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Abstract

Background: Recognizing similarities and deriving relationships among protein molecules is a
fundamental requirement in present-day biology. Similarities can be present at various levels which
can be detected through comparison of protein sequences or their structural folds. In some cases
similarities obscure at these levels could be present merely in the substructures at their binding
sites. Inferring functional similarities between protein molecules by comparing their binding sites is
still largely exploratory and not as yet a routine protocol. One of the main reasons for this is the
limitation in the choice of appropriate analytical tools that can compare binding sites with high
sensitivity. To benefit from the enormous amount of structural data that is being rapidly
accumulated, it is essential to have high throughput tools that enable large scale binding site
comparison.

Results: Here we present a new algorithm PocketMatch for comparison of binding sites in a frame
invariant manner. Each binding site is represented by 90 lists of sorted distances capturing shape
and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment
method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and
an extensive validation of the algorithm have been carried out. A comparison with other site
matching algorithms is also presented. Perturbation studies where the geometry of a given site was
retained but the residue types were changed randomly, indicated that chance similarities were
virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient
to discriminate between diverse binding sites, unless combined with chemical nature of amino acids.

Conclusion: A new algorithm has been developed to compare binding sites in accurate, efficient
and high-throughput manner. Though the representation used is conceptually simplistic, we
demonstrate that along with the new alignment strategy used, it is sufficient to enable binding
comparison with high sensitivity. Novel methodology has also been presented for validating the
algorithm for accuracy and sensitivity with respect to geometry and chemical nature of the site.
The method is also fast and takes about 1/250t second for one comparison on a single processor.
A parallel version on BlueGene has also been implemented.

Background insights obtained for one protein heavily influencing
Much of present day biology is dependent on sequence-  understanding of other proteins in the family. Recogniz-
structure-function relationships in protein molecules,  ing similarities and deriving relationships therefore is a
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fundamental objective in bioinformatics. Some of these
similarities are obvious at the sequence level while some
are detected at the structure level [1,2]. It is in fact well
established now that the conservation at the structure
level of related proteins can be higher and hence much
more detectable than at the sequence level [3]. In this con-
text, there are a number of examples in the literature,
which illustrate that structures often convey the 'mean-
ing', more efficiently than sequences, here 'meaning' refer-
ring to the 'function' of the protein. On the other hand,
there are also a number of instances, which illustrate that
a particular 'function' is achieved by proteins whose
sequences and structures are dis-similar. For example, at
least three different proteins with different folds and
architectures recognize mannose and exhibit mannose-
mediated physiology [4]. In other words, structures also
fail to convey the 'meaning' in many cases. We do not yet
know if this failure is because of our inability to recognize
any similarities in such seemingly dis-similar proteins or
it is simply because no similarities actually exist among
them. What ultimately matters for a protein molecule
however, is its function and not what means it uses to
achieve it [5]. A given function could be conserved simply
by having similarities in some elements of the structure,
such as the binding site residues [6]. A classic example is
the large family of serine proteases which are classified
into different sequence and structural families, but all
come under the functional class of serine proteases due to
the presence of the catalytic triad [7]. Comparison of
binding sites differ from comparison of whole structures
for two main reasons (a) the binding sites are small con-
taining only a few residues and (b) these residues are
often not contiguous in sequence. Alignment of two sites
containing discrete sets of atoms involves evaluation of a
huge number of mappings. This makes it important to
have efficient algorithms with low time and space com-
plexities that are capable of identifying and ranking differ-
ent extents of similarities appropriately. With several
structural genomics projects as well as advances in com-
putational methods for structure prediction, the structural
databases are growing at a rapid pace, providing experi-
mental structures of thousands and confident homology
models of millions of protein molecules [8,9]http://
www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml.

Algorithms for identification of binding pockets with rea-
sonable confidence have also been developed [10-13].
The need for large scale comparisons of binding sites is
hence accentuated. Some methods are already available
for such a purpose based on ideas well established in the
field of image processing. For example SitesBase [14] that
uses 'Geometric hashing' involves selection of triads of
points representing atomic types and positions in each
site and comparing the triangles formed by triads; PINTS
[15] uses a depth first traversal strategy, adopted to find
common set of nodes between a pair of graphs connected
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by similar pattern of edges; Spherical harmonics based
algorithm [16], captures distribution of points represent-
ing the site in terms of coefficients of a square integrable
function on a unit sphere; CavBase [17] identifies maxi-
mal common sub-graphs between pairs of sites; SPASM
and RIGOR [18] compares distribution of residues from
the centroid of the binding sites. Each of the methods
have their own merits and demerits, warranting explora-
tion of newer methods for site comparison. Here we
present a new algorithm called PocketMatch for represent-
ing a binding site in a frame invariant manner and com-
parison of pairs of sites based on alignment of sorted
sequences of distances between pairs of points represent-
ing sites.

Results and discussion

A new efficient and accurate algorithm PocketMatch has
been developed for comparing binding sites in protein
structures. A comparison between a pair of sites of an aver-
age size of 50 atoms takes only 1/250% of a second on a
single processor. The algorithm has been used for large
scale database searches and all-vs-all comparisons. A typi-
cal database search of a query site against those from a
large dataset comprising about 20000 sites takes in the
order of 4 minutes to complete on the same machine with
MPI-C version using 4 processors.

Algorithm

Comparison of a pair of binding sites involves three
aspects, (a) representation of each site as sorted lists of
distances between chosen points, (b) alignment of two
sets of distance lists and (c) choosing a scoring scheme for
arriving at a final score. Our representation scheme for the
site is based on capturing the geometry of a 3D object in a
1D representation by a set of all pairs of distances between
points. Such a set of distances would become a frame-
invariant representation, a highly desirable scheme for
any general shape comparison method. Two sets of dis-
tances can be compared for similarity by considering a
suitable mapping between distances whose dissimilarity
is bounded by a small amount. As the number of such
mappings of distances from one set to the other would be
huge, we represent them as sorted sequences in ascending
order. An alignment strategy for comparison of two
sequences of distances is also presented. The different
steps involved are described.

Representation of binding site

Step-1 A set of residues whose one or more atoms sur-
round a given crystallographic ligand within a specified
distance (4A as default) from each atom of the ligand is
taken as the binding site. We chose to consider atoms of
the complete residues corresponding to each of these
atoms for shape-representation. For any 3D object repre-
sented by a set of points, the set of all pairs of distances
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between the points encodes the shape of the object. These
points can then be flagged with specific chemical proper-
ties. 20 amino acids were considered in 5 groups - Group-
0:(A,V.LL,GP); Group-1:(KRH); Group-2:(D,E,Q,N);
Group-3:(Y,F,W); Group-4:(C,S,T).

Grouping is implemented as a user defined parameter
enabling use of other types of grouping.

Step-2 Represent each complete residue of the site by 3
types of points - C, C and C,,,,,,;,; corresponding to C-
Alpha, C-Beta and centroid of atoms of the side chain of
the residue. Centroid is computed as

i=1
where X; indicates coordinates of the i atom of the side

chain and n is the number of atoms in the side chain.
Step-3 Binning of distances and representation format.

(a) Compute distances between all pairs of points and bin
the distances into 90 sets corresponding to group-type-
pair and point-type-pairs.

(i) There are 5 types of residue-groups. Therefore 5 * (5 -
1)/2 + 5 — 15 pairs of groups are possible.

(ii) There are 3 types of points. Therefore 3 * (3-1)/2 + 3
— 6 pairs of point types are possible.

(iii) Considering both residue-group and point-type
information, total number of possible sets of distances
would be 15 * 6 = 90.

(b) Write the above representation in the following for-
mat to a file.

NGP

NTP

ND,

dy, dy o dy o
ND,

dy, dy o d;
NDy,

d,, dy, o odj o

Where, NGP: Number of pairs of group-types, NTP:
Number of pairs to point-types, ND;: Number of distances
in the i bin, d;: distance between jt pair of points.
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Step-4 The distances in each list were sorted in ascending
order.

Alignment of a pair of distance-sets

To compute similarity score between two binding sites,
each of the 90 sets of one site has to be compared with its
corresponding set of the other site. In the next step, simi-
larity between sets was computed using a greedy strategy
for alignment of sorted distance-sequences.

Step-5: Let the given pair of sorted(ascending) distance
lists be S; and S, where each element is indexed by S][i] for
the list, S. Let the threshold for alignment of two distances
be i.e., |S[i] - S,[j]| £ . Let m = |S,| and n = |S,| denote
the cardinalities of the sets S; and S, respectively. Let the
variable counter hold the number of matched distances
between two sequences. Then alignment strategy is as
indicated in the (Sub-routine 1) below.

Sub-routine 1 Alignment of a pair of sorted distance
sequences

i=0;j=0; counter = 0;
while (i <m) A (j <n) do
if [S;]i] - S,[j]| £ then
i—i+1;j«j+1
counter <— counter + 1
else
if S,[i] <S,[j] then
T<i+1;
else
je—j+1
end if
end if
end while
Scoring for similarity between sites
Step-6: Scoring of the alignment: An alignment score
between a pair of sites is the net average of the number of
matching distance elements in the 90 lists as a fraction of

total number of distance elements in the bigger set, for a
chosen threshold , as shown
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90 .
2= Count;

PMScore = ;
maximum(|S1/,|S21)

where |S| indicates cardinality of the set.

This measure of similarity, referred to as PMScore is used
as the default scoring scheme in this study. A variant of
this scoring scheme PMScore,,;,, in which the denomina-
tor was taken as the minimum (|S;], |S,|), was also
explored, since it emphasises local structural similarity
ignoring the relative size mismatch between the two sites
being compared. However we observed that the compari-
son was too insensitive with such a scheme and did not
use it further. is an important parameter that governs the
alignment, which decides when a given pair of distances
constitute a match. Different values of (please see section
on sensitivity analysis) were tried and a default of 0.5A
was used in this study.

Testing

PocketMatch has been validated for two aspects, (a) first to
validate how well known similarities are being repro-
duced and (b) how sensitive is the algorithm with respect
to minor perturbations in geometry and residue types at
the site. Comparison with known binding sites that are
similar to each other is achieved by three ways (i) by con-
sidering proteins belonging to the same SCOP classifica-
tion up to the family level, since such proteins are likely to
have similar binding sites, given high similarity in their
overall folds and their inferred homology within a family

Table I: Different datasets used in the study.
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(ii) by comparing sites for the same ligand of multiple
subunits in the same protein in a dataset of tetrameric pro-
teins and finally (iii) by performing an all-vs-all compari-
son in a curated set of 51 sites for 4 ligand types
corresponding to 27 proteins described in Table 1 and
testing if the sites for each of the ligands cluster separately.

Based on SCOP classification

399171 all-pair-site comparisons in PDBBind (Table 1-i)
was carried out. Two matrices M1 and M2 were con-
structed as described in the Methods section. The first
matrix shows similarities among the 786 proteins in the
dataset used in the study based on the PocketMatch scores
while the second matrix shows similarities in the same
dataset based on similarities in the SCOP families they
belong to. The first matrix thus estimates similarities in
the binding sites of the proteins, while the second consid-
ers similarities in the overall fold, as illustrated in Figures
1(a) and 1(b). Two proteins that have sites scoring 50% or
higher with PocketMatch are indicated by red dots, while
those that do not have that level of similarity are again left
as blank spaces. Those proteins which belong to the same
SCOP family are indicated by blue dots, while blank
spaces correspond to those that have different SCOP fam-
ilies, as shown in Figure 1(b). Given two matrices M; and
M, - one for PMScores and one for SCOP respectively, the
dis-similarity between them has been calculated as XOR,

No Dataset

Initial Size Remarks

Final set used in the study

Proteins Sites

i PDBBind 1091

One representative ligand of each type is 786 893

considered in each protein; filtered to remove
sites for small and covalently bound ligands;
retained proteins common with the SCOP

database

ii PDBBind 1091

Filtered to remove sites for small, covalently 456 1146

bound ligand and all suggested by Jackson and
co-workers (10) to contribute to noise;
considered sites for all ligand types for the
remaining

jii Curated dataset of CIT,MTX,MKI and PGA 27

Ligands for varying sizes and types from 27 51

PDBBind with multiple sites for a ligand in
different proteins

iv Tetramer 3768

Multiple sites for each ligand in the same 1525

11301

protein; filtered to remove small and covalently
bound ligands
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Figure |

Validation with respect to SCOP. Validation of PocketMatch against SCOP. Visualization of (a) the PMS (MI) matrix and (b)
the SCOP matrix (M2). Both are square matrices corresponding to 786 proteins illustrating results of all-pair comparisons. In
both these a dot indicates the presence of similarity between the given protein-pair and a blank space indicates dis-similarity
under the parameters defined (c) Superposition of PMScore (red) and SCOP(blue) matrices using XOR as described in the text.
PMScore matrix was computed for 50%-threshold. Corresponding dis-similarity()XOR) and similarity scores are 0.0284 and
0.9716 (d) Plot showing the XOR values for different PMScore matrices varying in threshold from 0 to 100 percent.
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where N is the dimension of the matrix.

Figure 1(c) indicates superposition to show similarities or
XOR (and automatically also dis-similarities) of two
matrices of the same dimension. The red and blue dots in
the 2 matrices would superpose well only for protein pairs
showing both SCOP family as well as binding site similar-
ity. Where SCOP similarity is 0 and PMScore is also 0, a
blank space will be present in both and hence will remain
as blank space in the superposition also. Figure 1(c) illus-
trates superposed matrices, at a threshold of 50% for
which the dis-similarity and similarity scores are 0.0284
and 0.9716 respectively.

PocketMatch matrices can be constructed at different
thresholds, and the above excerise of superposition and
computing XOR repeated for each threshold. Figure 1(d)
illustrates XOR between the PMScore and the SCOP matri-
ces as a function of PMScore threshold. As expected the
XOR values start at a value close to 1 when the threshold
is very low (at 0%) and inch towards O when the thresh-
olds are increased to 100%. A sharp decline in XOR can be
seen at around a threshold of 40%. This means that when
a pair of sites match with a score of 40% or higher, they
exhibit the same SCOP classification. At lower thresholds,
for example at 20%, i.e., when two sites are considered
similar to each other even when they match to only 20%,
the correspondence of such a metric with the SCOP matrix
is poor. This analysis serves to validate two points, (a) that
higher PMScores are reflective of true-positives in the con-
text of the family level SCOP classification and (b) that
lower PMScores are reflective of true-negatives by the same
logic. The graph also shows that a score of 40% is discrim-
inatory enough to identify a true-positive.

Similarities in tetramers

Next, we tested the PocketMatch algorithm by comparing
multiple binding sites of the same ligand in the same pro-
tein. The ligand sites in the different subunits in the
tetramer dataset (Table 1-iv) were compared. In all 174,
372 comparisons were carried out for the 11301 sites in
1525 tetramers. In most subunits, binding sites match
with sites of other subunits of the same protein with a
score of 90% to 100% (Figure 2). The two validation tests
demonstrate high prediction accuracies, both in terms of
assigning high scores to similar sites and low scores to dis-
similar sites.

Using a curated dataset of known similarities

A dataset of 21 proteins containing 57 sites for ligand
types CIT, MTX, MK1 and PGA (Table 1-iii) was curated
and all vs all comparisons were carried out. The sites were
then clustered based on their extent of dissimilarities. As
evident from Figure 3 illustrating the cluster tree, sites cor-
responding to each ligand type cluster separately forming
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Figure 2
Validation with respect to tetramers. Histogram show-
ing PMScores in the tetramer dataset.

distinct groups among them. This serves to demonstrate
that similarities among sites for a given ligand type are
high in different proteins and the similarity scores are also
sufficient to discriminate between sites for other ligand

types.
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Figure 3

Validation with respect to selected set of ligands.
Cluster-tree showing similarities in an all vs all comparison of
51 sites for four ligands in dataset-iii (Table 1). The nodes are
labelled by their corresponding PDB codes followed by the
ligand code.
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Sensitivity analysis

Sensitivity with respect to random perturbation of positions of site
points

The basic idea behind this validation is to understand the
sensitivity of our algorithm, with respect to minor pertur-
bations in the positions of binding site residues. This
would encompass scenarios where the proteins being ana-
lyzed (a) have a minor error in the crystallographically
determined coordinates, or (b) where the given site resi-
due is flexible or (c) where the structure in hand is a
homology model with minor changes in the site, such as
due to mutations or binding of slightly different ligands.
In all these cases the nature of the binding sites of the cor-
responding proteins is essentially the same and should be
identified as similar by any site comparison algorithm.
We chose two ligands of different sizes: phyenylpropanoic
acid methyl ester(PP8) consisting of 54 atoms and meth-
otrexate(MTX) consisting of 34 atoms. We perturbed the
sites to varying extents within bounds of 0 to 5A about
1000 times for each site individually. We then computed
PMScores for the original and the perturbed pair in each
instance. A plot of PMScore vs RMSD between the sites is
shown in Figures 4(a), 4(b) for the two ligands. Four dif-
ferent scoring schemes were used which differed in the
parameter. While testing for sensitivity, this analysis also
tests for an appropriate definition of similarity.

For a small perturbation of say < 2.0A the PMScores
between the original and the perturbed site was seen to be
very high with all scoring schemes for both the ligands.
This indicates that the algorithm is robust enough to rec-
ognize two sites as similar even when minor perturbations
to the extent of 2A are present. When the perturbation was
increased to 5A the PMScores showed lower values as
expected. With scoring scheme-1(green, = 1.0) which
was most liberal in terms of its similarity definition, the
PMScores varied very little even with high perturbation
where as when scheme-5(yellow, = 0.01) was used,
PMScores moved to near zero even for small perturbations
of about 0.1A. The 274, 37 and 4 scoring schemes corre-
sponding to of 0.5, 0.25 and 0.125 respectively, showed
in-between trends with a reasonable balance between sen-
sitivity and robustness. The figure shows that the trend
followed by the various schemes is consistent for different
sizes of ligands. Given that the average coordinate error in
crystal structures is in the order 0.5A we have used the
scoring scheme-2(red) as the default scheme for large
scale analysis. is however implemented as a user defined
parameter. This analysis indicates that the scores obtained
are (a) reflective of the extent of similarities, (b) resistant
to minor perturbations in the site, (c) scoring schemes are
self consistent validating the basic logic used in the algo-
rithm and (d) perturbed sites where some atoms have
moved even up to 5A are recognizable as similar to their
original sites, albeit with lower PMScores, because of
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retaining the overall nature of the site and high similari-
ties with respect to remaining atoms in the site.

Sensitivity with respect to random perturbation of residue types of
site points

Given that spatial arrangement of specific amino acid res-
idues at a given binding site dictates its recognition prop-
erties, we felt it was important to test the sensitivity of our
algorithm to perturbations in the nature of the residues in
the binding site without disturbing their spatial arrange-
ment. We carried out this analysis on a pair of sites which
were known to be similar to each other and another pair
of sites which were known to be dissimilar to each other.
To minimize site-specific biases that may arise during
comparison, we chose one protein to be common
between the two sites and all three to be nucleotide bind-
ing sites. One of the sites was kept constant while the
other was perturbed. Of a possible 5N perturbations for a
site a site of N residues, 1000 random perturbations were
carried out and computed the PMScore of each of the per-
turbed sites with respect to the original site. The PMScores
for the unperturbed sites of the two chosen pairs (1H8H-
ATP and 1WOK-ADP) and (1H8H-ATP and 1H8H-ADP)
were 80.9% and 25.8% respectively whose superpositions
are shown in Figures 5(a) and 5(b). The distribution of
new PMScores over the set of perturbed sites with respect
to the original site is shown in Figure 6(a) for the first pair
and Figure 6(b) for the second pair. Figure 6(a) shows that
when perturbed, the similarity between two sites disap-
pears and the scores get poorer. Figure 6(b) shows a simi-
lar trend indicating no high similarities were seen during
random perturbations. Both these suggest that the
arrangement of the site is specific and has been derived for
a purpose and not just by chance. Our algorithm is suffi-
ciently sensitive to detect changes in the nature of residues
at the binding site. Our current implementation considers
20 amino acids classified into 5 groups and any change
within the same group will obviously not be detected
here. However the classification type is also implemented
as a user defined parameter so as to consider each amino
acid as a separate group to overcome this loss of sensitivity
where more stringent analysis is required.

Comparison of PocketMatch with other site matching
methods

A benchmarking exercise of PocketMatch vis-a-vis the
established binding site matching algorithms. SitesBase
[14], SuMo [19], ProFunc [20] and a spherical harmonics
method [16], was carried out, to place PocketMatch in
context of other methods previously reported in literature.

SitesBase utilizes geometric hashing that works by evaluat-
ing many superpositions of triads of atoms between two
sites. All atoms within 5 A are considered to constitute a
binding site. An atom-atom score is computed based on
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Figure 4

Validation with respect to random perturbation of positions of site-points. Random perturbations of site points for
(2) a2 54 atom ligand(PP8) and (b) a 34 atom ligand(MTX). PMScores for perturbed sites with respect to its original site for dif-
ferent extents of perturbations(RMSD) are shown at different values of (1.0-green,0.5-red,0.25-cyan,0.125-blue,0.01-yellow).

Page 8 of 17

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:543 http://www.biomedcentral.com/1471-2105/9/543

(b)

Figure 5
Superposition of two ATP/ADP sites. Examples illustrating validation of PocketMatch: Superposition of sites with (a) High
PMScores (80.9% for IH8H-ATP and I WOK-ADP) and (b) low PMScores (25.8% for IH8H-ATP and 1H8H-ADP).
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Figure 6

Validation with respect to random perturbation of
types of site-residues. Perturbation analysis for the exam-
ples shown in Figure 5(a) for a pair of high scoring sites and
5(b) for a pair of low scoring sites. Distribution of PMScores
for 1000 randomly perturbed sites with respect to their orig-
inal site is shown in both cases.

number of matching atoms in the sense of least RMSD.
Empirically determined low and high scores are 25 and 40
respectively. Each score is flagged by Poisson-Index (PI) a
measure of indicating the possibility of reaching that score
by chance. The reported time for comparison of 82-atom
pocket against a database of 33168 sites is 20 minute [14].
SitesBase is available on the web _http://www.model
ling.leeds.ac.uk/sb/[21] as a database search engine with
pre-defined proteins and sites, but not available for com-
paring user-defined structures. Hence some randomly
chosen examples that were already available in the pre-
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computed database of SitesBase were considered for com-
parison with PocketMatch. The binding site search utility

in ProFunc [20], a web service http://www.ebi.ac.uk/
thornton-srv/databases/ProFunc/ for comprehensive

analysis of proteins, employs the algorithm - JESS [22].
Jess uses a backtracking and depth first search method that
works by determining appropriate correspondence
between atoms in the pair of sites based on distance con-
straints. Ligand binding site templates are generated as tri-
ads of residues within 5A each and having at least one
non-hydrophobic residue flanking the location of a ligand
in a PDB structure. Two sites are evaluated for similarity
based on superposition (RMSD) and number of matches.
A pure shape based method by [16] is based on represen-
tation of distribution of points from the centre of binding
site by real spherical harmonic expansion coefficients.
Binding sites are determined by SURFNET [23] as a collec-
tion of spheres filling the cavity. A ball of 1.4A is then
rotated around the collection to generate surface points. It
is the shape of these points as a whole that is captured by
the spherical harmonic coefficients and compared against
other sets of points and hence other sites. The algorithm is
not automatically available on the web or for local instal-
lation. Hence a dataset of 40 proteins reported by the
authors was considered for comparison with Pocket-
Match. SuMo [19] is based on identification of common
subgraphs between pairs of sites by greedy algorithmic
strategy which may not lead to maximal common sub-
graph always. The nodes in the graphs are triangles where
each triangle corresponds to a functional group in the
binding site. Between a pair of sites, the triangles are
matched followed by actual superposition of atoms of the
sites by least squares optimization. The software is availa-
ble at http://sumo-pbil.ibcp.fr/cgi-bin/sumo-welcome/.
The implementation of this method on the web allows
comparison only with their pre-computed database of
proteins and sites, but not available for comparing user-
defined structures. In addition to these the align module
of PyMol has also been used as another method of match-
ing sites. PyMol considers sequence similarity and uses a
least squares fit of the two sites, and reports number of res-
idues matched and an RMSD for the matched residues.

As evident from the above descriptions of the various
methods, the binding sites are represented in different
ways by different methods. The matching algorithms also
vary significantly among them. Table 2 indicates the
scores identified by the different methods for several pro-
tein-pairs belonging the same SCOP superfamily. While
the obvious matches with high similarities are detected
well by all methods, detection of matches with medium
similarity is not so consistent. For example, the sialic acid
binding site in 1A4G and 1NSC, both influenza virus neu-
raminidases bound to different ligands are identified by
all methods with high scores. On the other hand, different
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methods fare differently with a hydrolase involved in
blood clotting bound to different ligands. The ligands 2-
(2-hydroxy-biphenyl)-1h-benzoimidazole-5-carboxami-
dine as in 1GJC, 2-5-[amino(iminio)methyl]-1h-benzim-
idazol-2-yl-6-(cyclopentyloxy)benzenolate as in 103P, 2-
[2-([4-(diaminomethyl)phenyl]aminocarbonyl)-6-meth-
oxypyridin-3-yl]-5-[ (1-formyl-2,2-dimethylpro-
pyl)amino]| carbonylbenzoic acid as in 2AYW and Methyl
n-[(4-methylphenyl)sulfonyl]glycyl-3-
[amino(imino)methyl]-d-phenylalaninate  [Nalpha-(2-
naphthylsulfonylglycyl)-3-amidino-d,l-phenylalanine-
isopropylester| as in 1V2Q. The different ligands bind to
the same protein and essentially at the same binding site
but with different orientations involving many common
residues but some different amino acid residues. Pocket-
Match identifies all these pairs as significant matches with
a PMScore of 50 to 88%, as shown in Table 2 and Figure
7(a),7(b). Some pairs were not detected by other methods
whereas some were not available in their pre-computed
lists. Some examples of protein pairs containing different
folds but similar binding sites, reported in the literature
were also chosen as shown in Table 2. PocketMatch was
successful in detecting similarities in these pairs. To reflect
part similarities that exist in them, PMScore,,,;, is also listed
for these. Scores obtained from other methods are also
listed. The performance as expected, is not consistent
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across all algorithms. For example, PyMol failed to align
heme sites in Cytochrome c4 (1M6Z) and lignin peroxi-
dase (1LGA), although PocketMatch found a significant
similarity of more than 63% between them. None of the
other methods detected this pair. SitesBase detected some
of these pairs, but SuMo and ProFunc did not list them as
possible matches.

Isoniazid, a front-line drug used in the treatment of tuber-
culosis, is a pro-drug after activation, has been well known
to target the inhA-encoded enoyl-ACP reductase (1ZID),
thus inhibiting mycolic acid biosynthesis in Mycobacte-
rium tuberculosis. Recently, a surprising observation of
binding of isoniazid-adduct to dihydrofolate reductase
has been reported [24] (PDB:2CIG). PocketMatch identi-
fied the isoniazid-adduct pockets in the two sites to be
similar with a score of 56%, while the other methods
failed to identify significant similarities between the two
proteins.

It is no surprise that methods vary in their performance
especially when the two sites are not highly similar, since
different representations capture different aspects of the
binding site. PocketMatch using a frame invariant sorted
string of distances between point pairs captures the site by
utilizing all available points in the site and hence reflects

Figure 7

Detection of part-similarities by PocketMatch. Examples illustrating binding of different ligands in essentially the same
binding pocket, but with different orientations. The part-similarities in these were identified correctly by PocketMatch. Binding
of different trypsin inhibitors (stick models) complexed to trypsin variants (wire) as in PDB entries (a) |GJC and 1V2Q and (b)

IGJC and 2AYW.
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Table 2: Comparison of PocketMatch with other site matching algorithms- ProFunc, SuMo, SitesBase and PyMol

PDBI_LIGI PDB2 LIG2 ProFunc SuMo SitesBase PocketMatch PyMol

Score E- value Score/Max.score Pl PMScorey;,, PMScore #R rmsd
= Ratio
Pairs of proteins belonging to same SCOP families
IDH]_MTX  4DFR_MTX 112 0.745 100 65/78 = 83.33 0 85.25 85.25 13,14,14 0.231
IAAG_ZMR  INSC_SIA 112 0.277 76 74/79 = 93.67 0 99.91 88.39 16,16,17 0.141
ISDU_MKI ISDT_MKI X - NA ITI/1EE =100 0 98.93 91.23 25,25,26 0.298
1B42_SAH 2VP3_SAH 241 9.8E- 4 91 100/130 = 76.92 0 99.4 89.29 19,20,19 0.088
IGJC_130 IV2Q_ANH 229 0.018 89 52/177 =29.38 3E-28  93.65 50.17 12,17,13 0.294
2AYW_ONO 217 6.66E- 04 40 NA - 56.9 52.29 15,17,17 1.186
10O3P_655 X - NA 97/177 = 54.80 0 100 88.01 16,17,16 0.113
IADD_IDA 2ADA_HPR 150 0.151 45 67/72 = 93.06 0 94.72 83.59 14,16,17 0.149
IKV5_PGA  2JGQ_PO4 204.58 23.327 X NA - 80.48 28.40 6,138 3.527
IBZC_TPI IGFY_COL 174 0.176 27 57/95 = 60 2.4E-40 96.87 75.41 12,15,13 0.236
IDJX_I3P ID)Y_I2P X - 58 46/53 = 86.79 2.5E-38 100 69.05 10,10,12 0.160
I1AJ6_NOV IEII_ANP 102 0.620 X 30/54 = 55.55 7.6E009 91.53 21.16 6,11,24 3.019
Pairs of proteins belonging to different SCOP families

IECM_TSA  4CSM_TSA X - X 47/86 = 54.65 8.6E-27 7422 55.56 10,15,13 0.640
IM6Z_HEC  ILGA_HEM X - X X - 67.58 63.85 12,23,24 5.875
1ZID_ZID 2CIG_IDG X - NA NA - 58.94 56.01 5,27,29 5.691
1V07_HEM IHBI_HEM X - X 44/94 = 46.81 2.6E- 16 68.94 61.42 7,1817 0.690

PMScore and PMScore

‘min

refer to PocketMatch scores with the two metrics described in the text. Scores for ProFunc, SuMo and SitesBase are as

obtained individually from their respective web servers. Significance values where available are also indicated. SitesBase scores refer to number of
matches (atoms)/maximum number of matches possible (total number of atoms present) = Percentage of atoms matched. PyMol (#R) refers to
number of residues matched, number of residues in Sitel, number of residues in Site2. X refers to cases where similarities are not detected with
default settings of the algorithm, while NA indicates non availability that PDB entry in that dataset.

the shape and size of the site efficiently at the same time
also reflecting the nature of amino acids, leading it to per-
form with higher sensitivity in detecting binding site sim-
ilarities when some elements in the sites are different.

A comparison of PocketMatch with the spherical harmon-
ics based algorithm was also carried out, by using the
dataset of 40 proteins reported by the authors. These pro-
teins contained four different ligand types which are Ster-

oid (STR), ATP, NAD and heme (HEM). Thornton and co-
workers [16] reported a dendrogram of these 40 proteins
based on their site comparison algorithm. Using the same
dataset, we carried out an all-vs-all comparison of the sites
and obtained PMScores. We then clustered the proteins
based on similarities in PMScore values. We observe that
the cluster tree obtained by us is largely similar to that
reported by [16], with major clusters correlating with indi-
vidual ligand types Figure 8. 9 of the 11 structures with a
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steroid site, cluster together while the ATP sites cluster
into two neat branches. The heme(HEM) and the NAD
sites too largely form separate clusters. PocketMatch in
fact appears to have fared better in clusters of ATP, NAD
and heme. For example ATP_1b38A and Heme_larp
appear in one group by the spherical harmonics method
but have grouped separately into clusters of ATP and
heme respectively by PocketMatch (Figure 8). The proper
grouping of ATP_le8x and NAD_1ahh are other examples
where PocketMatch has fared better. Although Pocket-
Match uses an entirely different, simpler representation
scheme and matching algorithm as compared to that of
[16], it is able to detect similar sites and discriminate
against dis-similar sites in an efficient manner.

The benchmarking exercises have been useful in validat-
ing PocketMatch against those already available in the lit-
erature. Besides detecting obvious similarities, such
comparison studies reveal interesting differences in the
performance of different methods. Two major issues that
feature in the comparisons are the sensitivity of similarity
detection and speed. PocketMatch has an advantage in
both these factors. The performance of PocketMatch was
found to be good with different datasets used in this
study. An added advantage with our method compared to
others is that, scores reflecting local similarities
PMScore

as well as global site similarities PMScore can

&
£l
%
3
5

min

STR teren o

SR nasth

VIENL W1S

Figure 8

A cluster tree of the 40 binding sites using the data-
set of [16]. The PDB codes are prefixed by ligand codes-STR
indicating a steroid, ATP, NAD and HEM referring to heme.
The chain IDS where appropriate are suffixed to the PDB
codes. The proteins are coloured based on their ligand types.
ATP sites are shown in two colours to reflect the two differ-
ent types of sites.
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both be obtained at the same time, thus readily yielding
information about part similarities as well. This can be
attributed in part to the fact that changes between two
sites such as correlated mutations that maintain the same
chemistry and distance in that pair are scored high by
PocketMatch but not by some other methods. Similarly,
amino acids at a binding site superposing well in structure
but formed by dis-similar polypeptide segments also score
high in PocketMatch.

All vs all comparison — Site geometry vs residue types

In order to estimate the sensitivity of our algorithm in
terms of finding similarities for a given site in a large data-
set, we performed an all vs all comparison in the PDBBind
dataset Table 1-ii. The distribution of PMScores across all
pairs is shown in Figure 9(a). As evident from the histo-
gram, majority of the pairwise scores are in the range of 0
to 40%. This means that any randomly chosen pair of two
different sites will only have a score less than 40%. The
histogram shows that only a small percentage of 0.8% of
all possible pairs have scores higher than 50% which are
indicative of true positives. Examination of 657231 such
pairs indeed shows that they are true positives and in fact
belong to the same SCOP class indicating that they are
similar not only in their binding site architectures but also
in their overall folds. This also shows that there are no
false positives. It must be noted that this analysis was car-
ried out with the scoring scheme, which we recommend
as default that uses amino acid group information apart
from the sorted distances. The same analysis was then
repeated with another scoring scheme that differed from
the previous one by not differentiating among amino acid
types. Such a scoring scheme would identify similarities
purely based on geometric features of the binding sites
without considering their chemical nature explicitly. The
distribution of PMScores by this scheme is shown in Figure
9(b). Surprisingly, the same dataset showed a very differ-
ent distribution of scores as compared to the previous
analysis in Figure 9(a). Here a majority of pairs exhibited
high scores indicating that many of the sites appear simi-
lar, obviously leading to a large number of false positives.
However, when their chemical group information is
added, differences between types of sites emerge. This
analysis shows that shapes by themselves without consid-
ering chemical information is not sufficient to discrimi-
nate between different types of sites.

Conclusion

A new algorithm has been developed to compare binding
sites in accurate, efficient and high-throughput manner,
where sites are represented as 90 lists of sorted distances
flagged with residue type information. This representation
therefore captures both the shape and chemical nature of
amino acid types at the site. Extensive validation has been
performed using different datasets. Sensitivity analysis has
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Figure 9

Importance of residue group information over pure geometry. All vs all comparison of | 146 sites of PDBBind dataset-
ii (Table I) using (a) default scoring scheme that uses both geometry and residue type information and (b) a scoring scheme
that uses only site geometry. Histograms indicate distribution of number of pairs showing different PMScore values.
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also been performed to analyze the performance of the
algorithm with respect to perturbations of two types - (a)
in the actual atomic positions of atoms of the site and (b)
in the amino acid type at the site. Several scoring schemes
have been analyzed by virtue of which a scoring function
with a good balance between sensitivity and ability to
detect similarities has been identified and recommended
as the default scoring scheme. Perturbation studies where
the geometry of a given site was retained but the residue
types were changed randomly, indicated that chance sim-
ilarities were virtually non-existent. Our analysis also sug-
gests that shape information alone is insufficient to
discriminate between diverse binding sites. However,
combining shape information with chemical grouping of
amino acids at the site enables discrimination between
different types of sites.

Methods

Datasets

PocketMatch has been validated on a variety of datasets -
PDBBind, a set of tetrameric proteins and a curated data-
set containing known similarities of four ligand types
(Table 1). To eliminate noise in the datasets, sites corre-
sponding to small ligands with less than 6 non-hydrogen
atoms and covalently bound ligands were not considered
here. The PDBBind dataset [25] contains a comprehensive
curated set of 1091 protein-ligand complexes determined
crystallographically. Using this, two sub-datasets were
derived - Table 1-i: A dataset which has only one ligand
site for one ligand type in each protein, amounting to 786
proteins and 893 sites and Table 1-ii: A dataset in which
ligands suggested to contribute to noise by Jackson and
co-workers [14] were removed, but all sites for all ligand
types were considered, amounting to 456 proteins and
1146 sites corresponding to 289 ligand types. Tetramers
(Table 1-iv), obtained from PQS server, containing 3768
proteins has been curated to yield a dataset of 1525 pro-
teins having 11301 sites has been chosen for studying the
sensitivity of PocketMatch with respect to recognizing
known highly similar sites. Another dataset representing
multiple sites for four known ligands was curated (Table
1-iii). 51 sites from 27 different proteins in PDBBind for
Citrate (CIT), Methotrexate (MTX), Indinavir (MK1) and
phosphoglycerate (PGA) were chosen for the dataset. A
distance metric measuring the dis-similarity between
these sites was computed using PocketMatch and their
clustering was studied.

Scheme for Validation

We have validated the algorithm based on (a) SCOP
equivalences between pairs of proteins at 4t level of SCOP
[1], (b) similarities among multiple sites for a given ligand
in the tetramer dataset Table 1-iv and (c) clusters formed
by sites whose similarities have been previously identified
by independent analysis. To compare with SCOP, we con-
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structed a matrix, M, where each of the rows and columns

correspond to list proteins and each element Mlli cotre-

sponds to a score assigned to that pair of proteins, i and j.
A score of 1.0 was assigned to those pairs that had the
same SCOP class. All other pairs were assigned a score of
0. Then we constructed another matrix, M, of the same

dimension where a score of 1.0 was assigned to those
pairs whose top scoring site-pair had a PMScore greater
than a threshold and score of 0 for all others. The two
matrices were then compared using the XOR, a logical
operator to determine the extent of agreement between
the fold and the site metrics in finding similarities in all
pairs of proteins represented in the matrices. Understand-
ably, the same comparison can also be done through the
XNOR operator, the complement of XOR, which will yield
the same information.

Schemes for sensitivity analysis

Sensitivities of PocketMatch (a) with respect to geometry
and (b) with respect to specificity of residue types at the
site, were studied. For (a), we applied tiny perturbations
to coordinates to each of the points representing sites,
leading to generation of altered structures within
bounded a RMSD and computed PMScores between pairs
of perturbed and reference sites. These plots are obtained
for various sizes of binding sites. For (b), we randomly
assigned residue group information to each of site points
and computed PMScores.

Method for random perturbation to positions of site-points

Our method for random perturbation applies random
displacement from a uniform distribution to each of the
points C, C, and C_,,,,,;s corresponding to each residue as
described in (Sub-routine 2).

Sub-routine 2 Performing random perturbation to posi-
tions of points of the site

a Let the 'net required RMSD' be and number of interme-
diate randomly perturbed point-sets be K.

b In order to generate, K perturbed sets of points,
for EACH =0till in steps of %; do

- Perturb the actual set of points to generate a new
point-set at an RMSD of .

- Let each point be represented by x = (x;, x,, x;) and

let the random vector be 7 = (ry, 1, 73).
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cos(2.0xx=random()) .

I+RAND MAX # Where ran-

- Initialize each r; to

dom() function generates a random number between 0
and RAND_MAX from 'uniform distribution'.

Ti

- Normalise 7 by reinitializing each r; = -
i1’

- Apply the present displacement, ¥ * to each atom

which set each ™ =x% + 7 x5

- These steps generate a perturbed set of points with a
net RMSD of .

end for

¢ For each of the perturbed point-set generated, compute
RMSD with respect to the unperturbed version and meas-
ure PMScores.

Method for random perturbation of types of site-residues
Our method for random perturbation of group numbers
assigned to residues of site involves assignment of ran-
dom integers between 0 and 4 from a 'uniform' distribu-
tion to the residues represented by three points, C, C, and
C_oniroia a8 described in (Sub-routine 3).

Sub-routine 3 Random perturbation of types of site res-
idues

a Get C's alone for a given site represented in C, C, and

Ccemmid - format.

b To each of the C's assign a random number between 0

and 4 using . orandom() __
& (RAND _MAX+1.0)

¢ Copy back the modified group information of C atoms
back to the file respresenting site by C, C, and C
points.

centroid

d The PMScore is then computed for the perturbed site
with respect to unperturbed version.

Implementation

The software PocketMatch was developed on gcc (GCC)
3.4.3 20041212version 4.1.2 on Linux 2.6.9-5.ELsmp
machine. A parallelized version of the software using MPI-
C libraries was also developed and implemented both on
a standard Quad-core machine (Intel (R) Core (TM) 2
Quad CPU @ 2.4 GHz; Address space: 32 bits physical, 48
bits virtual; 4GB RAM) and also on a IBM BlueGene clus-
ter and tested with 512 processors. Matlab version 7.1
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from Mathworks http://www.mathworks.com/ was used
for generating plots and histograms. Cluster tree was con-
structed using neighbour-joining method of phylip-3.67
http://evolution.genetics.washington.edu/phylip.html
and viewed wusing PhyloDraw [26]. PyMol http://
www.pymol.org version 0.99rc1 was used for visualizing
various structures.

Availability
The software can be accessed at http://proline.phys
ics.iisc.ernet.in/pocketmatch/
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