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Abstract

Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on
16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of
Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the
175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of
Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131
strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36
strains) were considered for generating species-specific framework and probes as tools for their rapid identification.
Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to
develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025,
16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was
supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10
Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed
that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed.
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Introduction

Phylogenetics, the science of estimating the evolutionary past is

based on the comparison of DNA or protein sequences [1]. In this age

of rapid and rampant gene sequencing, the availability of a large

amount of genomic information from 639 sequenced genomes

(http://www.ncbi.nlm.nih.gov) and 16S rDNA sequencing data of

451545 isolates (http://rdp.cme.msu.edu/) has given new dimensions

to microbial taxonomy and is likely to lead to revision of concepts

such as species, organism and evolution [2]. 16S rDNA gene

sequencing is often used as an alternative method to define microbes

at species level. Protein coding genes having high variability has been

successfully used to differentiate taxa that cannot be identified solely

on the basis of 16S rDNA sequences e.g., heat shock protein (hsp65)

[3], hsp70, ATPase-ß-subunit, RNA polymerases and recombinase

(recA) [4]. In addition, partial rpoB sequences have been applied to

classify members of the genus Mycobacterium [3,5]; gyrB gene sequences

have been used to define Acinetobacter members [6]; Mycobacterium [7];

Pseudomonas [8] and Shewanella [9], gyrA gene for defining Bacillus subtilis

and related taxa [10].

Members of the genus Bacillus comprise gram-positive, spore-

forming, rod-shaped, aerobic bacteria. Bacillus species are

phenotypically and genotypically heterogenous [11,12]. Bacillus

represents microbes of high economic, medical and biodefense

importance such as bio-pesticides [13] and biofuels [14–16],

pathogens [17,18]. Bacillus thuringiensis is currently used for the

biological control of insects and in crop protection [19]. B. subtilis

strains produce a broad spectrum of bioactive peptides with great

potential for biotechnological and biopharmaceutical applications

[20]. Bacillus licheniformis strains also produce a variety of peptide

antibiotics such as bacitracin [21,22], bacteriocin [23] and are also

known to contaminate industrial processes [24–26] and cause food

poisoning [27,28]. Bacillus spores are being used as human and

animal probiotics despite the fact that studies now indicate

extensive mislabeling of constituent Bacillus strains [29,30].

Therefore, it is becoming increasingly clear that a more rigorous

selection process is required for Bacillus probiotic candidates

[31,32]. Because of these divergent characteristics, questions arise

concerning intra species diversity that could differentiate isolates of

potential economic importance. It is for these reasons that 11

closely related Bacillus are among the 29 Bacillales sequenced so far

(http://www.ncbi.nlm.nih.gov).

Bacterial Systematics
Bacterial systematics began long before the discovery of DNA as

the heritable material. Bacteria were originally classified largely on

the basis of phenotype, morphology, ecology and other associated

metabolic characteristics. Bacterial taxonomy has been a tedious,

esoteric and uncertain discipline. Some excitement was brought in

by the team led by Dr. Carl Woese. They provided a detailed

insight into bacterial phylogeny by exploiting molecular biology in

an innovative manner [33]. Genomic discoveries are posing a

challenge to the classical bacterial systematics [34].
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The most common molecular ecological techniques applied to

assess the bacterial diversity and to analyze the genetic

relationships between Bacillus species are based on genome

fingerprinting [34]; DNA-DNA re-association studies [35,36].

Rep-PCR has been shown to be a useful technique in the

subtyping of Bacillus species [37,38]. On the other hand, protein

coding genes such as gyrA and rpoB exhibit much higher genetic

variation and have been used for the classification of closely

related taxa within the B. subtilis group [10,39]. The highly

discriminating power of these genes has also been used to assess

intraspecies diversity of B. licheniformis [40]. In general, 16S rDNA

sequences are used in bacterial classification as a frame work for

species delineation e.g., in Bacillus [41]. The genetic relationship

and the phylogeny among organisms are analysed on the basis of

molecular chronometer, the ribosomal operon, especially the 16S

and 23S rDNA genes [42,43]. Since these genes are much

conserved among microbes, they cannot be used to unambigu-

ously discriminate at the species level [44]. With respect to the

ribosomal genes, the internal transcribed spacers (ITS) between

the 16S and 23S rDNA genes are hypervariable and can display

polymorphisms especially in regions not implicated in rDNA

maturation [43–48]. Several species resembling Bacillus species

have been described but these new species cannot be phenotyp-

ically differentiated from the bona fide members.

Recent advances in the areas of genomics and proteomics have

provided excellent opportunities to exploit genome sequence

databases. Since the beginning of the genomic era the phyloge-

netic relationships among bacteria has been done on the basis of

16S rDNA gene Restriction Fragment Length Polymorphism

(RFLP), such as for Streptococcus aeruginosa and S. adjacens [49];

Pseudomonas aeruginosa [50]; Borrelia [51]; Lactobacillus [52]; Helico-

bacter [53] and Bacillus [54]. Other structural genes that are highly

conserved between species and which are useful to infer

phylogenesis are the tRNA genes [55,56]. Consensus tRNA gene

primers generally produce species-specific patterns, which have

been successfully used to discriminate species belonging to the

same genus as reported for Acinetobacter sp. [57]; Streptococcus sp.

[58]; Staphylococcus sp. [57] and Bacillus sp. [59–61].

The Ribosomal Data Project (RDP-II) provides the research

community with aligned and annotated 16S rDNA gene

sequences, and a phylogenetically consistent taxonomic framework

for these data. The RDPII database has 451545, 16S rDNA

sequences as on Nov 2007 (http:// rdp.cme.msu.edu).

Species demarcation of some Bacillus isolates is quite complex,

since many isolates don’t provide characteristic reactions that are

considered typical of that species [62,63]. Although diversity

identification is based on the use of a range of different morpho-

physiological and chemical parameters as well as genetic analysis

to tentatively identify the isolates to the species level. For example,

the API system only allows the identification of 19 of the best

identified and most common species and therefore fails to identify

a number of isolates [31].

The various studies have emphasized the need to reclassify

certain species. Ash et al., [42] analysed 51 species of Bacillus and

found that they fell into five distinct grouping based on 16S rDNA

sequences, which they believed, ‘‘clearly represent separate

genera’’. A few of the sporulating aerobes proved to be sequenced

outliers, which might represent the nuclei of other hitherto

unrecognized genera. This marked the beginning of a new era in

the reorganization for the genus Bacillus. It is so far a continuous

process, since several new genera have been defined from

organisms previously known as Bacillus [64]: Alicyclobacillus,

Aneurinibacillus, Brevibacillus, Geobacillus, Gracibacillus, Paenibacillus,

Salibacillus, Ureibacillus and Virgibacillus. Out of the 41 Bacillus

species reported by Joung and Coté [54], B. kaustophilus, B.

sterothermophilus, B. thermoglucosidasius and B. thermoleovorans have been

transferred to the newly created genus Geobacillus [65]. Certain

others such as Bacillus globisporus, B. pasteurii and B. psychrophilus

have been reclassified to the genus Sporosarcina [66]. Similarly,

Bacillus marinus has been reclassified as Marinibacillus marinus [67].

Defining Diversity of Bacillus
Bacillus cereus group. Three species of the Bacillus cereus

group (B. cereus, Bacillus anthracis and B. thuringiensis) have a marked

impact on human activity. B. cereus and B. anthracis are important

pathogens of mammals, including humans, and B. thuringiensis is

extensively used in the biological control of insects [68]. In B. cereus

group the chromosomes of the sequenced members are extremely

similar. The number of genes unique to one species is quite limited

and often represents metabolic adaptations [34]. Although B.

anthracis can be distinguished from B. cereus on the basis of

biochemical tests [69], however, certain isolates on the periphery

such as the pathogenic B. cereus G9241 [70] cannot be properly

classified unless it is checked for the plasmid pX01, which is native

to B. anthracis [34]. Since comparisons of chromosomal contents

are not able to easily distinguish different members of B. cereus

group - B. cereus, B. anthracis and B. thuringiensis, one may have to

look for some more easily recognizable markers. Based on the

phylogenetic homogeneity, 86 strains of B. thuringiensis could be

closely clustered together in four different groups (Bt group I-IV) at

a DNA similarity rate of 93% [54]. B. thuringiensis is closely related

to B. anthracis and Bacillus mycoides and is regarded as a subvariant

of B. cereus based on genotypic data [12,71,72]. Demonstration of

the high genetic relatedness of B. thuringiensis, B. anthracis and B.

cereus has led to the suggestion, that these are members of a single

species of B. cereus sensu lato [48,72,73]. Overall genetic studies have

shown that B. cereus and B. thuringiensis are essentially identical [74].

B. anthracis can be distinguished from B. cereus and B. thuringiensis

through microbiological and biochemical tests. B. anthracis isolates

are non-hemolytic, non-motile, penicillin sensitive, susceptible to

c-phage and produce a poly-c-D-glutamic acid capsule [70]. The

classification and taxonomic separation of members of B. cereus

group is rather difficult even with modern molecular tools.

Analysis of large culture collections of B. cereus, B. anthracis and B.

thuringiensis by AFLP and MLST [70,75,76] have identified a class

of organisms containing toxigenic B. cereus and B. thuringiensis that

are closely related to B. anthracis. These isolates were phylogenet-

ically distinct from environmental B. cereus and B. thuringiensis [75]

and might represent the closest ancestor B. anthracis.

Bacillus subtilis group. Although several species resembling

B. subtilis have been described over the last two decades,

identification of B. subtilis like organisms has been quite difficult

and laborious. Presently, the difficult part lies in confirming the

significance of the sequence clusters. Such organisms have almost

identical 16S rDNA sequences (99.2 to 99.6% sequence similarity)

[42,77]. Comparative sequence analysis for the gyrA gene, which

codes for DNA gyrase subunit A of 7 representatives of B. subtilis

and allied taxa provided a frame work for their rapid and accurate

classification and identification [10,65] divided B. subtilis in to two

subspecies, namely B. subtilis subsp. subtilis and B. subtilis subsp.

spizizenii on the basis of cell wall chemistry and DNA-DNA

relatedness data.

Bacillus licheniformis. The intra-specific diversity of B.

licheniformis studied by means of MLEE and phenotypic analysis

could distinguish these isolates into two main subgroups [78].

Despite the high phenotypic similarities among the 182 isolates of

B. licheniformis, the DNA-DNA reassociation studies showed three

very distinct groups. These were therefore regarded by Manachini
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et al., [79] as genomovars of B. licheniformis. A 59 hypervariable

region of the 16S rDNA corresponding to B. subtilis at positions

41–307 and similarly a B. licheniformis specific Taq probe 59- FAM-

GAG CTT GCT CCC TTA GGT CAG – Dab Syl – 39 were

designed for targeting a section of this region corresponding to B.

subtilis 16S rDNA numbering positions 79–99.

The B. licheniformis chromosome contains large regions that are

co-linear with the genomes of B. subtilis and Bacillus halodurans and

approximately 80% of the predicted B. licheniformis coding

sequences have B. subtilis orthologs [80]. Recent taxonomic studies

indicate that B. licheniformis is closely related to Bacillus amylolique-

faciens and B. subtilis on the basis of comparisons of 16S rDNA and

16S–23S ITS nucleotide sequence Lapidus et al., [81] and Xu and

Cote [82] recently constructed a physical map of the B. licheniformis

chromosome using a PCR approach and established a number of

regions of co-linearity where gene content and organization were

conserved with the B. subtilis genome. The close relationship

between B. licheniformis and B. halodurans compared to B. subtilis has

been shown on the basis of i) replication terminator protein (rtp),

which is lacking in B. licheniformis [80] and B. halodurans [83]; ii)

putative transposase of B. licheniformis shows close relation to B.

halodurans [80,83]; iii) the 27 predicted extracellular proteins

encoded by B. licheniformis ATCC 14580 genome that are not

found in B. subtilis 168 [80]; iv) two gene clusters involved in

cellulose degradation and utilization were discovered in B.

licheniformis and there are no counterparts in B. subtilis 168. Sixty

six per cent of the predicted B. licheniformis genes have orthologs in

B. subtilis and 55% of the genes models are represented by

orthologous sequences in B. halodurans, 1719 orthologs are

common to all these three species. These conservations clearly

support previous hypothesis [82] that B. subtilis and B. licheniformis

are phylogenetically and evolutionarily closer to each other than to

B. halodurans [80]. In our study, B. halodurans reference strains were

very distinct from B. licheniformis and B. subtilis.

Bacillus halodurans. B. halodurans is a group of rod shaped

gram positive, aerobic or anaerobic bacterium. An alkaliphilic

bacterium, strain C-125 (JCM9153), isolated in 1975, and was

reidentified as B. halodurans based on 16S rDNA sequence DNA-

DNA hybridization analysis. Out of 11 factors which belong to the

extracytoplasmic function family, 10 are unique to B. halodurans.

One hundred and twelve CDSs in B. halodurans genome showed

significant similarity to the transposases or recombinases from

various species such as Anabeana sp., Rhodobacter capsulatus,

Lactococcus lactis, Enterococcus faecium, Clostridium beijerinckii,

Staphylococcus aureus and Yersinia pseudotuberculosis indicating that

these have played an important evolutionary role in HGT and also

in internal rearrangement of the genome [83].

B. halodurans and B. subtilis similarities: genome sequence

comparisons between B. halodurans and B. subtilis reveal that

among the total CDSs; 8.8% match sequences of proteins found

only in B. subtilis. The Shine-Dalgarno (SD) sequence was

complementary to the one found at the 39 end of 16S rDNA

(UCU UUC UCC ACU AG…) of alkaliphilic B. halodurans C-125

[83]; is the same as that of B. subtilis. B. halodurans C-125 is quite

similar to B. subtilis in terms of genome size, G+C content of the

genomic DNA and the physiological properties used for

taxonomical identification, except the alkaliphilic phenotype

[84]. Also, the phylogenetic placement of B. halodurans C-125

based on 16S rDNA sequence analysis indicates that this organism

is more closely related to B. subtilis than to other members of the

genus Bacillus. Four types of ATPases were also well conserved

between B. halodurans and B. subtilis. ABC transporter genes are the

most frequent class of protein coding genes found in B. halodurans

genomes as an in the case of B. subtilis.

Bacillus pumilus. Bacillus pumilus is commonly isolated from

a variety of environmental sources, particularly feaces of animals.

B. pumilus grows as a smooth colony that becomes yellow with

increased incubation; the organism is motile, b-hemolytic on blood

agar, catalase positive, salt tolerant and penicillin susceptible and

does not grow under strict anaerobic conditions [85]. B. pumilus

has toxic properties; it has cytopathic effects in vero cells,

hemolytic activity, lecithinase production, and proteolytic action

on casein. Recently, From et al. [86] detected an emetic toxin that

can be related to food poisoning incidents. Human infection due to

B. pumilus is exceptional.

Bacillus megaterium. Bacillus megaterium is a gram-positive,

mainly aerobic spore forming bacterium found in widely diverse

habitats from soil to seawater, sediment, rice paddies, honey, fish

and dried food. B. megaterium has been industrially employed for

more than 50 years, as it possesses some very useful and unusual

enzymes and a high capacity for the production of exoenzymes.

Genetic tools for this species include transducing phages and

several hundred mutants covering the processes of biosynthesis,

catabolism, division, sporulation, germination, antibiotic

resistance, and recombination [87].

Bacillus sphaericus. Bacillus sphaericus is an aerobic,

mesophilic, spore-forming bacterium with terminal swollen

sporangia and spherical spores [88]. Strains of B. sphaericus are

toxic towards mosquito larvae and can be used as biological

control agents of the important vectors of filariasis, malaria and

yellow fever [89]. Most studies interested in the use of these highly

toxic strains in biocontrol programmes such as in Brazil have

focused on the isolation of more adapted strains in tropical

conditions [90]. Strains of B. sphaericus were divided in to five

distinct groups and group II was formed by two subgroups, IIA

and IIB. All toxic strains were located in DNA homology subgroup

IIA [91] but this homology group also contained non-pathogens

[92]. Different techniques such as phage typing [93], serotyping

[94,95], cellular fatty acid analysis [96] and MLEE on agarose gel

[97] were also used in order to identify entomopathogenic B.

sphaericus. However, only a few works report the diversity within

mosquito toxic B. sphaericus strains [98,99]. As result, the attempt to

define a new species (DNA homology group IIA) based on

mosquito pathogenicity as the unique characteristic was then

discarded [92]. Subsequently, using cloned toxin genes bin and mtx

from B. sphaericus as probes resulted in segregating 30 strains into

22 groups within the DNA homology group IIA [37]. From the

variation in the number and size of bands it was possible to

identify similarities among the strains resulting in 5 groups in

BOX-PCR and 8 groups in REP-PCR. B. sphaericus strains isolated

from diverse habitats and geographically different locations in

Brazil, were phenotypically and genetically quite heterogeneous

and can be potentially useful as biological control agents against

mosquito larvae [37].

Although the current classification of species within the genus

Bacillus and correlated genera is well established and is based on a

combination of numerous approaches. The present study aims at

determining whether or not a new set of parameters be deduced to

develop a method, which could be informative enough to be useful

for the more effective classification of Bacillus species and other

microbes. Since 16S rDNA sequence repository is quite large, we

focused our studies on this gene.

The genus Bacillus contain a heterogeneous assembly of aerobic

or facultative anaerobic bacteria, widely distributed in the

environment. The phenotypic protocols though important need

a supplementation of molecular approaches. Molecular approach-

es based on DNA sequence minimize problems associated with

typability and reproducibility and enables assembly of large

Diversity in Bacillus
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reference databases [100]. Sequence specific primers for 16S

rDNA gene have proved to be gold standards for the identification

of pure cultures of Bacillus sp. such a B. subtilis [101], B. cereus and

B. thuringiensis [102], Paenibacillus alvei (formerly Bacillus alvei) [103].

Genus specific primer have been successfully developed for

Lactobacillus, Mycoplasma, Bifidobacterium, Pandorea, Clostridium and

recently for certain Bacillus strains [104].

Results

During the investigation, 1121 individual 16S rDNA sequences

belonging to the genus Bacillus (from RDP/NCBI sites: http://rdp.

cme.msu.edu/; http://www.ncbi.nlm.nih.gov/) were analyzed for

generating species-specific framework and probes as a rapid tool

for their identification. These sequences represented a total of 10

different species. Bacillus cereus group comprising of B. anthracis, B.

cereus and B. thuringiensis was represented by 472 strains i.e. 21.9%

of the total 16S rDNA sequences collected and analysed here in

this study. A few other species, for which a fairly large number of

16S rDNA sequences are available, belong to B. subtilis (271

strains), B. licheniformis (131 strains), B. pumilus (83 strains), B.

megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains)

and B. halodurans (36 strains). These later seven species constituted

30.24% (649/2146) of the total sequences studied (Table 1).

Phylogeny of Bacillus species
Bacillus cereus group. (i) B. anthracis: Phylogenetic tree

based on the 16S rDNA sequences from 153 strains of B. anthracis

revealed 6 clusters (BAI to BAVI) (Figure S1). These different

clusters were represented by 5 to 87 strains. Twelve strains could

not be segregated clearly into any of these clusters. All the

sequences from each of the cluster when subjected to multiple

alignments showed that the strains were fairly similar over a large

region. A visual scan of the profiles in each of the clusters (BAI to

BAVI), showed that the level of genetic variability is quite low,

since 84.2% of the total sequence i.e. 1309/1554 nucleotides (nts)

were deemed to be indistinguishable. Further a comparison of the

total length of each of the groups support the limited genetic

diversity between cluster BAI - BAIV on one hand and BAV -

BAVI on the other. These clusters possess nearly identical

similarity rate and were considered to be identical. Hence, the

153 B. anthracis 16S rDNA sequences were in fact belonging to 4

representative groups varying in length from 1309 nts to 1554 nts.

The variability among four clusters was found to extend on either

side of the core region, 78 nts upstream and 169 nts downstream.

(ii) B. cereus: B. cereus, another member of the B. cereus group

was represented by 211 different strains. A phylogenetic tree based

on the 16S rDNA sequences showed 7 clusters – BCI to BCVII

(Figure S2). These 7 clusters consisted of 12 to 48 strains. Three

strains could not be segregated clearly into any of these clusters.

Multiple alignments of all the strains revealed the conserved region

in each of the 7 clusters. A visual scan of the profiles in each of the

clusters BCI to BCVII, reflects that there is around 83.8% (1276/

1522 nts) similarity among them. This 1276 nts long sequence

may represent the core region of this Bacillus species. The 16.22%

variability present in the region flanking the core sequence stretch

was found to extend up to 86 nts upstream and 142 nts

downstream. However, some further similarity was recorded in

two sets of clusters i) BCI, BCIV and BCVI, ii) BCV and BCVII,

which were thus considered as identical. These two major groups

were comprised of 77 and 87 strains, respectively. The final

number of B. cereus clusters could thus be reduced to 4 from the 7

clusters observed in phylogenetic tree.

(iii) B. thuringiensis: The third member of the B. cereus group

is represented by 108 strains of B. thuringiensis. The phylogenetic

tree based on the nucleotide sequences of the 16S rDNA gene of

these 108 strains were primarily represented by 12 different

clusters. The number of strains in each of these 12 clusters, BTI to

BTXII, varied from 3 to 17 (Figure S3). Twenty six strains could

not be segregated clearly into any of these clusters. Multiple

alignments of all members within each group revealed their

respective conserved regions. Further alignment of the represen-

tative conserved regions from all the 12 clusters BTI to BTXII

revealed that a completely conserved stretch of 1322/1516 nts

equal to 81.2% was visible. This seems to represent the core region

of the B. thuringiensis. A visual scan of the profiles of the sequences

flanking the core region in each of the BTI to BXII cluster shows

that there is 100% similarity between clusters BTIII-BTX and

BTV-BTXII, which thus reduced the final tally of B. thuringiensis

phylogenetic clusters from 12 to 10. The overall genetic variability

around the core region extended up to 42 nts upstream and

142 nts downstream.

The 472 strains of the B. cereus group could thus be segregated in

to 18 clusters, where the core region varied from 1276 to 1322,

covering 81.2% to 84.2% of the total 16S rDNA gene length.

B. subtilis. Apart from the B. cereus group of 472 strains, B.

subtilis is represented by 271 different strains. All the 16S rDNA

sequences of B. subtilis were segregated in to 30 clusters (BSI to

BSXXX) on the phylogenetic tree (Figure S4). Each cluster had 4

to 18 organisms. Thirty nine strains could not be segregated

clearly into any of these clusters. Multiple alignments within each

of the group revealed the regions which were shared by all the

strains. The length of the conserved region within clusters BSI to

BSXXX varied from 1190 to 1554 nts and exceptionally was

900 nts long. A further realignment of the representative

conserved sequences of each of the cluster revealed a DNA

stretch of 1278 nts to be common to all. It represented 82.1% of

the total length of the 16S rDNA gene of B. subtilis. The 17.9%

variability in the flanking regions was found to extend on either

side of the core region, up to 180 nts upstream and 174 nts

downstream. It also reflects that there is a large genetic diversity in

B. subtilis. On the basis of a visual scan of the regions flanking the

conserved sequences, the 30 BS clusters could be reduced to 26.

The four clusters quite similar to each other were BSI-BSII,

BSVIII-BSXXI, BSXV-BSXXV and BSXXII-BSXXIV. In

Table 1. 16S rDNA sequences of Bacillus species and number
of sequences used in this study (http://rdp.cme.msu.edu/).

S. No. Organism No. of sequences

1. Bacillus anthracis 153

2. B. cereus 211

3. B. thuringiensis 108

4. B. subtilis 271

5. B. licheniformis 131

6. B. pumilus 83

7. B. megaterium 47

8. B. sphaericus 42

9. B. clausii 39

10. B. halodurans 36

11. B. sp. 1025

Total 2146

doi:10.1371/journal.pone.0004438.t001
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addition, to the long and variable regions, there were two unique

groups, BSXVII and BSXXIII, where the highly conserved region

was intercalated by a highly variable region of 105 nts and 24 nts

length, respectively. These were the only two such cases comprised

of 14 sequences of B. subtilis strains, with this unique characteristic

among all the 2146 sequences studied here.

B. licheniformis. In the RDP/NCBI database, B. licheniformis

was represented by 131 different strains. These strains were

distributed as 13 clusters, BLI to BLXIII on the 16S rDNA

phylogenetic tree. Three to 15 organisms were present in each of

the clusters (Figure S5). Multiple alignment of these 16S rDNA

sequence of all the members in each group revealed the regions

which were shared among them. The length of the conserved

region in clusters BLI to BLXIII, varied from 1219 to 1497 nts.

Further alignment of the representative conserved sequences from

each of the clusters revealed a completely conserved core DNA

stretch of 1139 nts i.e. at position 210 to 1348. On the basis of this

high similarity between the representative core regions equivalent

to 74.59% of the total length, the 13 clusters could be reduced to

10. BLI, BLIII, BLVII and BLX, BLXI were of almost

indistinguishable among themselves. The long and variable

regions flanking the core sequence, indicates the high genetic

variability within the B. licheniformis. The 25.41% variability in the

flanking regions was found to extend on either side of the core

region, up to 183 nts upstream and 180 nts downstream.

B. pumilus. A group of 83 strains represents the B. pumilus

species in the 16S rDNA RDP database. The phylogenetic tree of

16S rDNA from B. pumilus strains showed 12 clusters (Figure S6).

Nine strains could not be segregated clearly into any of these

clusters. Each of the clusters, BPI to BPXII was represented by 4

to 13 strains. Multiple alignment of gene sequences of members of

each of the cluster showed that the conserved regions vary in

length from 1215 nts to 1503 nts. Further alignment of the

representative 16S rDNA sequences from each of the 12 clusters

showed that there is a conserved region of 1215 nts. The core

region represented 79.61% of the total length of the B. pumilus 16S

rDNA sequence. It indicates the extent of similarity within this

Bacillus species. On the other hand, the genetic variability extends

on either side of the core region, up to 103 nts upstream and

205 nts downstream. Taking into account the core region and the

flanking regions, the 12 clusters BPI to BPXII did not show any

redundancy and could be easily distinguished from each other.

B. sphaericus. The phylogenetic tree based on the 16S

rDNA gene from a small group of 42 strains of B. sphaericus,

showed 7 clusters (Figure S7). Each of the clusters BSPI to BSPVII

was represented by 2 to 12 different strains. Five strains could not

be segregated clearly into any of these clusters. Multiple alignment

of gene sequences of members of each of the cluster revealed that

the conserved regions varied in length from 1179 nts to 1501 nts.

Subsequent alignment of the representative 16S rDNA sequences

from each of the 7 clusters showed that there is a conserved region

of 1081 nts. It represented 72.06% of the total length of the B.

sphaericus 16S rDNA gene. There is thus a great genetic variability

among the different clusters. The variable region extended up to

248 nts upstream of the 16S rDNA core region and 174 nts

downstream. When all the clusters and their core regions are taken

into account, two clusters BSPI and BSPVI showed high similarity

and could be considered as one. The final tally of clusters of B.

sphaericus could thus be reduced to six.

B. halodurans. B. halodurans group was constituted by 36

strains. Phylogenetic tree of the 16S rDNA sequences could

segregate these 36 strains into 4 clusters (Figure S8). These 4

clusters, BHI to BHIV were represented by 3 to 13 strains. Three

strains could not be segregated clearly into any of these clusters.

Multiple alignment of 16S gene sequences within each group

showed that the conserved region varies from 1443 to 1548 nts in

length. Further alignment of the representative sequences of each

of the group revealed that the core conserved region is 1416 nts

long. It represents 91% of the total length. The low variability in

the 16S rDNA gene sequence is evident by the length of the

flanking regions which varies from 65 to 70 nts. However, the 4

clusters were still maintained in spite of low genetic variability.

Bacillus clausii. Bacillus clausii group is constituted of 39

strains. On the basis of the 16S rDNA gene phylogenetic tree, 6

clusters were observed for 34 of the strains (Figure S9). Five strains

did not fall clearly into clusters. The 6 clusters BCI to BCVI were

represented by 2 to 10 different strains. Multiple alignments of

gene sequences of members of each of the cluster revealed the size

of the conserved region, which varied in length from 1343 nts to

1551 nts. However, subsequently when the representative 16S

rDNA sequences from each of the 6 clusters were considered, the

conserved region was found to be 1337 nts long. It represented

86.2% of the total length of which 16S rDNA gene of B. clausii may

extend. It reflects that there is quite a large genetic variability

among the different clusters. The variable region extends only up

to 164 nts upstream of the 16S rDNA core region and 52 nts

downstream. In spite of a large homologous region among all the

clusters of B. clausii, they were still distinguishable from each other

particularly the clusters BCII, BCIII and BCVI.

B. megaterium. The B. megaterium group was represented by

47 strains. A phylogenetic tree based on the 16S rDNA gene

segregated these 47 strains in to 8 clusters: BMI to BMVIII (Figure

S10). Each of the clusters was composed of 2 to 12 isolates, 6

strains could not be clustered concretely. Multiple alignments of

gene sequences of members of these 8 clusters revealed the

diversity of the core region of the 16S rDNA, which 1240 nts long.

It represented 81.2% of the total length of the B. megaterium 16S

rDNA gene. The 18.8% diversity in the region flanking the core

region reflects the extent and range of genetic variability among

the clusters BMI to BMVIII. Some of the clusters had high

bootstrap value of 963 to 1000, while others had moderate

bootstrap value of 562 to 661.

Phylogeny of Bacillus Core Groups
The 1121 strains of Bacillus cereus group, B.subtilis, B. licheniformis,

B. pumilus, B. sphearicus B. megaterium, B. clausii and B. halodurans

strains could be represented by 89 clusters/sequences (Figure 1). A

phylogenetic tree drawn on the basis of the representative

sequences of the 16S rDNA gene of the 89 clusters (Figure 2)

could segregate 10 Bacillus species into different clusters (bootstrap

value varied from 135 to 716). Members of B. sphaericus, B.

halodurans, B. pumilus and B. licheniformis, B. clausii and B. megaterium

were very clearly segregated. Since B. subtilis clusters were

subdivided into two groups. B. subtilis Gr I was more similar to

B. sphaericus (bootstrap value 312) whereas B. subtilis Gr II was

more close to B. pumilus (bootstrap value 296). B. subtilis group of

271 strains was in fact observed to form 26 clusters on their 16S

rDNA gene phylogenetic tree, which is indicative of greater

diversity. B. cereus group members, B. cereus, B. thuringiensis and B.

anthracis were placed next to each other on the 16S rDNA

phylogenetic tree. Except one subclade consisting only of B.

thuringiensis strains, the other clade was represented by all the three

members. Members from each of the clusters were selected to

define the range of genetic variability in each of the Bacillus species.

From each clade, two members were selected for representing B.

sphaericus, B. subtilis Gr I, B. halodurans, B. cereus. For B. pumilus, B.

anthracis, B. licheniformis and B. clausii three members were chosen to

represent them. Four members of B. subtilis Gr II and B. megaterium
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and five members of B. thuringiensis were selected to represent these

species. Thus 34 sequences were chosen to represent the 10 Bacillus

species (Figure 2). This reference phylogenetic framework tree has

been used to segregate those Bacillus isolates which have been

presently classified only as Bacillus sp.

A total of 1025 sequences of 16S rDNA gene from Bacillus sp.

were screened at the rate of 52 entries along with 34 reference

phylogenetic framework sequences to generate 22 phylogenetic

trees. From all the phylogenetic trees it was possible to classify a

total of 305 isolates of the Bacillus sp: 75 isolates as B. cereus, 2

isolates as B. thuringiensis, 44 isolates as B. subtilis, 21 isolates as B.

licheniformis, 32 isolates as B. pumilus, 23 isolates as B. sphaericus, 7

isolates as B. halodurans, 69 isolates B. megaterium, 31 isolates as B.

clausii and 1 as B. anthracis. Final phylogenetic trees were drawn on

the basis of this preliminary screening showed that 305 out of these

1025 show more similarity having 800 to 1000 bootstrap values

with their respective species (Figures 3–7). The accession numbers

of these Bacillus species are given in Table S1. At this rate about

29.75% of the unclassified Bacillus sp. could be identified up to

species level. This phylogenetic framework based on 34, 16S

rDNA sequences from 10 Bacillus species can be used to identify

Bacillus strains up to species level.

Signature Analysis
Bacillus species-specific signature. The sequences of 10

data sets were submitted groupwise to MEME program (http://

meme.nbcr.net/meme/meme.html). Ten signatures were

identified for each species, which were 25–30 nts long (Table

S2). Signature, which was not present in other Bacillus spp. and

found as distinct was used to blast against the NCBI database. As

seen from the Table 2, there were 1–5 regions in each of the

Bacillus species, which had the potential to be used as signature

except in case of B. anthracis, B. licheniformis, and B. subtilis. Signature

analyses of 16S rDNA sequences of known Bacillus spp. show

unique signatures exclusive to them. B. cereus and B. thuringiensis

had unique 16S rDNA signatures of 29 to 30 nts length. These

occurred with a frequency of 151/211 and 43 to 63/108

sequences. By this approach, no signatures specific to B. anthracis

alone could be detected. It may be remarked that among the 3

members of the B. cereus group, B. cereus shared 8/10 signatures

with B. anthracis and 5/10 signatures with B. thuringiensis. Four out

of 10 signatures were shared by all the three members. B. clausii, B.

megaterium and B. halodurans can be identified with the aid of 2 to 3

signatures. For B. licheniformis and B. subtilis, no unique signatures

could be identified. Some signatures such as

59TGTGGTTTAATTCGAAGCAACGCGAAGAA 39 were

shared by all the Bacillus spp. except B. subtilis, B. pumilus and B.

sphaericus, providing ‘‘evidences’’ of common origins. Similarly,

certain signatures 59TAAAGCTCTGTTGTTAGGGAAGAA-

CAAGT 39 were shared only between B. subtilis and B. pumilus.

Such similarities in signature sequences were also recorded among

B. licheniformis and B. megaterium on one hand and B. licheniformis and

B. pumilus on the other. For all these signatures, the closest match

within the top 50 best hits (BLAST) with their respective species

was in the range of 60 to 98%. Exceptionally the best matches

were in the lower range of around 24% in the case of B. cereus.

Cluster-specific signature. In case of 11 clusters (Figure 8),

on the basis of the ClustalW alignment, the size of the conserved

region varied from 1226 to 1547 nts. These 11 clusters consisting

of 18 to 50 isolates each did not appear to fall within any of the

aligned species and may represent sub-species or novel lineages.

The sequences of these 11 clusters were groupwise submitted to

MEME program (http://meme.nbcr.net/meme/meme.html).

Ten signatures were identified for each cluster which was 25–

30 nts long (Table S3). As seen from the Table, there were 1–2

regions in each of the cluster, which had the potential to be used as

Figure 1. Variability in the terminal regions of the 16S rRNA gene sequences of Bacillus spp.: (a). B. cereus; (b). B. anthracis; (c). B.
halodurans; (d). B. thuringiensis; (e). B. clausii; (f). B. pumilus; (g). B. sphaericus; (h). B. licheniformis; (i). B. megaterium; (j). B. subtilis. Values represent
group number within a species. Values within parentheses represent number of strains within the same group showing $95% similarity among
them. Values on the top of horizontal bar represent the number of nucleotides showing similarity among groups. Dotted region in the middle is not
to scale. Colored pattern corresponds to distinct fragments. Solid black box represents gap with in the sequences in B. subtilis.
doi:10.1371/journal.pone.0004438.g001
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signature except in case of Cluster 2–4 and Cluster 8 (Table 2).

The signatures identified through MEME program revealed that

there are certain similarities and even overlapping sequence

stretches. The usage of signature and the conserved sequence

regions against all other known Bacillus spp. indicate that they were

not significantly similar and are not homologous. The signature

sequence - 59TTTAATTCGAAGCAACGCGAAGAACCTTA39

- shared by all the Clusters except 5 and 7 also indicates that these

sequences may have a common origin similar to Lactobacillus,

Paenibacillus, Clostridium, rumen bacterium, etc. [105]. Each of the

clusters has certain unique signatures, which did not match with

the 10 Bacillus spp. Typically, Clusters 2, 3, 4 and 8 did not show

any unique signatures by this approach. However, in Cluster 2 –

59AAATGATTGGGGTGAAGTCGTAACAAGGTA39 was the

only signature which showed remarkable closeness to B. clausii in

31 out of 39 sequences. Similarly, only one out of 10 signatures in

Clusters 3 and 4 showed closest matches with B. licheniformis and B.

megaterium at a frequency of 54/131 and 13/47 sequences,

respectively. As far as Cluster 8 is concerned, one of the

signatures could be traced among 18/37 sequences of Cluster 7

and with negligible frequency in other clusters.

The unique signatures of sequences present in Cluster 1 showed

similarity to uncultured Bacillus sp. and uncultured Macrococcus sp.

with a frequency of 28% among the top 50 hits (BLAST).

Similarly, the signatures of Clusters 6, 9 and 11 shared similar

sequences to Virgibacillus, B. megaterium and Geobacillus, respectively,

at a frequency in the range of 16 to 74%. In spite of employing all

approaches to assign the signatures and sequences to known

organisms, the signatures of Clusters 5, 7 and 10 could not be

properly categorized. In brief, all these 11 clusters consisting of 18

to 50 sequences each did not appear to fall within any of the

aligned species and may represent sub-species or novel lineages. It

is probable that the Bacillus community is more diverse than

reported so far (http:// rdp.cme.msu.edu). This suggests that

bacterial communities in a variety of soils, environmental habitats,

etc., may be very similar when assessed by molecular methods for

their 16S rDNA than for other metabolic genes.

Restriction Enzyme Analysis
A total of 14 Type II restriction enzymes, which are

independent of methylase and cleave at very specific sites within

or close to the recognition sequence (4 to 6 mer) (Table 3), varied

in their response to 632, 16S rDNA gene sequences: 344 belonging

to 10 known species of Bacillus and 288 belonging to strains

classified as Bacillus sp. Restriction enzymes (REs) sites for SmaI,

EcoRI, DpnII, RsaI, BfaI, HaeIII, Tru9I and AluI in 16S rDNA gene

sequences occurred with a frequency of 1 to 7 resulting in 2 to 9

fragments of varied nucleotide lengths. On the other hand,

enzymes BamHI, NotI, SacI, NruI, HindIII and PstI proved to be

‘‘non’’-cutters in most of the cases. Of these later 6 REs, BamHI,

NotI, and SacI could cut only 0.3 to 2.3% of the 344 sequences

belonging to 10 known species of Bacillus: B. cereus, B. anthracis, B.

thuringiensis, B. subtilis, B. licheniformis, B. pumilus, B. sphaericus, B.

halodurans, B. megaterium, B. clausii. In spite of low frequency of RE

sites for NruI, HindIII and PstI in 16S rDNA genes sequences, these

can be still exploited for distinguishing different Bacillus spp. such

that i) NruI could cleave only B. subtilis and B. sphaericus at the rate

of 12/30 and 41/42 sequences, respectively; ii) HindIII sites

appeared in 43/47 sequences of B. megaterium; iii) PstI sites

occurred at high frequency of 35/42 in B. sphaericus; 28/30 in B.

pumilus; 44/47 in B. megaterium; 29/30 in B. licheniformis and 5/30 in

B. subtilis (Table S4). The sites for the two enzymes EcoRI and SmaI

appeared in 96 to 97% of the sequences but due to the presence of

only one site per sequence, these two enzymes could not serve any

significant purpose at this stage.

Six REs with more than 1 site for their action were compared

for all the 344 sequences of 10 Bacillus species (Figure 9). The

pattern of the number and lengths of the fragments served as

reference standards for those strains which have been designated

so far as Bacillus sp.

A comparative analysis of in silico cleavage of 344 sequences of

10 Bacillus spp. revealed very unique patterns. With RsaI, 3

fragments of 406, 355 and 146 nts (in this order from 59 end) were

obtained for B. cereus, B. anthracis, B. thuringiensis. B. megaterium and

B. clausii had two fragments of 16/19 and 11 nts in addition to the

3 recorded with the 3 members of B. cereus group. B. subtilis, B.

licheniformis and B. sphaericus showed similar patterns of fragment

size and order: 18/19 – 11 – 405/406/407 – 496/501/502. B.

pumilus appeared to have lost two 59 RE sites for RsaI such that

only two clear cut fragments could be recorded with high

frequency. B. halodurans seems to have acquired an additional

RE site and assumed a status intermediate to B. cereus group on one

hand and the rest of the Bacillus spp. on the other.

A very distinct order and length of the fragments could be seen

with the other 5 REs - DpnII, BfaI, HaeIII, Tru9I and AluI as well

(Figure 9). A comparison of in silico digestions of the 16S rDNA

gene sequences with all the 6 REs revealed two features. B. subtilis

showed two distinct subgroups with DpnII, BfaI and AluI. Here, no

similarities in size of the fragments and the positions of the RE sites

were evident within each of the three sets of subgroups. With

DpnII, B. subtilis revealed 4 fragments in one group: 119-196-87-51

(nts) and 6 fragments of 77-24-83-317-589-12 (nts) in the other.

The three additional RE sites appeared on the 59 end of the 16S

rDNA genes. Similarly with AluI, B. subtilis groups I and II differed

not only in the number of RE sites but also in their positions. It

may not be too premature to conclude that B. subtilis need to be

subdivided in to at least two groups, since a similar situation was

observed with respect to the signature analyses presented in the

previous sections. Nakamura et al. [77] and Chun and Bae [10]

divided B. subtilis in to two subspecies, namely B. subtilis subsp.

subtilis and B. subtilis subsp. spizizenii on the basis of cell wall

chemistry and DNA-DNA relatedness data.

The second distinct feature which emerged is with regards to the

classification of these 10 Bacillus spp. on the basis of the 6 REs is

with respect to members of the B. cereus group - B. cereus, B.

anthracis, B. thuringiensis, which were indistinguishable within the

group. However, they were very clearly distinguishable from all

other Bacillus spp. with respect to the action of DpnII and AluI. B.

halodurans could be distinguished from all other species on the basis

of a combination of actions of TruI and HaeIII. B. clausii could be

segregated from the others by using Tru9I and RsaI. B. megaterium

though quite close to B. licheniformis for BfaI and Tru9I and B. clausii

for RsaI; was distinguishable by cutting its 16S rDNA gene

sequences with a set of 4 REs: BfaI, Tru9I, HaeIIII and RsaI. B.

megaterium appears to be the originator of B. halodurans, B. clausii, B.

licheniformis, B. subtilis and B. pumilus, with whom it shares different

RE sites and fragments lengths (Figure 10).

Figure 2. Phylogenetic tree based on 89, 16S rRNA gene sequences from 10 Bacillus species. A neighbor-joining analysis with Jukes-
Cantor correction and bootstrap support was performed on the gene sequences. Bootstrap values are given at nodes, 1000 bootstrap replicates were
run. Bold sequences (34) are the ones considered as framework in the study. Values in parentheses are accession numbers (http://rdp.cme.msu.edu/).
doi:10.1371/journal.pone.0004438.g002
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Figure 3. Phylogenetic tree of 34 framework sequences (bold values) and 78 Bacillus sp., which could be designated as B.
thuringiensis, B. anthracis and B. cereus (Figures S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27,
S28, S29, S30, S31 to S32 and Table S1). A neighbor-joining analysis with Jukes-Cantor correction and bootstrap support was performed on the
gene sequences. Bootstrap values are given at nodes, 1000 bootstrap replicates were run. Values in parentheses are accession numbers (http://rdp.
cme.msu.edu/).
doi:10.1371/journal.pone.0004438.g003
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B. sphaericus shows similarity to B. clausii and B. halodurans with

respect to Tru9I; to B. licheniformis and B. subtilis for HaeIII and RsaI

and to B. pumilus for HaeIII. Hence a combination of 3 enzymes

Tru9I, HaeIII and RsaI will be necessary to distinguish it from its

closely resembling species. B. subtilis is quite similar to B. licheniformis

but can be distinguished on the basis of Tru9I. On the other hand B.

subtilis and B. pumilus, which show similar RE patterns for BfaI and

HaeIII, can be separated on the basis of RsaI (Figure 10).

Pattern of restriction enzyme sites in Bacillus spp.
On the basis of sequence similarity (phylogenetic closeness), and

signature patterns (previous sections), 288 Bacillus sp. and 47

sequences of Jeotgalibacillus, Brevibacillus, Geobacillus, Marinibacillus,

Paenibacillus, Pontibacillus and Virgibacillus, etc. could be segregated

in to 11 clusters. RE patterns of the 344 16S rDNA sequences of

10 Bacillus spp. served as references for the segregation of strains

designated as Bacillus sp. (Figure 9).

Out of the 14 TypeII REs employed for in silico digestions, SmaI,

EcoRI, DpnII, RsaI, BfaI, HaeIII, Tru9I and AluI could cleave 16S

rDNA gene sequences with a frequency of 1 to 7 as was observed

with known Bacillus spp. RE sites for BamHI, NotI, SacI occurred

with a very low frequency of 0.4 to 3.0% and thus proved to be

‘‘non’’-cutters. On the other hand, the sites for enzymes NruI,

HindIII and PstI were observed to occur with moderate frequency

in some of the clusters and could not be detected in some others.

SmaI and EcoRI sites were observed with high frequency but with

only one site per sequence, strong conclusions were difficult to

draw. Hence, once again, information based on 6 REs - DpnII,

RsaI, BfaI, HaeIII, Tru9I and AluI - generating more than 2

fragments proved useful for reaching meaningful conclusions.

On the basis of RE patterns (Figure 9), Cluster 1 comprising of

46 sequences (22 Bacillus sp. and 24 sequences of Jeotgalibacillus,

Marinibacillus, Ureibacillus and Sporosarcina) showed similarity to 4

different Bacillus spp.: B. subtilis, B. licheniformis, B. sphaericus and B.

halodurans (Table 4). Clusters numbered 4 and 7, showed similarity

to 7 and 8 Bacillus spp., respectively. Incidentally, except for Tru9I,

pattern of fragment length (nts) and order showed that Clusters 1,

4 and 8 resemble B. licheniformis, B. sphaericus, B. megaterium.

However, there was quite a bit of variation among these clusters

for the other 5 REs, which implies that the organisms in these

clusters might have a common origin but are presently well

distinguishable from each other. Clusters numbered 2, 3, 5, 6, 8, 9,

and 10 showed RE fragment length and order pattern to be quite

similar to 1 to 5 of the known Bacillus spp. but for certain REs

there was no resemblance to known species. Clusters numbered 3,

6, 9 and 10 were quite distinct and hence categorized as ‘‘unique’’

on the basis of their response to AluI, DpnII and HaeIII, The

fragment lengths and order were unique to each of them. A

comparison of the different Clusters numbered 3, 6, 9, 10 with

respect to their similarity to known species revealed that no two

clusters showed exact match. The only exception to this

observation, were the clusters 6 and 7 with respect to the action

of HaeIII, where the order and size of the fragments were quite

similar. For BfaI, RsaI and Tru9I, the similarity to known Bacillus

spp. varied from cluster to cluster in two respects: firstly, the

species identification varied from RE to RE, and secondly, no two

clusters showed similar results with any two REs (Table 4).

Clusters 1, 2, 6 and 11 were composed of Bacillus sp. which

could be categorized in to two groups: Group 1 consisted of

Bacillus sp., which has now been reclassified as Jeotgalibacillus,

Marinibacillus, Ureibacillus, Sporosarcina and Group 2 consisted of

those which have been defined only up to genus level (Bacillus sp.).

These served as controls for the observations made for Bacillus spp.

with different REs. Cluster 1 showed closest matches with

Marinibacillus, B. subtilis and B. licheniformis for RsaI (Figure 9).

Such a dual relationship was also recorded for Cluster 1 with BfaI,

DpnII and Tru9I. In these cases, the closest matches were

Sporosarcina, Jeotgalibacillus, Marinibacillus, B. licheniformis and B.

sphaericus. The variability in the closest matches among different

REs reflects that Cluster 1 is a ‘‘unique ‘‘ group intermediate to

Bacillus and other closely related species such as Jeotgalibacillus,

Marinibacillus, Sporosarcina, etc. Similarly, Clusters 2 and 6 showed

uniqueness in their fragment order and length with 3 and 5

different REs, respectively. It implies that these groups of

organisms need attention from taxonomists and may be classified

as new organisms. Cluster 11 turned out to be primarily a set of 46

sequences of Geobacillus and 4 sequences of Anoxybacillus. These

sequences largely resembled known Geobacillus sp. with respect to

their RE activities. It thus served primarily as validation of the

results recorded with Bacillus sp (Table 4).

Discussion

Among the group of aerobic endospore-forming bacteria of 25

genera and over 200 species, Bacillus is the largest and most

prominent. Bacillus is comprised by heterogeneous assembly of gram-

positive, rod shaped, spore forming bacteria, which may grow

aerobically or as facultative anaerobes. Further characterization and

identification has been traditionally based on biochemical tests and

fatty acid methylester (FAME) analysis [106,107]. With further

developments, API (Analytab Products, Inc) system of identification

is quite reproducible and reliable [108]. Microbial genotype or DNA

sequence based analytical approaches are highly reproducible and

enable large number of samplings at a time [100]. 16S rDNA

sequencing has proved to be one of the most powerful tools for the

classification of microorganisms [109–111]. 16S rDNA sequencing

technique has been used for the identification of Bacillus spp. such as

B. subtilis [101]; B. cereus and B. thuringiensis [102]; P. alvei (formerly B.

alvei) [103].

The genus Bacillus has under gone considerable taxonomic

changes. The number of spp. within this genus was reduced from

146 in the 5th Edition of Bergey’s Manual of Determinative

Bacteriology [112] to 22 [113]. In the Approved List of Bacterial

Names [114], 31 of the 38 aerobic endospore formers were Bacillus.

However, at present there are 175 Bacillus species (http://rdp.cme.

msu.edu/). The two factors for the rapid increase are the application

of more diverse and intelligent methods for enrichment and isolation

and the development of new and ever more sophisticated methods of

amplification and sequencing of genes [115].

The identification of Bacillus species on the basis of 16S rDNA

gene sequence is done by blasting it against the available

databases. The need for developing a tool for identifying Bacillus

species arose due to two reasons: (i) more than 50% of the 16S

rDNA sequences deposited in the databases, have been annotat-

Figure 4. Phylogenetic tree of 34 framework sequences (bold values) and 72 Bacillus sp., which could be designated as B. subtilis, B.
licheniformis and B. halodurans (Figures S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29,
S30, S31 to S32 and Table S1). A neighbor-joining analysis with Jukes-Cantor correction and bootstrap support was performed on the gene
sequences. Bootstrap values are given at nodes, 1000 bootstrap replicates were run. Values in parentheses are accession numbers (http://rdp.cme.
msu.edu/).
doi:10.1371/journal.pone.0004438.g004
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ed/identified only as Bacillus sp., ii) B. subtilis strains were seen to

cluster in different clades and widely placed clusters on the

phylogenetic tree (Data not shown here) raising doubts about the

sequencing quality. It gives an impression that B. subtilis perhaps

defies the phylogenetic pattern. It also suggests that the genera

Bacillus may be further divided into sub-species, particularly as far

as B. subtilis is concerned. Our data imply that the 16S rDNA

molecule of the B. subtilis may exist in two different states much

similar to B. cereus. This may lead to a different structure of the 30S

subunit since binding of primary binding proteins affects binding

of the secondary and tertiary binding proteins [116]. In fact,

Nakamura et al. [77] divided B. subtilis in to two subspecies,

namely B. subtilis subsp. subtilis and B. subtilis subsp. spizizenii on the

basis of cell wall chemistry and DNA-DNA relatedness data.

These were therefore regarded as genomovars. In view of this

scenario, we thought of developing a tool which will enable

identification of new Bacillus isolates at species level. In fact, a few

Bacillus species, such as B. kaustophilus, B. sterothermophilus, B.

thermoglucosidasius and B. thermoleovorans have been transferred to the

newly created genus Geobacillus [65]. Certain others such as Bacillus

globisporus, B. pasteurii and B. psychrophilus have been reclassified to

the genus Sporosarcina [66]. In the same manner, B. marinus has

been reclassified as M. marinus [67].

Problems with Bacillus Species
The members of B. cereus group show 99.5 to 100% similarity for

their 16S and 23S rDNA sequences [117,118]. The genetic

diversity of B. cereus isolates is enhanced by extra chromosomal

elements [92,119–122]. The need to develop approaches that

rapidly identify the ‘‘near neighbours’’ of B. cereus group are of

great interest for the study of B. anthracis virulence mechanisms as

well to prevent the use of such strains for B. anthracis based

bioweapon development [123]. In this study all the three members

of the B. cereus group have very large conserved regions and appear

indistinguishable on the basis of 16S rDNA gene sequence. B.

thuringiensis and B. mycoides differ from B. anthracis and B. cereus by 0

to 9 nucleotides [47]. Even single strand conformation of

polymorphism (SSCP) did not allow species discrimination within

B. cereus group [124]. Variable region VI of 16S rDNAs of B. cereus

and B. thuringiensis are useful for differentiation between these

species [125]. However, our approaches have been able to

distinguish B. cereus and B. thuringiensis from B. anthracis. With the

first approach of using the representative sequences for each

species, these three though distinguishable were always placed next

to each other. On the other hand, with specific signature sequence,

it was possible to distinguish B. cereus from other two. It was

difficult to identify species specific signatures for B. anthracis and B.

thuringiensis. A strategy has been proposed by Daffonchio et al.

[123] for the identification of near neighbours of B. anthracis based

on single nucleotide polymorphism (SNP) in the 16S–23S rDNA

ITS containing tRNA genes, characteristic of B. anthracis. Two B.

cereus strains and one B. thuringiensis strains showed RSI-PCR

profiles identical to that of B. anthracis. The strict relationship with

B. anthracis was confirmed by MLST of four independent loci: the

16S–23S rDNA long ITS, the SG-749 fragment that included a

region homologous to B. subtilis ypnA gene; the AC-390 fragment

that is homologous to the B. subtilis ywfK gene, encoding a

hypothetical transcriptional regulator belonging to the LysR

family; the pleR gene encoding for a pleiotropic regulator

previously identified as one of the principal regulators of B. cereus

virulence gene and the cerA gene that encodes the cereolysin A

phospholipase. In yet another population genetic study among a

strain collection of B. cereus group species, it was found by MLEE

and MLST that the strains could be divided into two main groups

[123]. The difficulty in distinguishing B. cereus group members on

16S rDNA based diagnosis however, correlated well with gyrase B

(gyrB) as a molecular diagnostic marker [126].

Rep-PCR has been shown to be a useful technique in the

subtyping of Bacillus species [37,38]. However, protein coding

genes such as gyrA and rpoB exhibit much higher genetic variation.

These genes have been thus used for the classification of closely

related taxa within the B. subtilis group [10,39]. In spite of such

difficulties our frame work is proving an efficient tool to handle

such problems. With our approach two B. subtilis groups could be

easily segregated on the basis of 16S rDNA gene sequence itself.

These reference sequences in fact could segregate the two

subspecies proposed by Nakamura et al. [77] namely B. subtilis

subsp. subtilis and B. subtilis subsp. spizizenii on the basis of cell wall

chemistry and DNA-DNA relatedness data. Of the two strains

chosen within the B. subtilis Gr1, one of them was highly similar to

B. licheniformis (Accession No. DQ504376), whereas the other

strain was quite distinct (B. subtilis Accession No. AY631853).

The large degree of variation in the individual group

fingerprints suggests that a substantial intra-species genetic

diversity may exist and highlights the very high resolution of

16S rDNA gene sequencing. The data presented here is to our

knowledge the first time, where molecular technique has been

exploited and applied in this manner for assigning Bacillus isolates

to different species. It would be difficult to extrapolate to define the

potential limits of genetic variability within the Bacillus. However,

such a strategy can be extended to other genera as well. It could

form the basis for developing reference phylogenetic tree for

various genera for which large number of 16S rDNA sequencing

data is available.

The 16S rDNA sequences therefore give consistent separation

of the strains into 9 major, non-overlapping clusters. The

significance of this formal cluster assignment is made clear by

the inclusion in our data set of sequences from independently

reported strains. The signature nucleotide offers the opportunity

for designing species-specific probes as primers for a rapid

identification/segregation of new isolates.

Since pathogenic capacities of Bacillus species are often plasmid

linked i.e. the pXO2 encoded capsule gene cluster, it may not

necessarily be linked to internal genotypic grouping of taxa. The

fact that plasmids can easily be transferred or lost makes these

criteria unacceptable for typing purposes. Our reference phyloge-

netic tree may partially replace the use of schemes such as MLST.

Signatures
16S rDNA sequences vary due to substitutions and not due to

insertion or deletion of bases [127,128]. Based on this they could

identify repeating elements that are highly conserved across

different species of Pseudomonas [128]. There are programs

available for designing polymerase chain reaction (PCR) primer

pairs as a means of rapid detection [129,130]. These programs

select primer pairs based on the user defined parameters.

Figure 5. Phylogenetic tree of 34 framework sequences (bold values) and 55 Bacillus sp., which could be designated as B. sphaericus
and B. pumilus (Figures S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 to S32
and Table S1). A neighbor-joining analysis with Jukes-Cantor correction and bootstrap support was performed on the gene sequences. Bootstrap
values are given at nodes, 1000 bootstrap replicates were run. Values in parentheses are accession numbers (http://rdp.cme.msu.edu/).
doi:10.1371/journal.pone.0004438.g005
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However, it becomes difficult to select the best primers since they

do not provide information regarding the specificity of the

oligonucleotides or patterns [131–134]. B. cereus has time and

again been reported to be highly homogenous however, signature

sequences of the 16S rDNA could distinguish the psychrotolerant

and mesophilic strains. Single base pair substitutions were

randomly distributed over the gene. The most obvious differences

was one signature located at bp 180 to 192 (E. coli nomenclature)

or bp 180 to 201 (B. cereus nomenclature) [127].

Restriction Enzyme Analysis
The phenomenon of host specific restriction and modification of

bacterial viruses stemmed from endonucleases within the cells that

destroy foreign DNA molecules. REs cleave DNA at specific sites,

generating discrete and gene-size fragments and have proved to be

a remarkable tool for investigating gene organization, function and

expression [135–137]. REs occur in combination with 1 or 2

modification enzymes (DNA methyl transferases) that protect the

cell’s own DNA from cleavage by the RE. Since ME methylates as

the same site where RE cuts, R-M system perhaps ensures that

16S rDNA remains conserved in spite of the fact that a large

number of sites for each RE are present. In other genes, presence

of RE sites increases diversity by promoting recombination

[138,139]. PCR Restriction analysis (PRA) of 16S rDNA has

been shown to contribute to rapidly and reliably identify newly

isolated strains belonging to recognized species [140]. However as

a result of analyzing a large set of data encompassing many

species, we may extend the statement that this method can be

applied for recognizing so far unrecognized species as well. In their

study, they have applied four REs: HaeIII, HinfI, TaqI and RsaI.

However, HinfI and RsaI showed no distinctive patterns for the

strains tested. In fact, TaqI proved instrumental in clearly

distinguishing one of the groups. A wide range of REs such as

HaeIII, DpnII, RsaI, BfaI and Tru9I were used for defining the

genus Virgibacillus [141,142]. B. licheniformis 16S rDNA sequence

was spliced with AluI into five bands 270; 140; 180; 200 and

800 nts, whereas RsaI resulted in four bands 2110; 400; 450;

500 nts [105].

An innovative approach for revealing intraspecific genomic

variability of B. cereus and B. licheniformis was the PCR

fingerprinting of the spaces between the 16S and 23S rRNA

genes and of intergenic tRNA genes regions [60]. Although RAPD

showed remarkable diversity among B. cereus strains however, it

was realized that the genetic diversity can arise from plasmid wide

variability in the plasmid profiles. B. licheniformis formed 2 groups

with all the methods. Based on single strand conformation of

polymorphism analysis after RE (AluI and RsaI) digestions of 16S

rDNA, two different evolutionary schemes for the two Bacillus

species, B. cereus and B. licheniformis were proposed [60]. In our

analysis, only 6 out of 14 REs (DpnII, RsaI, BfaI, HaeIII, Tru9I and

AluI) - proved beneficial in easy distinction. The rest 8 REs

(BamHI, EcoRI, HindIII, NotI, NruI, SacI, SmaI, and PstI) could not

be exploited to significant extents to be useful for this purpose.

However, in a different gene such as gyrB, digestion with EcoRI

(and ClaI) could distinguish the four members of the B. cereus group

but HindIII did not [38]. So the same set of REs may not hold

good for different gene sequences. In fact HindIII gave poor results

even while screening Corynebacterium spp., hence was discontinued

and multiple RE usage was recommended [143]. In silico digestion

with RE AluI was found to be most discriminative [144] and

generated 3 to 13 fragments depending on the Mycoplasma species.

Although 73 Mycoplasma species could be differentiated using AluI,

other species gave undistinguishable patterns. For these, an

additional restriction digestion typically with BfaI (or hpyF10VI)

was needed for a final identification [145]. This was confirmed by

application of ARDRA on 27 species and subspecies. We also

validated our findings by applying RE to species of Virgibacillus,

Gracibacillus and Geobacillus and can be exploited for describing new

species [146].

Novel Lineages
Among the innovative strategies applied by various researchers,

phylogenetic relationships between Bacillus species and related

genera were inferred from comparison of 39 end 16S rDNA and 59

end 16S–23S ITS nucleotide sequences [82]. Among the 40

Bacillaceae species, Bacillus circulans remained ungrouped. Out of

the ten groups, Group VI constituted of B. licheniformis, B. subtilis,

B. sphaericus along with B. amyloliquefaciens, B. atrophaecus, B.

mojavensis, B. macroides and B. fusiformis. Group X was placed

independent of other 6 Bacillus groups and was comprised of B.

anthracis, B. cereus, B. thuringiensis, B. mycoides and B. lentus. It

indicates that B. cereus group is quite different from other Bacillus

species. Separation of Bacillus species by Paenibacillus, Brevibacillus,

Geobacillus, Marinibacillus and Virgibacillus species, indicates that in

some cases, further divisions or conversely further grouping might

be warranted. Our work has provided the tools for defining the

thresholds of each species and enables us to pose the questions

such as: Should current classifications be re-examined?

Lower levels of similarity were found with other alkalitolerant

Bacillus strains particularly DSM8714 and DSM877, which still

lack taxonomic standing. The results obtained confirm that the

four Eterogermina strains belong to a unique genospecies which can

be unequivocally identified as B. clausii. The finding is of intrinsic

value, since some bacterial strains described as B. clausii strains

have been reported to exhibit levels of DNA hybridization with the

reference type strain of less than 61% [147]. Thus emphasizing the

great genomic heterogeneity of the strains placed in the species, B.

clausii [32].

As Ash et al., [42] predicted, their phylogenetic groups have

been redefined as separate genera, and their outlying species have

served as the basis for novel taxa as well. At the present pace of

refined discoveries, we can expect new Bacillus - like genera to be

redefined in the near future. In fact, Nazina et al., through

physiological and genetic analysis submitted the validly described

genus name of Geobacillus [65].

Heyndrickx et al., [142] undertook a polyphasic study, which

revealed the presence within Virgibacillus of an as yet undescribed

new species for which the name Virgibacillus proomii was proposed

(V. proomii was distinguished from V. pantothenticus and members of

Bacillus sensu stricto and from members of Paenibacillus and other

aerobic endospore-forming bacteria by routine phenotypic tests).

Comparisons of the 16S rDNA sequences of type strains of Bacillus

and Sporosarcina species indicated that Bacillus pantothenticus lies at

the periphery of rDNA gr1 (Bacillus sensu stricto) [42]. Virgibacillus

was proposed to accommodate B. pantothenticus and two related

organisms, which appeared to belong to an as yet (as on 1999)

Figure 6. Phylogenetic tree of 34 framework sequences (bold values) and 69 Bacillus sp., which could be designated as B.
megaterium (Figures S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 to S32
and Table S1). A neighbor-joining analysis with Jukes-Cantor correction and bootstrap support was performed on the gene sequences. Bootstrap
values are given at nodes, 1000 bootstrap replicates were run. Values in parentheses are accession numbers (http://rdp.cme.msu.edu/).
doi:10.1371/journal.pone.0004438.g006
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undescribed new species. It appears that the relationship between

Bacillus laevolecticus and V. pantothenticus (Group III) and between

Bacillus badius and M. marinus (Group IV) could still be open to

debate. The robustness of this classification tool will be assessed by

comparison with the current Bacillaceae classifications.

The various parameters like signatures (generated by MEME),

restriction enzyme (RE) sites, nucleotide stretches ‘‘generated’’ by

RE and the phylogenetic framework together can enable to

generate a battery of markers. These are likely to define the

variability between the species of a specific genus and the

specificity of the genus. The use of these parameters is a simple,

rapid approach, suitable to larger screening programs and easily

accessible to most laboratories.

Materials and Methods

Sequence data
A total of 2146, 16S rDNA sequences belonging to the genus

Bacillus (from RDP/NCBI sites: http://rdp.cme.msu.edu/; http://

www.ncbi.nlm.nih.gov/) were analysed in the present study. These

included 271 sequences belonging to isolates of B. subtilis, 211 to

isolates of B. cereus, 153 to isolates of B. anthracis, 131 to isolates of

B. licheniformis, 108 to isolates of B. thuringiensis, 83 to isolates of B.

pumilus, 47 to isolates of B. megaterium, 42 to isolates of B. sphaericus,

39 to isolates of B. clausii, 36 to isolates of B. halodurans and 1025 to

isolates of Bacillus species (Table 1). The first ten sets of Bacillus

species were used as the master species set for this analysis for

generating a phylogenetic framework while the 1025 Bacillus

species were used as a data set for segregating these unclassified

Bacillus species. The other Bacillus species, which were represented

by relatively minor numbers, were not considered for the

development of the identification tool (Table S5).

Phylogenetic Analyses
For phylogenetic analyses of each of these 10 species data sets, the

sequences from each of them were assembled and aligned using the

multiple alignment program CLUSTALW version 1.82 [133]. To

estimate evolutionary distance, pairwise distances between all taxa

were calculated with the DNADIST of the PHYLIP 3.6 package.

The resultant distance matrix was then used to draw a neighbor

joining tree with the program NEIGHBOR. The program

SEQBOOT [148] was used for statistical testing of the trees by

resampling the dataset 1000 times. The trees were viewed through

HyperTree Version 1.0.0 [133] and TreeView Version 1.6.6 [149]

(Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10).

For each of these 10 data sets, sequences which fell in the same

clade were grouped together. Candidate sequences of these

individual groups were aligned and a consensus was obtained by

removing ambiguous parts using JALVIEW sequence editor.

Consensus from each group was chosen as a representative for the

particular group. A phylogenetic tree was drawn on the basis of

these representative sequences of the 16S rDNA gene. Members

from each of the clusters of the tree were selected to define the

range of each of the Bacillus species. Thus a reference set of 34

sequences was selected that contained two to five from each

represented topology (Table 5) and regarded these as likely

candidates that could give information about the organismal

phylogeny.

Bacillus Species-Specific Signature
MEME (Multiple EM for Motif Elicitation) is used for searching

for novel motifs or signatures in sets of biological sequences.

MEME works by searching for repeated, ungapped sequence

patterns that occur in the DNA or protein sequences [150,151].

MEME searches can be performed via the web server (http://

meme.nbcr.net) and its mirror sites [151]. The same web server

also allows access to motif alignment and search tool to search

sequence databases for matches to motifs. To successfully discover

motifs with MEME, it is necessary to choose and prepare the input

sequences carefully. Ideally, the sequences should be ,1000 base

pairs long [152]. In our analysis, sequences of 10 data sets in

FASTA format were submitted group wise in MEME program

Version 4.0.0 (http://meme.nbcr.net/meme4/cgi-bin/meme.cgi).

In order to obtain maximum number of motifs in our sequences,

we modified default settings from 3 motifs to 10 motifs. MEME

search stops when this number of motifs has been found, or when

none can be found with E-value less than 10000 (http://meme.

nbcr.net/meme4/meme-input.html#width). We used default

setting zero or one motif per sequence to get the occurrence of

single motif which is distributed among the sequences. The default

value of motif widths, set between 6 (minimum) and 50 (maximum)

were modified and re-set between 25 and 30, respectively. Each of

the 10 signatures (25 to 30 nucleotides long) (Table S2) was

checked for its frequency of occurrence among all the sequences of

a particular Bacillus sp. and the ones with highest frequency and

did not appear in other Bacillus spp. were considered as unique to

this species. These unique motifs were used as query sequence to

BLAST against the sequenced microbial genomes available in

NCBI database (http://www.ncbi.nlm.nih.gov/), to validate the

results.

Restriction Enzyme Analysis
A total of 14 Type II Restriction enzymes (Table 3) were

considered for these analyses. The criteria for selecting type II RE

are independence of methylase and occurrence of cleavage(s) at

very specific sites that are within or close to the recognition

sequence.

All the 10 Bacillus species considered were checked for all the 14

Type II RE using the online software: Restriction Mapper Version

3 (http://restrictionmapper.org/index.htm). Sequences (one at a

time) were entered in the restriction mapper site, results obtained

were analyzed and consensus pattern was determined for each

species depending upon its frequency of occurrence in the

sequences. Ten known Bacillus spp. and 11 clusters belonging to

Bacillus sp. were used as data sets. For B. megaterium, B. sphaericus, B.

clausii, B. halodurans all the sequences were analysed and for B.

cereus, B. anthracis, B. licheniformis, B. thuringiensis, B. pumilus 30

sequences were taken into consideration but for B. subtilis since no

conclusive pattern could be made using 30 sequences, so 150

sequences were taken. The patterns developed for each Bacillus

species were considered as a representative for that specific species.

Identifying Bacillus Species
The reference set of 34 sequences has been used to segregate

unclassified Bacillus species. A total of 1025 16S rDNA sequences

from Bacillus sp. were screened at the rate of 52 Bacillus species

Figure 7. Phylogenetic tree of 34 framework sequences (bold values) and 31 Bacillus sp., which could be designated as B. clausii
(Figures S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 to S32 and Table S1).
A neighbor-joining analysis with Jukes-Cantor correction and bootstrap support was performed on the gene sequences. Bootstrap values are given at
nodes, 1000 bootstrap replicates were run. Values in parentheses are accession numbers (http://rdp.cme.msu.edu/).
doi:10.1371/journal.pone.0004438.g007
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with 34 reference sequences by generating 22 phylogenetic trees

(Figures S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21,

S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32). In each of

the phylogenetic tree, bootstrap percentage values that showed a

stability of at least 80% were considered. These Bacillus species

were then taken to reconstruct final phylogenetic tree with their

respective species. These strains were also checked for the Bacillus

specifies-specific signatures (similarly as done for 10 data sets) and

restriction enzyme analysis as benchmark for concluding that the

strain belonged to the specific Bacillus species.

Clusters/Potential Novel Lineages
In addition to the identification of some Bacillus spp. up to

species level, [366 sequences were aligned {according to clusters

made in 22 trees of Bacillus sp.} and 52 representatives were

chosen and a phylogenetic tree was made] 335 isolates were found

to cluster in to 11 groups {44 representatives out of 52} (Figure 8).

These 11 clusters consisting of 18 to 50 isolates each did not

appear to fall within any of the aligned species and so may

represent sub-species or novel lineages. These were also checked

for signatures identified through MEME program to reveal that if

there are certain similarities. Each of the 11 clusters was also

checked for the 14 type II restriction enzyme digestion. The

pattern so obtained was checked against those of the representative

Bacillus species for a match so that a conclusion could be drawn

that these might belong to some Bacillus species.

Supporting Information

Table S1 Accession numbers of 16S rDNA sequences of Bacillus

sp. identified up to species

Found at: doi:10.1371/journal.pone.0004438.s001 (0.05 MB

DOC)

Table S2 Signatures of Bacillus species obtained through

MEME software (http://meme.sdsc.edu/meme/meme.html)

Table 2. Characteristics of unique nucleotide signatures for 16S rDNA sequences of different Bacillus spp. and clusters of Bacillus sp.

Bacillus spp./Clustera Signature Length (nts)b Frequencyc

Bacillus cereus AAAGTGGAATTCCATGTGTAGCGGTGAAAT 30 151/211

B. thuringiensis ATAACATTTTGAACTGCATGGTTCGAAATT
CTTTAGTGCTGAAGTTAACGCATTAAGCA

30
29

43/108
63/108

B. anthracis No unique signature was detectable 0/153

B. clausii AATCCCATAAAGCCATTCTCAGTTCGGATT
AAATGATTGGGGTGAAGTCGTAACAAGGTA
AAACCGGAGCTAATACCGGATAATCCCTTT
GCATTAGCTAGTTGGTAAGGTAACGGCTTA
GTAGTGCCGAAGTTAACACATTAAGCACT

30
30
30
30
29

14/39
31/39
14/39
15/39
23/39

B. halodurans ATAATAAAAAGAACTGCATGGTTCTTTTTT
ACCAAAGGGAGCTTGCTCCTAGAGGTTAGC

30
30

21/36
01/36

B. pumilus AAGGTTTAGCCAATCCCACAAATCTGTTCT
AAGGTTTAGCCAATCCCATAAATCTGTTCT
ATAGTTCCTTGAACCGCATGGTTCAAGGAT

30
30
30

14/83
36/83
42/83

B. megaterium ATGATTGAAAGATGGTTTCGGCTATCACTT
AATCCCATAAAACCATTCTCAGTTCGGATT
AACTGATTAGAAGCTTGCTTCTATGACGTT
TCTTGACATCCTCTGACAACTCTAGAGATA
TGGGATAACTTCGGGAAACCGAAGCTAATA

30
30
30
30
30

36/47
19/47
28/47
33/47
34/47

B. sphaericus TAAAACTCTGTTGTAAGGGAAGAACAAGTA
ATAGTGGAATTCCAAGTGTAGCGGTGAAAT
TAATCCGATAAAGTCGTTCTCAGTTCGGAT
AGTAACACGTGGGCAACCTACCTTATAGTT
TAACTGGCTGTACCTTGACGGTACCTTATT

30
30
30
30
30

23/42
14/42
23/42
10/42
27/42

B. subtilis No unique signature was detectable 0/211

B. licheniformis No unique signature was detectable 0/131

Bacillus sp. Cluster 1 TAAAACTCTGTTGTAAGGGAAGAACAAGTA
AATCCCATAAAACCGTTCCCAGTTCGGAT

30
29

19/46
05/46

Bacillus sp. Cluster 5 AATCCCATAAATCTATTCTCAGTTCGGATT 30 05/32

Bacillus sp. Cluster 6 AAGCAAATCCCATAAAACCATTCTCAGT
TCAAGCAAATCCCATAAAACCATTCTCAGT

28
30

09/23
07/23

Bacillus sp. Cluster 7 ATAACTCATTTCCTCGCATGAGGAAATGTT 30 10/37

Bacillus sp. Cluster 9 AATCCCATAAAACCACTCTCAGTTCGGATT 30 01/25

Bacillus sp. Cluster 10 AATCCCACAAAACCGTTCCCAGTTCGGATT 30 03/25

Bacillus sp. Cluster 11 TAAACGATGAGTGCTAAGTGTTAGAGGGGT
GTCGTAAAGCTCTGTTGTGAGGGACGAAGG

30
30

23/50
25/50

aCluster represent isolates defined only up to genus level Bacillus sp.
bnucleotides.
cFrequency of occurrence of the signature out of the total sequences screened.
Out of 11 Clusters, no unique signatures were detectable in Clusters 2, 3, 4 and 8.
doi:10.1371/journal.pone.0004438.t002
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Figure 8. Phylogenetic tree of 52 representative sequences (appeared as 52 clusters {equivalent to 366 sequences} in Figures S11,
S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 to S32). These 52 representative
sequences were observed to segregate in 11 clusters: cluster 1 to cluster 11. A neighbor-joining analysis with Jukes-Cantor correction and bootstrap
support was performed on the gene sequences. Bootstrap values are given at nodes, 1000 bootstrap replicates were run. Accession numbers of the
representative sequences are given and values in parentheses against these are equal to the number of sequences in that group within each cluster
(http://rdp.cme.msu.edu/).
doi:10.1371/journal.pone.0004438.g008
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Found at: doi:10.1371/journal.pone.0004438.s002 (0.10 MB

DOC)

Table S3 Characteristics of nucleotide signatures for 16S rDNA

gene of clusters of Bacillus sp.

Found at: doi:10.1371/journal.pone.0004438.s003 (0.05 MB

DOC)

Table S4 Occurrence of restriction endonuclease digestion sites

in 16S rDNA sequence(s) of Bacillus spp. and clusters of Bacillus

sp. with low frequency or limited RE sites.

Found at: doi:10.1371/journal.pone.0004438.s004 (0.03 MB

DOC)

Table S5 List of Bacillus species available at http://rdp.cme.

msu.edu/.

Found at: doi:10.1371/journal.pone.0004438.s005 (0.19 MB

DOC)

Figure S1 Phylogenetic tree based on 153, 16S rRNA gene

sequences of Bacillus anthracis. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Bold

sequences are the ones considered as framework in the study.

Values in parentheses are accession numbers (http://rdp.cme.

msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s006 (7.75 MB TIF)

Figure S2 Phylogenetic tree based on 211, 16S rRNA gene

sequences of Bacillus cereus. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Bold

sequences are the ones considered as framework in the study.

Values in parentheses are accession numbers (http://rdp.cme.

msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s007 (2.16 MB TIF)

Figure S3 Phylogenetic tree based on 108, 16S rRNA gene

sequences of Bacillus thuringiensis. A neighbor-joining analysis

with Jukes-Cantor correction and bootstrap support was per-

formed on the gene sequences. Bootstrap values are given at

nodes. Bold sequences are the ones considered as framework in the

study. Values in parentheses are accession numbers (http://rdp.

cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s008 (1.52 MB TIF)

Figure S4 Phylogenetic tree based on 271, 16S rRNA gene

sequences of Bacillus subtilis. A neighbor-joining analysis with Jukes-

Cantor correction and bootstrap support was performed on the gene

sequences. Bootstrap values are given at nodes. Bold sequences are

the ones considered as framework in the study. Values in parentheses

are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s009 (10.12 MB

TIF)

Figure S5 Phylogenetic tree based on 131, 16S rRNA gene

sequences of Bacillus licheniformis. A neighbor-joining analysis

with Jukes-Cantor correction and bootstrap support was per-

formed on the gene sequences. Bootstrap values are given at

nodes. Bold sequences are the ones considered as framework in the

study. Values in parentheses are accession numbers (http://rdp.

cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s010 (1.63 MB TIF)

Figure S6 Phylogenetic tree based on 83, 16S rRNA gene

sequences of Bacillus pumilus. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Bold

sequences are the ones considered as framework in the study.

Values in parentheses are accession numbers (http://rdp.cme.

msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s011 (7.14 MB TIF)

Figure S7 Phylogenetic tree based on 42, 16S rRNA gene

sequences of Bacillus sphaericus. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Bold

sequences are the ones considered as framework in the study.

Values in parentheses are accession numbers (http://rdp.cme.

msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s012 (0.75 MB TIF)

Figure S8 Phylogenetic tree based on 36, 16S rRNA gene

sequences of Bacillus halodurans. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Bold

sequences are the ones considered as framework in the study.

Values in parentheses are accession numbers (http://rdp.cme.

msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s013 (0.87 MB TIF)

Figure S9 Phylogenetic tree based on 39, 16S rRNA gene

sequences of Bacillus clausii. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Bold

sequences are the ones considered as framework in the study. Values

in parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s014 (0.89 MB TIF)

Figure S10 Phylogenetic tree based on 47, 16S rRNA gene

sequences of Bacillus megaterium. A neighbor-joining analysis

with Jukes-Cantor correction and bootstrap support was per-

formed on the gene sequences. Bootstrap values are given at

nodes. Bold sequences are the ones considered as framework in the

study. Values in parentheses are accession numbers (http://rdp.

cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s015 (0.88 MB TIF)

Figure S11 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

Table 3. Restriction enzyme (Type II) used in the study with
their cut sites (rebase.neb.com/rebase/rebase.html).

S. No. Restriction Enzyme Cut site

1. AluI AGQCT

2. BamHI GQGATCC

3. BfaI CQTAG

4. DpnII QGATC

5. EcoRI GQAATTC

6. HaeIII GGQCC

7. HindIII AQAGCTT

8. NotI GCQGGCCGC

9. NruI TCGQCGA

10. RsaI GTQAC

11. SacI GAGCTQC

12. SmaI CCCQGGG

13. Tru9I TQTAA

14. PstI CTGCAQG

doi:10.1371/journal.pone.0004438.t003
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{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10

known Bacillus spp. used in the study. A neighbor-joining analysis

with Jukes-Cantor correction and bootstrap support was per-

formed on the gene sequences. Bootstrap values are given at

nodes. Values in parentheses are accession numbers (http://rdp.

cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s016 (3.62 MB TIF)

Figure S12 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s017 (0.74 MB TIF)

Figure S13 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s018 (0.37 MB TIF)

Figure S14 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

Table 4. Closest matches of Clusters of Bacillus sp. with known Bacillus sp. on the basis of restriction enzyme pattern analysis.

Bacillus sp. Restriction enzyme No. of Best matches

BfaI DpnII RsaI Tru9I AluI HaeIII Bacillus spp. Uniquea

Cluster 1
(22)b

B. sphaericus unique B. licheniformis
B. subtilis

B. licheniformis unique B. sphaericus
B. halodurans

4 2

Cluster 2
(12)

B. halodurans B. clausii B. megaterium unique unique Unique 3 3

Cluster 3
(18)

B. halodurans unique B. megaterium B. halodurans
B. clausii

unique Unique 3 3

Cluster 4
(22)

B. megaterium unique B. anthracis
B. cereus
B. thuringiensis

B. licheniformis
B. megaterium
B. licheniformis

unique B. sphaericus
B. halodurans
B. megaterium

7 2

Cluster 5
(32)

B. megaterium unique B. sphaericus
B. licheniformis

B. licheniformis
B. megaterium
B. sphaericus

B. megaterium
unique

Unique 3 3

Cluster 6 (7) Unique unique B. megaterium
B. clausii

unique unique Unique 2 5

Cluster 7
(37)

B. subtilis
B. megaterium

unique B. anthracis
B. cereus
B. thuringiensis

B. licheniformis
B. megaterium
B. sphaericus

unique B. licheniformis
B. subtilis
B. pumilus

8 2

Cluster 8
(28)

B. pumilus
B. megaterium
B. licheniformis
B. subtilis

B. sphaericus B. megaterium B. licheniformis
B. megaterium
B. sphaericus

unique Unique 5 2

Cluster 9
(25)

B. licheniformis
B. pumilus
B. megaterium

B. sphaericus B. megaterium
B. clausii

B. licheniformis
B. megaterium
B. sphaericus

unique unique 5 2

Cluster 10
(25)

B. sphaericus unique unique B. licheniformis
B. sphaericus
B. megaterium

unique unique 3 4

Cluster 11 All were designatedc

aDid not match with any of the known RE patterns of the Bacillus sp. used in this study.
bNumber of 16S rDNA sequences of Bacillus sp.
cCluster 11 constituted of members of known species such as: Anoxybacillus and Geobacillus.
doi:10.1371/journal.pone.0004438.t004

Figure 9. Nucleotide fragments generated as a result of in silico restriction enzyme (a). RsaI (b). HaeIII (c). AluI (d). BfaI (e). Tru9I (f). DpnII,
action on 16S rDNA gene sequences in 10 Bacillus spp. and 11 clusters (Figure 8). A solid black box represents the restriction enzyme cut site. At the
terminal points, solid black box are shown only if highly variable fragments are observed beyond this cut site.
doi:10.1371/journal.pone.0004438.g009

Figure 10. Bacillus species showing distinct patterns with
different restriction enzymes.
doi:10.1371/journal.pone.0004438.g010
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{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s019 (0.26 MB TIF)

Figure S15 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s020 (0.28 MB TIF)

Figure S16 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s021 (0.29 MB TIF)

Figure S17 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s022 (0.22 MB TIF)

Figure S18 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s023 (0.25 MB TIF)

Figure S19 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s024 (0.67 MB TIF)

Figure S20 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s025 (0.26 MB TIF)

Figure S21 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s026 (0.25 MB TIF)

Figure S22 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Table 5. Accession numbers of 16S rDNA sequences of Bacillus species used for generating phylogenetic framework (http://rdp
cme.msu.edu/).

Organism Reference sequence(s)

Bacillus thuringiensis DQ286308(T)a, DQ286339, DQ328630, AE017355, DQ286329

B. anthracisb AB190218, AE017334, AE017225

B. cereusb DQ372919, DQ289988

B. subtilis AB042061(T), DQ420172, AY995569, DQ504376, AY583216, AY881635, AY631853

B. licheniformis AB039328(T), CP000002, AF234855

B. pumilus AY260861(T), AY876289, DQ523500

B. megaterium AJ717381(T), AY373358, AY505510, AY373360

B. sphaericus AJ310084(T), DQ286309

B. clausii X76440(T), AB201793, AY960116

B. halodurans AY423275(T), AY856452

Total 34 strains

aType strain.
bFor B. cereus group only one type strain was used.
doi:10.1371/journal.pone.0004438.t005
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Found at: doi:10.1371/journal.pone.0004438.s027 (0.24 MB TIF)

Figure S23 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s028 (0.24 MB TIF)

Figure S24 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s029 (0.25 MB TIF)

Figure S25 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s030 (0.25 MB TIF)

Figure S26 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s031 (0.26 MB TIF)

Figure S27 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s032 (0.21 MB TIF)

Figure S28 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10

known Bacillus spp. used in the study. A neighbor-joining analysis

with Jukes-Cantor correction and bootstrap support was per-

formed on the gene sequences. Bootstrap values are given at

nodes. Values in parentheses are accession numbers (http://rdp.

cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s033 (0.21 MB TIF)

Figure S29 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s034 (0.63 MB TIF)

Figure S30 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s035 (0.26 MB TIF)

Figure S31 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s036 (0.22 MB TIF)

Figure S32 Phylogenetic tree of 34 framework sequences (bold

values) and Bacillus sp. at the rate of 52 sequences (1–1136

{including 1025 Bacillus sp. and rest other species to add

authenticity to the results}) which could be designated as 10 known

Bacillus spp. used in the study. A neighbor-joining analysis with

Jukes-Cantor correction and bootstrap support was performed on

the gene sequences. Bootstrap values are given at nodes. Values in

parentheses are accession numbers (http://rdp.cme.msu.edu/).

Found at: doi:10.1371/journal.pone.0004438.s037 (0.73 MB TIF)
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