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Abstract

N-Heterocyclic carbenes (NHCs) catalyze a domino Michael addition/acylation reaction to form 3,4-
dihydrocoumarins. The reaction proceeds through addition of the NHC to an aryloxyaldehyde
followed by elimination of a phenoxide leaving group, generating an enol intermediate. This transient
nucleophile generated in situ performs a 1,4-addition onto a conjugate acceptor and the carbene
catalyst is regenerated upon acylation of the phenoxide anion resulting in formation of 3,4-
dihydrocoumarins.

Enolates are essential intermediates in chemistry and biology due to their high utility in carbon-
carbon bond-forming reactions.1 The catalytic, in situ generation of enolates or enols has
become increasingly important due to their efficiency in synthesis and emerging environmental
concerns. Consequently, significant effort in this area been directed toward metal-catalyzed
processes2 that allow for the addition of the corresponding metalloenolate to various
electrophiles.3 More recently, attention has turned toward the formation of enolates using only
organic molecules as catalysts.4 Numerous groups5678 have employed secondary amines to
catalyze enantioselective aldol, Michael, and Mannich reactions through the generation of a
reactive enamine intermediate.9 We report here that N-heterocyclic carbenes (NHCs) catalyze
the formation of enolates/enols through an elimination process of α-aryloxy aldehydes. The
capture of these nucleophiles leads to substituted coumarins by a domino Michael addition/
acylation process (eq 1).

In our recent carbene catalysis studies to access enols by the protonation of homoenolates,10
we became interested in whether new carbon-carbon bond-forming reactions were possible
using reactive acetate-type enol-NHC intermediates from α-aryloxyacetaldehydes. This
concept is distinctive since the phenol in the α-position serves an important dual purpose: first
to facilitate generation of the enol equivalent, and second to liberate the carbene catalyst
through an acylation event.11 We hypothesized that this process could be evaluated with an
aldehyde containing a tethered conjugate acceptor in the ortho-position.12 The likely pathway
involves initial addition of the NHC to aldehyde 1 (Scheme 2).13 A formal 1,2-shift of the
aldehyde proton results in elimination of phenoxide/phenol derivative III and concomitant
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formation of enol equivalent II. A Michael addition could then occur which, when followed
by intramolecular O-acylation, promotes regeneration of the carbene catalyst. A delicate
balance of leaving group ability and nucleophilicity of the α-position substituent is crucial. A
catalytic process is untenable if these factors are not optimal in this new type of “rebound”
process. For example, a strong leaving group (e.g. chloride or sulfonate) would potentially
initiate the reaction faster (I to II and III), but would fail to turn over the catalyst due to weak
nucleophilicity (IV to 2).

Enone 1a was chosen to explore this carbene-catalyzed enolate formation strategy and leads
to the formation of 3,4-dihydrocoumarin products.14 Substituted coumarins and related
compounds are biologically active15 and access to this particular substitution pattern by
Michael additions to the parent coumarin remains challenging.16 For example, to the best of
our knowledge, there are no general and high-yielding reports of conjugate additions of enolates
to coumarins. While combining enone 1a with imidazolium or benzimidazolium salts in the
presence of base produced a minor amount of the desired product (entries 1 and 2, Table 1), a
large increase in yield was observed when triazolium pre-catalyst C17 was used with DBU
(entry 5). Further optimization revealed that acetonitrile was the best solvent (60% yield, entry
6). In this particular case, the moderate yield was due to decomposition from prolonged
exposure to silica gel. Indeed, quick filtration through SiO2 provided an improved 83% yield
of pure desired product 2a (entry 7).

With azolium salt C identified as the most efficient pre-catalyst to promote this well
orchestrated domino process, we investigated the scope of the reaction. Electron-withdrawing
(entry 3) and electron-donating aryl ketones (entries 4 and 5), as well as naphthyl ketones (entry
6), are accommodated by the reaction conditions. Electron-withdrawing and -donating groups
(entries 7-12) can also be placed on the aromatic ring in a variety of patterns. The 3,4-
dihydrocoumarin derived from substrate 7 (entry 11) is formed in good yield, although the
diastereoselectivity with achiral NHCs is marginal. Additionally, catalyst loading can be
decreased to 5 mol % without diminishing the yield (entry 2). Currently, substitution at the α-
position of the aldehyde is not accommodated under the reaction conditions. The use of
saturated substrates, which replace the phenoxide leaving group with an alkoxide, result in no
reaction. From this data, it seems that normal alcohols are not sufficiently stabilized to undergo
the first step of the catalytic cycle, i.e., elimination from the initial carbene•aldehyde adduct
I. An extensive survey of known chiral azolium salts as catalysts in this reaction provide
products in moderate yields but low levels of enantioselecitivity (<10% ee). Importantly, the
discovery of this new process provides a strong impetus to develop new chiral catalysts to
provide optically active substituted coumarins.

Our investigations of the proposed pathway have focused on probing alternative pathways to
the one depicted in Scheme 1. The possibility of the acylation of the phenol by II occurring
prior to the Michael addition was strongly discounted by subjecting 9 to reaction conditions.
No reaction was observed, thereby supporting that intermediate II, a catalytic enolate
equivalent, undergoes C–C bond formation prior to C–O bond formation (Scheme 3).

A cross-over experiment was performed (Scheme 4) to determine the fate of the enol (II) that
is potentiallly formed in situ. When compounds 1g and 18O-labeled 1j were subjected to the
optimized reaction conditions in a single flask, a mixture of compounds 2a, 2g, 10, and 11 was
obtained (as observed by HRMS).18 The randomized distribution of the labelled oxygen and
methyl group on the aryl ring lends additional support to a pathway involving a bimolecular
Michael addition in which the α-aryloxy acetaldehyde fragments to form a reactive enol.

In conclusion, we have developed a new carbene-catalyzed domino process to generate
substituted coumarins. A reactive enol is generated catalytically through the addition of an N-
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heterocyclic carbene to an α-aryloxy aldehyde followed by elimination of a phenoxide ion.
The resulting enol intercepts a conjugate acceptor, thereby forming a 3,4-dihydrocoumarin
after acylation of the phenoxide/phenol by the acyl azolium intermediate. This new concept of
leaving group “rebound” has been developed in the context of carbene catalysis to access
enolate reactivity in situ and yield an efficient synthesis of important oxygenated heterocycles.
One can envision incorporating additional groups beyond phenols with this rebound capacity
that will undoubtedly broaden the scope and utility of this process. Our mechanistic
investigations employing both the subjection of potential intermediates to the reaction
conditions and cross over experiments using isotopically-labelled substrates support a
sequential elimination/C–C formation/C–O acylation pathway. There are many promising
potential uses of enols derived from a carbene-catalyzed elimination process and our continued
investigations in this area will be reported in due course.
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Scheme 1.
General Concept
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Scheme 2.
Proposed Reaction Pathway
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Scheme 3.
Reaction Pathway Investigation
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Scheme 4.
Cross-over Experiment
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Table 1
Optimization of Conditions

entry azolium salt Conditions yieldb

1 A 0.1 M CH2Cl2, 1.0 equiv i-Pr2EtN <5

2 B 0.1 M CH2Cl2, 1.0 equiv i-Pr2EtN <5

3 B 0.1 M CH2Cl2, 10 mol % DBU <5

4 C 0.1 M CH2Cl2, 1.0 equiv i-Pr2EtN <5

5 C 0.05 M CH2Cl2, 10 mol % DBU 39

6 C 0.05 M CH3CN, 10 mol % DBU 60

7 C 0.02 M CH3CN, 10 mol % DBU 83

a
All reactinos performed on 0.2 mmol scale.

b
Isolated yields.
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