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Collective phenomena in animal groups have attracted much attention in the last
years, becoming one of the hottest topics in ethology. There are various reasons
for this. On the one hand, animal grouping provides a paradigmatic example of
self-organization, where collective behavior emerges in absence of centralized
control. The mechanism of group formation, where local rules for the individuals
lead to a coherent global state, is very general and transcends the detailed nature
of its components. In this respect, collective animal behavior is a subject of
great interdisciplinary interest. On the other hand, there are several important
issues related to the biological function of grouping and its evolutionary success.
Research in this field boasts a number of theoretical models, but much less
empirical results to compare with. For this reason, even if the general
mechanisms through which self-organization is achieved are qualitatively well
understood, a quantitative test of the models assumptions is still lacking. New
analysis on large groups, which require sophisticated technological procedures,
can provide the necessary empirical data. [DOI: 10.2976/1.2961038]
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Collective behavior in animal
groups is a widespread phenomenon in
biological systems, at very different
scales and levels of complexity. Bird
flocks gathering over the roost at dusk
(Emlen, 1952), fish schools milling un-
der water (Radakov, 1973; Pitcher,
1983), swarms of insects (Kennedy,
1951), trails of foraging ants (Wilson,
1971), herds of mammals (Sinclair,
1977), are only a few examples of
collective behavior, which are familiar
to many of us. Collective behavior is
not only observed in social insects,
like ants or honey bees, which are ge-
netically related and cooperate within
the colony, but also in aggregations
of unrelated “selfish” individuals, like
fish or birds. In many cases cohesive
groups are formed, which act as a
whole with remarkable coordination
and adaptability, and are sustained
spontaneously by the mutual attraction
of members.

In all previous examples collec-
tive behavior emerges in absence of
centralized control: individual mem-
bers act on the basis of some limited
local information—coming from inter-
action with neighbors or chemicals
deposition—and this information flows
through the system producing collec-
tive patterns. The example of flocking
birds is paradigmatic: each individual
bird flies in the same direction as its
neighbors, and this local tendency
gives rise to a coherent moving flock.
This mechanism, which produces
global patterns from local rules, is
known as self-organization (Nicolis
and Prigogine, 1977; Camazine et al.,
2001; Sumpter, 2006; Garnier et al.,
2007).

From a more general perspec-
tive, collective behavior and self-
organization are key concepts in many
different areas of science, including
physics (Haken, 1983), economics and
finance (Cont and Bouchaud, 2000),
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social sciences (Helbing et al., 2000; Helbing, 2001), control
theory (Jadbabaie et al., 2003), and mobile robotics (Cao
et al., 1997). In physics, for example, ordering phenomena
and phase transitions have dominated theoretical and experi-
mental research in the last 50 years. In this context, the origin
and emergence of collective behavior have been understood
in great detail, and this is why physics is often regarded as an
inspiration source for interpreting and modeling collective
phenomena in other fields. There are at least two main facts,
which occur in physical systems and may be relevant to other
disciplines: (i) A system of individual units (particles, mag-
netic moments, etc.) that interact locally in space can gener-
ate, under appropriate conditions, an ordered state with col-
lective global properties. (ii) The mechanisms leading to
collective behavior are very general; for example, the large-
scale features of many order-disorder transitions do not de-
pend on the details of the local interaction but only on some
general characteristics of the system (such as the dimension-
ality of the space or the nature of the variable describing
order)—what is known as universality (Cardy 1996). These
two properties, locality of the interactions and universality,
have been thoroughly proven in physics. Still, they provide a
broader paradigm also in other fields. It is nowadays a well-
accepted idea in biology that aggregations of individuals
subject only to local behavioral rules can self-organize into
complex coherent groups, as in physical systems. The issue
of generality is subtler. Whether self-organization represents
an exhaustive principle also in biological systems is an open
question (Sumpter, 2006). The individual units are in this
case much more complex than particles, endowed with cog-
nitive abilities and diversified from species to species. It is
reasonable that the individual complexity is redundant and
only a few characteristics are necessary to explain group for-
mation (Camazine et al., 2001). Still, at some point, the
specificities of the individual may become crucial. There is
no a priori criterion to decide what is relevant and what is
not; this often depends on the precise question to be ad-
dressed and on the scale at which the collective phenomenon
is observed. The problem of the “relevant detail” is a non-
trivial one (Levin, 1991) and the analogy with physics is
clearly limited in this respect.

Investigating collective behavior in biological systems
is therefore a complicated task. What may appear a satis-
factory and general explanation at a qualitative level is
not always consistent with a quantitative analysis of em-
pirical data, when differences among species become evi-
dent. A continuous feedback between empirical observations
and modeling is thus indispensable to understand the origin
of collective phenomena and appropriately characterize
them.

Many successful analyses of self-organized systems
have been performed to date. Still, comparison between
models and experiments needs to be improved. For three-
dimensional (3D) animal groups, like birds or fish, empirical

data have been scarce and limited to small systems until re-
cently. This has restrained the possibility of a reliable statis-
tical analysis of empirical data and a comparison with the
predictions of the models.

In this review I will describe some of the models devel-
oped to address collective behavior in animal groups, and
several empirical studies performed on gregarious and social
animals, both in the laboratory and in the field. Given the
limited space, my aim is not to give an exhaustive overview
of existing research on animal groups (for this, the reader is
referred to Parrish and Hammer, 1997; Camazine et al.,
2001; Krause and Ruxton, 2002; Couzin and Krause, 2003).
Rather, I will focus on a few examples, especially in animal
groups in 3D, and outline some methodological and concep-
tual issues particularly relevant for future perspectives in this
field. In particular, I will:

• Summarize how models and empirical findings have
improved our understanding of animal collective be-
havior so far.

• Underline the importance of gathering large sets of
empirical data to test and further improve theoretical
models.

• Illustrate the benefits of an interdisciplinary approach
to collective behavior, and how concepts and tech-
niques developed for physical systems can be useful to
address biological groups.

• Go beyond the physics paradigm and discuss the bio-
logical aspects of collective behavior.

THEORETICAL MODELS
Models of self-organized collective behavior can be of dif-
ferent types, according to (i) the scale, in space and time, at
which the collective phenomenon is analyzed; (ii) the kind of
local information individuals use to aggregate (direct re-
sponse to other individuals or indirect cues); (iii) the math-
ematical complexity.

Agent-based flocking models
Agent-based models of animal grouping assume behavioral
rules at the level of the individual. An evolution equation
is specified for each agent in the system, and its micro-
scopic dynamics described in terms of the social forces
acting upon it. They are generally used to investigate systems
like schools, flocks, and swarms, where the force experi-
enced by an individual is due to neighbors directly inter-
acting with it (see, however, Camazine et al., 2001, for other
kinds of models based on probabilities and the cellular
automaton).

Agent-based models were originally developed for fish
schools (Aoki, 1982; Okubo, 1986; Huth and Wissel, 1992)
and bird flocks (Reynolds, 1987; Heppner and Grenander,
1990), and were eventually applied to mammal herds
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(Gueron et al., 1996) and other vertebrate groups (Couzin
and Krause, 2003). In these systems cohesive and polarized
groups are formed, which exhibit remarkable coordination
and adaptability. Collective behavior results from three
simple and general behavioral rules followed by individuals:
move in the same direction as your neighbors; remain close
to them; avoid collisions. These rules are modeled using
three distinct contributions to the inter-individual interac-
tions: (i) alignment of velocities, which makes neighboring
birds fly in the same direction; (ii) attraction, which ensures
no bird remains isolated; (iii) short-range repulsion, which
prevents dangerous proximity. At group level, these three
components should grant the directional polarity (alignment)
and cohesion of the aggregation (attraction), preserving indi-
vidual integrity (short-range repulsion).

The precise ways the rules are implemented differ from
model to model, depending on the target biological system
and on the modeler’s opinion as to which are the most rea-
sonable behavioral assumptions. In general, the model speci-
fies an equation for the update of the individual velocities. If

d� i is the direction of motion of agent i then its update equa-
tion typically looks like:

d� i�t + 1� =
1

nin
�
j=1

nin

wjd� j�t�
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nin
�
j=1

nin

fij
r�ij�t�
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+ �� i�t�
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,

where r�ij indicates the distance vector from agent i to agent j,
and �� i is a stochastic noise modeling the uncertainty of the
decision-making process. The first term on the right hand
side of this equation, alignment, is usually the average over
the directions of motion of the nin interacting neighbors
(simple or, more generally, with weights wj). The second
term represents the positional response to neighbors, the
“forces” fij specifying how agent i is attracted/repelled by
agent j. At short distances it gives a negative increment in
heading away from too close neighbors; at larger scales,
instead, the increment is positive and towards the average
position of neighbors. Most models assume that the inter-
acting neighbors are those within a given region in space
around the focal individual. Some models specify behavioral
zones of different spatial extent where alignment, attrac-
tion, and repulsion occur (Aoki, 1982; Reynolds, 1987; Huth
and Wissel, 1992; Couzin et al., 2002)—see Fig. 1. Some
others assume a functional dependence of the forces fij due
to neighbors on distance (Warburton and Lazarus, 1991;

Figure 1. Behavioral rules in numerical models. �a� Many models assume discrete behavioral zones in space where the three con-
tributions, alignment, repulsion and attraction, take place. �b� Attraction/repulsion force �fij in the text� as a function of the mutual dis-
tance between individuals. Upper panel: in models that assume behavioral zones the force is negative for distances smaller than the re-
pulsion range r0, it is zero in the region where alignment takes place �r0� r� r1�, and it is positive within the attraction zone. Lower panel:
a schematic representation of a typical force function, repulsive at short range and attractive at larger distances. The equilibrium value
where the force is zero �marked with a red dot� determines the average nearest-neighbor distance between individuals and therefore it
fixes the density of the aggregation. The force decays to zero at large distances: the decay range plays the same role as the size of the
attraction zone.

P E R S P E C T I V E

HFSP Journal Vol. 2, August 2008 207



Vicsek et al., 1995; Gregoire et al., 2003; Mogilner et al.,
2003), the decay scale of this function defining the average
region where inter-individual interactions take place (Fig. 1).
In all these cases the models have an intrinsic metric nature,
since what matters is the distance between an individual and
other members of the group.

Agent-based models cannot be solved exactly, since the
number of individuals is large and the resulting set of
coupled dynamical equations formally untreatable. Rather,
they are easily implemented using numerical simulations.
The main result that these models provide us with is a gen-
eral one: local rules can indeed produce collective behavior,
with an appropriate choice of parameters. This is an explicit
demonstration of self-organization, which may seems obvi-
ous nowadays, but was less so in the past. More detailed pre-
dictions concern both global features, like the shape and dy-
namics of the group, its average velocity and polarization
(degree of alignment between the individual velocities); and
structural properties, such as, for example, the distribution of
nearest-neighbor distances and mutual orientations, or den-
sity variations through the group. Predictions may differ at a
qualitative or quantitative level when different rules are used.
Modellers explored several kinds of behavioral assumptions,
by varying the parameters entering the model, or the vari-
ables determining the interaction strength (Parrish, Viscido,
and Grunbaum, 2002; Couzin and Krause, 2003). For ex-
ample, the interaction between two individuals can depend
on their distance or also on their mutual orientation, to take
into account the blind volume often present in the field of
perception. Many authors investigated how neighbor prefer-
ences (in angle or distance) can influence collective behavior
(see, e.g., Huth and Wissel, 1992). In Couzin et al. (2002) the
relative extension of the behavioral zones was tuned to ob-
tain in 3D qualitatively different groups in terms of shape,
packing, and degree of alignment [see Fig. 2(c)]: from
swarm-like aggregations (cohesion and low polarization), to
toroidal milling groups (high polarization and global angular
momentum), and coherent dynamic groups (cohesion, high
polarization and low momentum). The effect of the relative
strength of the interaction terms was analyzed in Viscido,
Parrish, and Grunbaum (2004) and in several cohesion mod-
els (see, for example, the morphological and stability analy-
sis of Warburton and Lazarus, 1991; Mogilner et al., 2003;
D’Orsogna et al., 2006). Heterogeneities in the behavioral
rules were investigated in several papers, by assuming for
each individual different speeds, noise, turning rate (Romey,
1996; Couzin et al., 2002), zones extensions (Couzin et al.,
2002) and body size (Hemelrijk and Kunz, 2005). These
analyses showed that differences among individuals influ-
ence the positions occupied within a group (self-sorting) and
determine group stratification, shape, and trajectory.

The final aim of all these attempts is to find the appropri-
ate model to describe specific animal groups and, at the same

time, unveil the microscopic origin of their aggregation. In
this respect, comparison with empirical data has a prominent
role, as I will discuss.

The perspective of agent-based models is that behavior at
the global scale can be understood in terms of the statistical
aggregate behavior of individual units. From this point of
view, the approach is the same as statistical mechanics for
physical systems, the theory that derives the macroscopic be-
havior of materials from the microscopic behavior of their
components. This analogy has stimulated physicists to de-
velop their own models of self-organized motion (Vicsek
et al., 1995; Czirok et al., 1996; Gregoire et al., 2003;
Gregoire and Chate, 2004). These models are simpler than
those developed by biologists, and the very questions they
wish to address are more conceptual and less related to real
biological instances. Their aim is to build the “minimal”
setup necessary to produce a cohesive moving group. Only
the ingredients that are thought to be indispensable to
achieve grouping are considered, and in the simplest possible
form. In this way the number of parameters is kept to a mini-
mum and their whole space can be exhaustively investigated.
For example, in their model of Self-Propelled Particles
(SPP), Vicsek et al. considered only alignment without at-
traction in the microscopic rules and assumed velocities to
be constant in modulus. They showed with numerical simu-
lations in two dimensions (2D) that, in a confined space, this
is sufficient to produce polarized flocks. They also investi-
gated the transition from disordered aggregations to ordered
groups, as the noise strength or the number of individuals
is varied [Figs. 2(a) and 2(b)]. Jadbabaie et al. (2003)
provided us with a theoretical explanation for this behavior,
demonstrating that flocking is achieved as long as the
network of agent interactions remains connected in time
(Tanner et al., 2007). In the Vicsek model this condition is
realized when the density of particles/agents is sufficiently
large, so that each individual remains within the interaction
range of its neighbors. However, when the available space
becomes large enough, dynamical fluctuations can drive in-
dividual agents too far and cohesion is lost: attraction be-
tween individuals must be introduced to ensure cohesion in
open space (Gregoire et al., 2003). The presence of posi-
tional forces (attraction and repulsion) complementing the
orientational component (alignment of velocities), gives rise
to a nontrivial phase diagram in terms of the structure of the
aggregation, where the group can be more or less ordered in
space according to the relative strength of the two contribu-
tions [Fig. 2(d)].

Models of self-organized motion have been extensively
studied in 2D. Many animal groups live, however, in three
dimensions, so that it became progressively more important
to extend and generalize numerical simulations also in 3D.
This has been done recently (Couzin et al., 2002; Chaté
et al., 2008; Gönci et al., 2008; Hemelrijk and Hildenbrandt,
2008) showing that many of the qualitative results obtained
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in 2D also hold in 3D. Achieving cohesion and synchroniza-
tion becomes more difficult, though, as the space dimension
is larger.

Finally, we note that in existing models birds interact in
pairs, trying to mutually align. When looking at the force ex-
perienced by one single bird, this comes from all the interact-
ing pairs to which it belongs (i.e., the pairs with its interact-
ing neighbors j=1, . . .nin—see equation above). Whether
multiple simultaneous interactions are relevant is an open
question for future research.

From micro to macro: Eulerian models

Eulerian models represent a complementary approach to
agent-based models. They work at a coarse-grained level: in-
stead of describing the dynamical evolution of each indi-
vidual, space is represented as a lattice and the number of
individuals inside each cell is followed in time. The relevant
variables become in this case the number of individuals
n�x� , t� in a cell located at position x� of the lattice at time t (or,
alternatively, the density n�x� , t� /Vcell), and the average veloc-
ity v��x� , t� possessed by individuals in that cell. When the con-

Figure 2. Transition from disorganized to organized collective motion as a function of the model parameters. The quantity used to
pinpoint the transition is the polarization, or global alignment, defined as the modulus of the average normalized velocity of the group
1 / N ��i=1

N v� i�. In the Vicsek model only alignment is considered and the only two relevant parameters are the noise strength and density, defined
as the number of individuals N divided by the whole volume of the simulation box. �a� Polarization as a function of the noise strength: for low
noise a coherent moving group �large polarization� is present. �b� Polarization as a function of density: increasing density triggers the
transition to collective motion. Reprinted figures from Vicsek T et al., Phys. Rev. Lett. 75, 1226 �1995�. Copyright 1995 by the American
Physical Society. Reprinted with permission of the American Physical Society. �c� Change in polarization as the size of the zone of alignment
is increased �bold line� or decreased �dotted line�. Reprinted from Couzin ID et al., “Collective memory and spatial sorting in animal groups,”
Journal of Theoretical Biology 218, pp. 1–11. Copyright 2002, with permission from Elsevier. In this model the authors consider three distinct
behavioral zones for repulsion, attraction, and alignment, plus a blind volume behind the focal individual. Only for large enough values of the
alignment zone can the collective state be achieved. The degree of alignment depends on the increase/decrease protocol used �hysteresis�,
which is typical of first order transitions. �d� Transition from a dispersed gas-like aggregation to a cohesive group in the model of Gregoire
et al. �2003�, where attraction/repulsion forces are used together with alignment of velocities. The figure shows the relative size of the largest
cohesive cluster �number of individuals belonging to the cluster divided by total number of individuals� as a function of the strength of the
attraction/repulsion force. Reprinted from Gregoire G et al., “Moving and staying together without a leader,” Physica D 181, pp. 157–170.
Copyright 2003, with permission from Elsevier.
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tinuum limit is considered (in space and time) this approach
leads to convection-diffusion equations for the population
density (Okubo, 1980), much in the same way hydrodynamic
equations can be derived for fluids. From a conceptual point
of view, how to perform this limit is a delicate task, if one
wants to keep track of the peculiar way individuals take their
decisions by exploiting local cues, for example by averaging
over their neighborhood (Grünbaum, 1994; Durrett and
Levin, 1994). Alternatively, partial differential equations for
the population density can be written heuristically, by includ-
ing all the relevant diffusion, convection, and interaction
terms.

Whether adopting agent-based (sometimes called
Lagrangean) or Eulerian models depends on the system stud-
ied, on the question addressed, and on the scale of interest
(Flierl et al., 1999). Dealing with coarse-grained variables
(the cell population and average velocity), Eulerian models
implicitly assume that a group is already formed, with a large
enough number of members to make the coarse graining
meaningful. Besides, they cannot address those features that
occur on scales smaller than the cell size, and on times
shorter than the time needed for information to propagate
outside the cell. In this respect, agent-based models are more
appropriate to investigate the mechanisms of decision mak-
ing and group formation, and how behavioral attitudes trans-
late into global features. Eulerian models are prominently
used to describe the population evolution on long time scales
and to study patterns that develop at large spatial scales (as
compared to the interaction range) like the formation of
patches and the propagation of density waves through the
aggregation (Flierl et al., 1999). For example, the exis-
tence of traveling band solutions is analyzed in Mogilner
and Edelstein-Keshet, 1999, using continuum advection-
diffusion equations for swarming behavior. Propagating den-
sity waves are also found in Toner and Tu, 1998, where a
continuum model for self-propelled particles is introduced.
Here, the authors formulate hydrodynamic equations for the
coarse-grained density and velocity of birds, very close in
spirit to the Navier–Stokes equations for fluids. The model is
then analyzed with techniques developed for nonequilibrium
dynamical systems in condensed matter physics (e.g., scal-
ing, the renormalization group), and quantitative predictions
computed for the long-distance, long-time behavior of den-
sity and velocity correlation functions. Similar hydrody-
namic equations can be derived from Viscek-like individual
rules starting from the Boltzmann equation (Bertin et al.,
2006).

Phenomenological models
Eulerian models deal with populations; still they retain
much of the complexity of agent-based models, fully ac-
counting for correlations between individuals at several
length scales. These correlations derive from the local inter-
actions between individuals and represent one of the most

striking features of animal groups like flocks, swarms, and
schools. As a counterpart, even if a large literature exists
both in biology and physics, the analysis of these models is
far from trivial.

Sometimes the collective behavior to be explained and
the questions to be answered can be addressed within a sim-
pler mathematical formulation. A paradigmatic case is when
individuals interact indirectly via chemical cues: the number
of individuals performing a certain task depends on the
amount of perceived chemical, which in turn depends on
the number of individuals depositing it. The most renowned
example is the one of ant trails (Wilson, 1971). When a
scout ant discovers a food source, after feeding, it deposits
pheromone on its way back to the nest. Other ants that
meet the trail use it to find the food and on the return journey
they reinforce it in turn, by laying other pheromone. In
this example, the mechanism producing the collective pat-
tern is local mass recruitment and the consequent positive
feedback due to pheromone reinforcement. Given a set of
possible paths, a set of nonlinear equations can be written,
describing the evolution in time of the flows of foragers
along the paths (Goss et al., 1989; Beckers et al., 1992;
Edelstein-Keshet, 1994). The models specify mathematically
how local recruitment occurs, i.e., proportionally to the
pheromone concentration on the trail. Similar phenomeno-
logical models have been used for several instances of col-
lective behavior. They have the great advantage of being
mathematically simple providing with quantitative predic-
tions in terms of a small number of parameters. From this
point of view, they represent a powerful mean to test the un-
derlying mechanisms (mass recruitment, positive feedback,
amplification of local fluctuations) in those systems where
the parameters entering the model can be empirically mea-
sured and/or tuned.

EMPIRICAL STUDIES
Several experiments and empirical observations on animal
groups have been performed in the last 50 years to test theo-
retical hypothesis on self-organization and empirically char-
acterize grouping behavior.

Some of the most studied systems are aggregations of so-
cial insects, like ants, which can be kept under laboratory
control even in large numbers, due to the small size of the
individuals. For example, the mechanism of pheromone-led
recruitment in ant trails has been deeply investigated. Ex-
periments were performed where foragers could choose be-
tween two distinct paths leading from the nest to the food
source (Goss et al., 1989; Beckers et al., 1992). If the paths
had the same length only one of them was selected, each
with the same probability: the recruitment mechanism in-
deed enhances initial fluctuations by positive feedback polar-
izing the flux on a single trail. On the contrary, when one
path is shorter than the other, the very same mechanism
allowed foragers to spontaneously select the optimal one
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since pheromone accumulation along the shorter path occurs
faster, catalyzing recruitment and breaking the symmetry.
In all these cases the models’ predictions for the distribution
of ants along the trails were consistent with the empirical re-
sults. More recently this approach was modified to investi-
gate traffic along ant trails under crowded conditions:
the same setup with two possible branches from nest to
food source was studied, with a variable number of individu-
als and branch widths (Dussutour et al., 2004). A transition
from asymmetrical traffic at low densities (one trail estab-
lished) to symmetrical traffic at high crowding (both
branches used by foragers) was observed and successfully
described with a nonlinear model for traffic flows. Another
experiment (Beekman et al., 2001) showed how the size of
the colony (and in particular the number of foragers) could
induce a discontinuous transition from disorganized (no
pheromone trail established, only random search) to orga-
nized (trail-based) foraging, due to pheromone volatility.

Also in this case, a simple mean-field nonlinear model can
be used to predict the occurrence of the transition (see also
Rauch et al., 1995; Bonabeau et al., 1998). Other interes-
ting examples of experiments on self-organized behavior
can be found in Seeley et al., 1996 (recruitment dance
in honeybees); Amé et al., 2006 (shelter selection in cock-
roaches), Theraulaz et al., 2002 (formation of cemeteries in
ants).

The occurrence of a transition from disordered to ordered
behavior tuned by density was also recently observed in
marching locusts (Buhl et al., 2006). Hoppers of desert
locusts were placed in a circular arena and their dynamics
observed with several values of the density of individuals.
The analysis of the collective alignment (average polariza-
tion) showed a transition from a disorganized state of locusts
moving independently to coordinated marching bands at
larger densities [Figs. 3(a) and 3(c)]. A one-dimensional ver-
sion of the Vicsek model was used to describe the transition

Figure 3. Transition from disorganized to collective motion in locust nymphs. Locusts were placed in a ring-shaped arena and the
alignment calculated as the average instantaneous orientation �relative to the center of the arena� for all moving individuals. Results of the
experiment were compared with numerical simulations performed on a variant of the one-dimensional Vicsek model. �a� Mean alignment
�averaged in time� as a function of the number of moving locusts; each point represents an experimental trial. �b� Distribution of the mean
alignment in numerical simulations �1000 samples�. The behavior of the instantaneous alignment is intermittent for intermediate values of the
number of locusts, passing from aligned to unaligned states over time. �c� and �d� Total time spent in the aligned phase in experiments and
simulations. From Buhl J et al. �2006�, Science 312, pp. 1402–1406. Reprinted with permission from AAAS.

P E R S P E C T I V E

HFSP Journal Vol. 2, August 2008 211



[Figs. 3(b) and 3(d)]. Similar results were also obtained in
fish schools (Becco et al., 2006) and cells (Szabó et al.,
2006), indicating that such simple models of self-organized
motion well depict the onset of collective behavior.

All previous examples concern collective patterns that
occur in one- or two-dimensional spaces. Some of the most
striking examples of animal grouping, such as bird flocks,
fish schools, and insect swarms, occur, however, in three di-
mensions. The study of animal groups in 3D is much more
demanding (Parrish and Hammer, 1997), especially for what
concerns experiments. This difficulty is related to the fact
that individuals often have larger sizes and naturally move in
a much larger environment. Laboratory control can be prob-
lematic, while techniques for field observations may prove
extremely complicated.

The first landmark contribution to the field of empirical
3D studies was performed by Cullen and co-workers (Cullen
et al., 1965; Pitcher and Partridge, 1979; Partridge et al.,
1980; Partridge, 1980) who analyzed groups of up to 50
fishes in laboratory tanks. Schooling behavior was inves-
tigated in aggregations of several sizes, and different spe-
cies (from weakly facultative to obligate schoolers). A
characterization of the 3D structure and shape of the groups
was performed, by looking at occupation volumes and
nearest-neighbor distributions in distance and angles. Even
if, as I will discuss, the statistical analysis suffered of
some methodological problems, this was the first attempt
to establish a quantitative basis for 3D observational data.
Many more recent studies also focused on fish (Van Long
et al., 1985; Parrish and Turchin, 1997; Viscido et al., 2004;
Tien et al., 2004), since experiments can be performed in
laboratory tanks, under variable conditions. Moreover, fishes
are often studied in shallow water, where they form
pseudo-2D schools, making the experimental analysis much
easier.

Obtaining data for birds is more difficult, since this must
be done in the field. After some early pioneering works
(Miller and Stephen, 1966; Van Tets, 1966), Major and Dill
reconstructed birds’ positions in groups of up to 70 individu-
als (Major and Dill, 1978). These flocks, however, were mov-
ing from the feeding site to the roost, and they were not very
cohesive. Pomeroy and Heppner obtained for the first time
the individual trajectories in groups of up to 16 birds
(Pomeroy and Heppner, 1992). More recently, Budgey stud-
ied flocks of up to 30 birds (Budgey, 1998).

In all these cases, however, the number of individuals in
the group was rather small (few tens), and the group arrange-
ments were often loose. The reason is essentially a technical
one. To reconstruct the 3D position of an object, optical tech-
niques (stereometry, orthogonal method, shadow method) re-
quire putting in correspondence (matching) different images
of it (Osborn, 1997; Hartley and Zisserman, 2003). For ex-
ample, when using stereoscopic photography with animal
groups, two images of the same group are shot simulta-

neously from different observation points. Then, every indi-
vidual on one photograph must be matched with the corre-
sponding individual in the second photograph [see Figs. 4(a)
and 4(b)]. Only at this point, stereometric formulas can be
applied to recover from each pair of matched individuals in
the photo the physical 3D coordinates of the individual in
space. The matching problem can become extremely severe
when groups are large and compact: photographic images of
flying flocks are typically very dense sets of almost feature-
less points (Cavagna et al., 2008c).

Due to these limitations, only small groups were ana-
lyzed until recently, preventing for a long time an exhaustive
comparison between theories of self-organized grouping and
empirical results. Collective behavior in natural groups very
often involve aggregations of an enormous number of indi-
viduals (from hundreds to tens of thousands) and one may
wonder whether the mechanism for group formation is the
same when small systems are considered. Besides, the analy-
sis of small systems is very strongly biased by border effects,
since a large percentage of individuals are located on the
boundary of the aggregation. Often this bias has not been
taken into account in the statistical analysis of empirical
data: the risk is that of looking at “surface properties,” which
depend on the shape of the group and are therefore highly
fluctuating, rather than “bulk” properties, that are much
more stable and only depend on the inter-individual interac-
tions (Cavagna et al., 2008b).

Analysis of small systems, both with numerical simula-
tions and experiments, can be useful to understand how indi-
vidual behavior changes when socialization occurs, and to
what extent coordination can be achieved, even with few in-
dividuals, and eventually controlled. This problem may have
important technological applications in artificial systems of
controlled units and has attracted much interest at a theoret-
ical level (Paley et al., 2007). When the focus is on the emer-
gence of collective behavior on large scales, however, analy-
sis of large enough groups is mandatory.

Recently, in Ballerini et al. (2008a, 2008b) an observa-
tional study of flocking behavior in starlings has been per-
formed, where groups of up to 3000 birds were reconstructed
(Fig. 4) and empirical 3D data statistically analyzed. This
work improved previous benchmarks in various respects.
From a technical point of view, using statistical mechanics,
optimization theory, and computer vision techniques, the
matching problem was solved allowing for the 3D recon-
structions of large groups (Cavagna et al., 2008c), see Fig. 4.
Besides, analysis of the data was performed taking into ac-
count border effects, and with techniques from statistical me-
chanics and physics of liquids. In this way, for the first time,
morphological, dynamical, and structural features of flock-
ing events were quantitatively characterized for large groups
of individuals. Flocks were found to be relatively thin and to
slide parallel to the ground, a feature that is completely
missed by any two-dimensional reduction of the group, as
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the one performed by simple photographs or far away ob-
servers. The groups were very variable in size, density, vol-
ume, and velocity, allowing for a systematic analysis of mu-
tual correlations between macroscopic properties. For
example, density and nearest neighbor distance were found
to be independent on the number of individuals belonging to
the group, contrary to previous observations on small
groups. The shape of the flocks exhibited constant propor-
tions, despite their volumes spanned a large range of values,
suggesting the presence of an underlying self-organizing
mechanism. Having large groups also allowed an accurate
determination of how individuals are distributed through the
flock. The angular distribution of neighbors around a focal
individual revealed a strong anisotropy, where nearest neigh-

bors are more likely to be found on the sides rather than in
the direction of motion, as also suggested by observations in
small groups of fishes (Partridge et al., 1980). The distribu-
tion of nearest neighbor distances was quantitatively charac-
terized showing that flocks are relatively sparse systems of
interacting units. The fluctuations in density through the ag-
gregation could be analyzed, revealing that the groups are
denser at the border than in the center. The dynamics of the
group as a whole was analyzed, indicating that flocks per-
form peculiar turning maneuvers where the shape remains
approximately unaltered and velocity rotates with respect to
the flock’s main axes. All these findings could be obtained
because the sample statistics were appropriate (natural ag-
gregations in the field) and groups were large.

Figure 4. A typical flock analyzed in the empirical study of Ballerini et al. „2008a…. This group consists of 1246 starlings, flying
at approximately 70 m from the stereoscopic apparatus at about 11 ms−1. �a� and �b� Left and right photographs of the stereo pair, taken
at the same instant of time, but 25 m apart. To perform the 3D reconstruction, each bird’s image on the left photo must be matched to
its corresponding image on the right photo. Five matched pairs of birds are visualized by the red squares. Once the matching is per-
formed, the 3D coordinates of each individual bird can be retrieved using stereometric formulas. �c� and �d� 3D reconstruction of the
flock under two different points of view. Panel �d� shows the reconstructed flock under the same perspective as the right photograph �b�.
Reprinted from Ballerini M et al. �2008a�, Proc. Natl. Acad. Sci. USA 105, pp. 1232–1237. Copyright 2008, National Academy of Sciences of
the USA.
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DISCUSSION
Empirical data, particularly on large groups, can provide a
reliable characterization of the mechanistic laws of animal
grouping. Models, on their part, can elucidate how specific
local rules lead to certain collective patterns. This informa-
tion altogether can help to better understand the phenomenon
of grouping. In this respect, there are several issues to be ad-
dressed: (i) theoretical predictions must be compared to em-
pirical results, to select successful models and explain the
mechanisms of group formation; (ii) appropriate conceptual
and methodological tools must be developed to deal with
data analysis and interpretation; (iii) the function of group-
ing must be investigated under a more general biological per-
spective.

Testing model assumptions with empirical data
An empirical quantitative description of grouping is the
starting point to retrospectively test the behavioral assump-
tions of theoretical models. Sometimes these assumptions
may only need fine tuning, sometimes, as reasonable as
they may appear, they could require deep revision. The
analysis performed on starlings offers an explicit example of
this strategy. Individual birds were found to have a region
around them where neighbors did not penetrate (Ballerini
et al., 2008b), consistently with the repulsion zone assumed
by models. The extension of this region is of the order of
the wingspan and provides with a quantitative value to

“feed” models for better predictions. At larger scales,
however, interactions between individuals were found to de-
pend on the “topological” distance (whether two birds
are first, second, third . . . neighbors) rather than on metric
distance (how far apart they are). It was shown that each
bird interacts with a fixed number of neighbors (six-seven),
irrespective of their distance, rather than with all the neigh-
bors within a well-defined region in space—as assumed
by the vast majority of agent-based models (see Fig. 5). The
authors argued that this topological feature is indispensable
to maintain cohesion of the groups in spite of large density
fluctuations, which are frequent in flocking due to predator
attacks. In fact, under a perturbation the mutual distances be-
tween some individuals may increase beyond any presumed
interaction range or zone, causing fragmentation in smaller
groups and stragglers in the case of distance dependent inter-
actions (very rarely observed in starling aerial display). Nu-
merical simulations in simple 2D models confirmed this hy-
pothesis, suggesting that topological interactions, which are
well known to occur in social networks, may play an impor-
tant role also in biological systems. This result suggests a
new kind of microscopic rule to be implemented. A few
models already incorporate numerical preferences (Inada
and Kawachi, 2002) or topological constraints (Gregoire
et al., 2003) together with distance dependent interactions.
A purely topological response, however, has never been
tested (with the exception of the simulations in Ballerini

Figure 5. To investigate the nature of the inter-individual interactions in starling flocks, Ballerini et al. „2008a… considered the
interaction range measured in meters „metric range… and in number of intermediate neighbors „topological range…, for several flocks
with different average nearest-neighbor distance „NND… and, therefore, density. �a� Topological interaction range n �to power −1/3� as
a function of the NND. �b� Metric interaction range as a function of NND. The topological range fluctuates around an average value ��n�=6.5�,
while the metric range is strongly correlated with NND. This shows that every bird interacts on average with 6–7 neighbors, irrespective of
density. Figures reprinted from Ballerini M et al. �2008a�, Proc. Natl. Acad. Sci. USA 105, pp. 1232–1237. Copyright 2008, National Academy
of Sciences of the USA. �c� and �d� Schematic illustration of a topological interaction: in two groups of different density the number of
interacting neighbors is the same, but the metric interaction range is different.
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et al., 2008a). A step in this direction is in Hemelrijk and
Hildenbrandt (2008), where metric interactions were as-
sumed, but with a range that rescales with the local density,
making the interaction de facto topological. Whether topo-
logical interactions are limited to starlings (or birds) or rep-
resent a more general paradigm is an interesting open ques-
tion. Empirical studies on different species are necessary to
investigate this issue.

The finding that each bird interacts with its first seven
neighbors has other interesting consequences. A possible ex-
planation for this number is related to the prenumeric abili-
ties of individual birds. Empirical studies performed on sev-
eral species (Nieder, 2005; Emmerton and Delius, 1993)
have shown that seven is the maximum numerosity a bird can
discriminate. It is then plausible than when flying in a group
each individual keeps track of at most seven neighbors. This
shows that the cognitive abilities of individuals may deter-
mine in a non-trivial way their behavioral rules.

The analogy with physical systems: conceptual
and methodological tools
The problem of group formation is, within certain respects,
independent of the nature of its components, and results in
animal collective behavior have indeed triggered interdisci-
plinary interest and applications. Physics has provided an
important conceptual paradigm, which has been extensively
used in developing numerical and mathematical models. In-
dividuals in a group are treated as simple interacting units,
and global features derived from the local microscopic inter-
actions, much in the same spirit as macroscopic observables
are computed for physical systems of particles, molecules, or
spins. The analogy with physics proved extremely useful, but
nevertheless has several limits. In physical systems the indi-
vidual units can be fully characterized and the nature of the
interactions between them is known ab initio. On the con-
trary, in biological systems the individual features specified
in the models always depend on some preconceptual simpli-
fication of a much more complex behavior, and interactions
between individuals do not come from physical laws but
rather derive from complicated biological processes. This
may lead to crucial differences. A vivid example is the result
found in starlings, where individuals exhibit topological in-
teractions: in physics all the interactions depend on distance
and systems of particles could never display the behavior ob-
served in starling flocks. In this case, the cognitive abilities
of the individuals make the difference, determining the non-
trivial nature of the interactions. More generally, animals are
not passive units, but adaptive individuals. They can modify
their behavior substantially according to environmental, so-
cial, or biological cues and they can learn, from past experi-
ence or from other individuals. As a consequence, the
strength or even the nature of inter-individual interactions
can vary in time. In this way, the signal to noise ratio can be
endogenously tuned leading to different collective patterns.

This is another difference with physical systems, where in-
teractions are given once for all, and the global state (e.g.,
ordered or disordered) can be changed only tuning external
parameters (e.g., temperature, pressure, magnetic field) (see
Detrain and Deneubourg, 2006, for a thorough discussion of
these issues).

Apart from the mechanistic analogy, physics provides so-
phisticated methodological tools of analysis, which can also
be applied to biological groups. In particular, it suggests ap-
propriate observables to quantify collective behavior in large
systems. For example, a system of physical particles subject
to attractive mutual interactions and short-range repulsion
may be found in several states (gas, liquid, solid) and display
several dynamical behaviors. Liquid theory tells us what to
compute to quantify the internal structure of the system, sus-
ceptibility to perturbations, dynamical features, and diffu-
sion properties (Allen and Tildesley, 1989; Torquato, 2002;
Binder and Kob, 2005). The same quantities can also be
computed in animal groups (see Ballerini et al., 2008b;
Cavagna et al., 2008b and 2008a for examples in starling
flocks).

Most of the data analysis performed in empirical obser-
vations, experiments, and numerical simulations on animal
groups have focused on average aggregate quantities and
one-point functions. Examples are the average velocity of
the group, the polarization, or the local density of individu-
als. A higher level of quantitative investigation, very much
used in physical systems, is provided by two-point correla-
tion functions. These functions describe how the behavior of
individuals in a certain region of the group and at a certain
time is related to the behavior of individuals in another group
location and/or at another time.

Spatial correlation functions can help to characterize the
structure of the group and how individuals are positioned one
with respect to the other. Density-density correlations, for
example, exhibit different (and identifiable) patterns in cor-
respondence of disordered or crystalline arrangements of in-
dividuals. An empirical analysis of these correlations in star-
ling flocks (Cavagna et al., 2008a) showed that, even if flocks
exhibit some spatial structure (somewhat intermediate be-
tween a liquid and a gas), a crystalline arrangement must be
excluded.

More generally, correlation functions describe how infor-
mation and perturbations propagate through the group mea-
suring the mutual sensitivity in positional and speed changes
of members. Efficiency in information transfer is a key fea-
ture of animal grouping, which may explain its evolutionary
success: a quantitative analysis of this efficiency is therefore
of primary theoretical interest. Despite some empirical
analysis on small systems (see, e.g., Aoki, 1980; Parrish and
Turchin, 1997) a systematic analysis of two-point correla-
tions has not been performed yet. Accurate measurements of
these functions over their full range require large statistics
and, therefore, data sets relative to large groups. The same is
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true when dealing with diffusion properties, which describe
how individuals move through the group and how they ex-
change their mutual positions. Theoretical predictions on
diffusion typically concern large-scale behavior (see, e.g.,
Toner and Tu, 1998) and one may need large enough groups
(and long enough sampling) to empirically test them.

Gathering data on large groups thus appears as a crucial
prerequisite for a more detailed statistical analysis. This may
be technically demanding, as the difficulties encountered to
get 3D stereoscopic reconstructions show. A similar problem
is given by the dynamical tracking needed to retrieve the tra-
jectories of individuals through the group. These trajectories
are the starting point to compute diffusion properties and
multi-time correlation functions, and are an important objec-
tive for future empirical research.

Biological function of grouping
From a biological perspective a crucial issue is to understand
what is the function of grouping and how selective pressure
acts on individuals to promote functional properties at group
level (Parrish and Edelstein-Keshet, 1999).

Living in groups can be advantageous within many
respects. One of the traditional motivations, especially in-
voked for bird flocks and fish schools, is associated with the
anti-predatory response (Pitcher and Parrish, 1993; Vine,
1971; Parrish, 1992). Belonging to a group of similar indi-
viduals guarantees anonymity and decreases the probability
of being caught (dilution effect). Moving together also
confuses the ability of predators to focus on an individual
and capture it (confusion effect). Being in a group of many,
the probability of detecting predator attacks increases (many
eyes hypothesis – see Krause and Ruxton, 2002). Besides,
the strong correlations present between members of the
group allow information on incoming attacks to propagate:
the response of few individuals, directly aware of predators,
can trigger collective escape maneuvers thanks to the imi-
tative nature of the individual dynamics. This same mecha-
nism, where a local signal is reinforced and transferred
by imitation, can be used to convey different kinds of infor-
mation such as the presence of obstacles (Goss et al., 1989),
or the distribution and location of resources (Seeley et al.,
1991; Pitcher and Magurran, 1983), more informed indi-
viduals dragging the whole group to the preferred destina-
tion (Couzin et al., 2005). Similarly, social interactions
can improve exploitation of environmental gradients (taxis),
allowing for a better detection of even mild signals
(Grünbaum, 1997). All these features represent adaptive
benefits, which can be invoked to explain the evolutionary
success of animal grouping. In this respect, empirical analy-
ses that quantify the efficiency of information transfer are
particularly useful and two-point correlation functions
are, as I have discussed, a possible tool. Besides, it would
be desirable to obtain data on response events (e.g. when a
predator attack occurs). Unfortunately, escape strategies

typically involve fast changes in shape, density, and direc-
tion of the group, difficult to retrieve with actual techno-
logies. From a theoretical point of view, models can elucidate
how information transfer and response to external stimuli
can be optimized within a given class of behavioral rules.
In general terms, group members average the “signals”
(orientational and positional coordinates) coming from
their neighbors. In so doing, if the relevant information
is shared, to some extent, by all neighbors then the average
suppresses noise, enhancing propagation of the signal.
If only a few neighbors have the relevant information,
however, it can be damped by the average and ineffi-
ciently propagate. These two effects have been investi-
gated, with particular attention to the number of interacting
neighbors, in the context of social klinotaxis (Grünbaum,
1997) and anti-predatory response (Inada and Kawachi,
2002).

Another issue concerns the “robustness” of collective
behavior. We expect groups to sustain efficiently external
perturbations and environmental changes. This means, for
example, that under predator attacks, not only must informa-
tion be propagated fast, but also cohesion should be retained.
This is what actually occurs in many natural groups: for ex-
ample, bird flocks, in spite of extraordinary maneuvers and
density changes, rarely disaggregate. One may wonder what
is the appropriate mechanism to ensure such a robust cohe-
sion. Topological interactions, as the ones observed in star-
lings, provide a possible explanation: if each individual inter-
acts with a fixed number of neighbors irrespective of their
distances, density changes (and therefore variations in mu-
tual distances) do not affect the strength of social relation-
ships and the degree of cohesion remains the same. Simula-
tions on simple 2D models indicate that topological
interactions are more efficient than metric ones to maintain
cohesion under perturbations (Ballerini et al., 2008a). Still,
further analysis is necessary to investigate this hypothesis in
3D models, and to empirically assess under what circum-
stances and in which species topological interactions are
prevalent.

Cohesion needs to be robust also with respect to endog-
enous stresses. Not all positions in a group are equivalent in
terms of individual fitness, and those that are advantageous
in certain circumstances (defense, foraging, migration, etc.)
may not be in others (Krause, 1994). Individuals must expe-
rience a reasonable trade-off between costs and benefits to
explain persistence of aggregation (Hammer and Parrish,
1997). Thus, the same mechanisms leading to group forma-
tion must also account for an appropriate redistribution of
risks within the group members. For example, the finding
that starling flocks are denser on the border than in the center
may be related to risk avoidance strategies. Further empirical
analysis of how individuals are positioned within group and
dynamically rearrange, complemented by appropriate mod-
eling exercise, can help to elucidate this point.
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CONCLUSIONS
Theoretical models and empirical studies progressively im-
proved our understanding of animal collective behavior. Sev-
eral mechanisms driving group formation are now well un-
derstood at a theoretical level, and experimentally verified.
These mechanisms appear to be rather general: global coor-
dination from local rules; positive feedback based on neigh-
bors’ imitation; local recruitment; density-driven transitions
from disorganized to collective motion. Within such a gen-
eral framework, models then perform detailed assumptions
to describe exactly how these mechanisms occur in a specific
biological system. In some cases, simple models fully ac-
count for the empirical evidence (as in ant trail experiments,
or for the transition of locust nymphs from disorganized
groups into ordered marching bands). More generally, how-
ever, models have been tested only on small groups and their
predictive power is still to be ascertained. Recently, field ob-
servations provided with large data sets for flocking birds in
3D. These data revealed unexpected features of the inter-
individual interactions, showing how crucial an empirical
feedback can be in testing models’ assumptions. The impor-
tance of obtaining empirical data for large systems cannot be
overstressed and represents one of the major challenges for
future research. This will also allow a more detailed analysis
of how information transfer and response to perturbations
occur in large groups, leading to a better understanding of
the biological function of grouping.

Observations and experiments in three dimensions nowa-
days require sophisticated techniques of computer vision and
optimization theory. Large data sets offer the possibility of
new types of analysis and the expertise matured in other
fields, of longer quantitative tradition, may become precious.
Therefore, a multi-disciplinary approach seems indispens-
able to tackle the many aspects of theoretical modeling and
empirical investigation of animal groups.
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