner W, Giegerich R, Strothmann D, Reidys C, Weber J, Hofacker
IL, Stadler PF, Schuster P: Analysis of RNA sequence structure
maps by exhaustive enumeration .1. Neutral networks.
Monatshefte fur Chemie 1996, 127(4):355-374.

30. Higgs PG: RNA secondary structures – a comparison of real
and random sequences.  Journal de Physique I 1993, 3(1):43-59.

31. Kopp S, Reidys C: Neutral networks: a combinatorial perspec-
tive.  Advances in Complex Systems 1999:283-301.

Additional file 1
The effect of our sampling procedure. The horizontal axis shows neutral 
network sizes, the vertical axis shows P-values determined in two different 
ways, for all 224 structures adopted by sequences of length 14. For mole-
cules this short, all sequences can be enumerated, and neutral network 
sizes, as well as P-values can thus be determined exactly (black circles). 
Grey, open circles with error bars indicate estimates obtained for M = 
10000 sequences through the Nested Monte Carlo method with our sam-
pling procedure. As discussed in the main text, the biased sampling proce-
dure preferentially identifies structures with large neutral networks. This 
is reflected in the higher accuracy of our estimates for large neutral net-
work sizes (main figure), which are most relevant to the analysis of bio-
logical RNA molecules (enlargement displayed in inset).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-464-S1.doc]

Additional file 2
Cycle to cycle correlations in the Markov chain procedure. Variation in 
estimated neutral network sizes during 700,000 mutation/exchange 
cycles for a 54 nt hammerhead structure 
"(((((((.(((((...))))).......(((((......)))))...)))))))" involved in the self-
cleavage of peach latent mosaic viroid. Data is plotted every 2000 cycles 
and shows that correlations arise only on short time scales. The horizontal 
line indicates the mean of 8.0 × 1022 over the entire window shown. The 
inset shows the autocorrelation function C(τ) of genotype distances at 
cycle t and t+τ: 50 cycles is enough to lose memory of the preceding geno-
type. Thus, the Markov chain explores efficiently all genotype space.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-464-S2.doc]

Additional file 3
The 82 biological RNA molecules used in this study. None.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-464-S3.pdf]
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