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Fluorescence lifetime imaging is a valuable and versatile tool for the investigation
of the molecular environment of fluorophores in living cells. It is ideally suited—
and is therefore increasingly used—for the quantification of the occurrence of
Förster Resonance Energy Transfer, a powerful microscopy method for the
detection of subnanometer conformational changes, protein-protein interactions,
and protein biochemical status. However, careful quantitative analysis is required
for the correct and meaningful interpretation of fluorescence lifetime data. This
can be a daunting task to the nonexpert user, and is the source for many
avoidable errors and unsound interpretations. Digman and colleagues „Digman
et al., 2007, Biophys. J. 94, L14–6… present an analysis technique that avoids data
fitting in favor of a simple graphical polar data representation. In this “phasor”
space, the physics of lifetime imaging becomes more intuitive and accessible
also to the inexperienced user. The cumulated information from image pixels,
even over different cells, describes patterns and trajectories that can be visually
interpreted in physically meaningful ways. Its usefulness is demonstrated in the
study of the dimerization of the uPAR receptor „Caiolfa et al., 2007, J. Cell Biol.
179, 1067–1082…. [DOI: 10.2976/1.2833600]
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The major challenge of modern cell biol-
ogy is to understand the functional interplay
and dynamic organization of cellular protein
machinery as it reacts to stimuli. In contrast to
the “hard-wired” diagrams that we have come
to know from schematic representations of sig-
naling pathways, most interactions between
proteins are not static, and are often condi-
tional on, or coincident with the biochemical
modification of one or more interaction part-
ners, e.g., conformational changes, nucleotide
binding status, membrane binding, (de)-
phosphorylation, and proteolytical cleavage.
However, biochemical analysis alone does not
provide the vantage point from which the func-
tion of complex protein machines can be de-
rived as the localization and even compartmen-
talization in different organelles or multi-
protein clusters can change.

With the advent of autofluorescent proteins
and other genetically coded tags, a tool has be-
come available that allows the study of indi-
vidual proteins in their natural environment of
the living cell, with high sensitivity and speed.
Furthermore, detailed biophysical information
can be obtained on the molecular environment
of the labeled components by the use of a vari-
ety of advanced fluorescence imaging tech-
niques. As a consequence, fluorescence mi-
croscopy is increasingly used as an analytical
tool for the quantification of cellular events.
Fluorescence images are in actual fact rich
multidimensional quantitative data sets, carry-
ing information on morphological changes,
protein location and dynamics, and protein mo-
lecular environment.

One of the most useful fluorescence metrics
is the fluorescence lifetime, i.e., the average
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duration of the excited state of a fluorescent molecule. As the
fluorescence lifetime depends on both radiative decay—
giving rise to fluorescence photons, and nonradiative energy
losses of the excited state—quenching the effective fluores-
cence yield, it is a measure for the specific brightness of a
fluorophore. Interactions of the fluorophore with its bio-
chemical environment can be read out from differences in
fluorescence lifetime (Wouters et al., 2001). Most impor-
tantly, at typical physiological concentrations the fluores-
cence lifetime of a fluorophore does not depend on its con-
centration and is therefore ideally suited for use in cells
where differences in concentration, path length, and com-
partmentalization would complicate the quantification of
brightness changes. In addition to “trivial” interactions gov-
erned by, e.g., solvent polarity, viscosity and the presence of
quenching compounds (e.g., halide ions), such an interaction
can also be specifically engineered; when a second suitably
spectrally matched fluorophore is brought within nanometer
distance of the first fluorophore that is in its excited state,
they couple to transfer the excited state energy from the “do-
nor” to the “acceptor” fluorophore in a process called Förster
resonance energy transfer (FRET). By supplying an addi-
tional (nonradiative) decay path for the donor excited state
energy, its fluorescence emission yield and lifetime are re-
duced in proportion to the efficiency of the FRET process.
The reduction in donor emission yield and the concomitant
emergence of acceptor fluorescence from the energy arriving
in its excited state through FRET—called sensitized
emission—forms the basis of many FRET-based assays for
protein states. Intensity-based FRET measurements can be
fast and do not require specialized instrumentation; however,
these methods are more sensitive to spectral cross-talk con-
taminations and do not provide for quantification of hetero-
geneous systems.

The fluorescence decay of fluorophores participating in
FRET, on the other hand, can provide information on stoichi-
ometry and the fractional contribution of molecular species.
This measurement is robust, sensitive and intrinsically quan-
titative. However, fluorescence lifetime imaging (FLIM) is a
technique that has only recently become widely available to
the nonspecialist user. The most important criterion for its
proper use is the correct interpretation of the lifetime results.
Different analysis techniques have been developed to extract
biologically meaningful information from lifetime images.
The phasor approach presented by Digman and colleagues
(Clayton et al., 2004; Digman et al., 2007) offers an intuitive
representation of lifetime data that can serve as a powerful
visual data mining tool, allowing the immediate extraction of
quantitative information like lifetime mixture composition,
FRET efficiency and relative fraction without the need for
complicated fitting routines or other elaborate postacquisi-
tion data processing.

Imaging fluorescence lifetimes

Fluorescence lifetimes of biologically relevant fluorophores
are between 1 and 10 ns and thus require specialized detec-
tion equipment. In recent years, these have become commer-
cially available for scanning and wide-field microscopes.
Furthermore, advances in high-frequency modulated light
sources and camera techniques have made these systems in-
creasingly affordable (Colyer et al., 2007; Esposito et al.,
2006). As a consequence of its greater diffusion, the number
of publications using FLIM for the quantification of FRET is
rising and it is well on its way to becoming a routine labora-
tory technique.

Different practical implementations of FLIM exist today,
both in scanning and wide-field microscopes, that operate in
either the time or frequency domain (Esposito et al., 2007).
In short, both methods measure the dynamic changes in the
fluorescence response to a time-encoded excitation pattern,
caused by the presence of a lifetime delay between excitation
and emission. In the time domain, the impulse response is
probed, i.e., the excited state is (practically) instantaneously
populated by a very short excitation pulse, and the ensuing
stochastic emission decay is followed over many cycles
and fitted to an exponential function where the exponential
factor(s) represent the lifetime decay(s) in the sample. In
the frequency domain, the harmonic response is probed, i.e.,
the phase shift and demodulation of fluorescence emission
upon excitation with a high-frequency periodically modu-
lated illumination pattern (sine, rectangular, pulse) is mea-
sured, mostly by cross-correlation techniques. Both methods
are fundamentally functionally equivalent and data from
both types of FLIM equipment can be equally evaluated us-
ing the existing quantitative analysis methods and the phasor
approach.

Figure 1 shows an example lifetime image acquired in
the time domain on a time-correlated single photon count-
ing system (TCSPC). Shown are HeLa cells co-expressing
a tandem fusion of cyan fluorescent protein (CFP) and
yellow fluorescent protein (YFP) that exhibits FRET and
localizes to the cytoplasm, and nucleolarly targeted CFP.
At these two locations, the fluorescence lifetimes are equal

Figure 1. Fluorescence lifetime detection: CFP intensity „A…

and lifetime „B… image of HeLa cells co-expressing nucleolar
CFP and a cytoplasmic CFP-YFP fusion construct. Panel C
shows the fluorescence decays from the regions marked in panel A.
The lower graph shows the standardized residuals.
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to 1.75±0.13 ns (mean ± standard deviation) and 2.28
±0.05 ns, respectively, i.e., the CFP-YFP fusion construct
exhibits �23% FRET efficiency.

Phasor analysis
Ironically, the attribute that makes FLIM the most suitable
measurement for FRET is also its weakest point; the reliance
on a fluorescence metric other than the well-known and in-
tuitive color and intensity complicates the biological inter-
pretation of its results. Particularly, the user should realize
that fluorescence detection from each pixel represents a
compound measurement over multiple molecules and fluo-
rescence cycles. The average decay time may thus be not
immediately informative. In an ideal FRET experiment be-
tween nondiffusing donor and acceptor molecules, there are
two discrete donor lifetimes; that of the fluorophores that do
not engage in FRET, and that of those that do and exhibit an
altered fluorescence decay. Furthermore, not all fluorophores
are intrinsically single-lifetime emitters and cells exhibit
autofluorescence, introducing additional lifetime compo-
nents; there is likely some degree of variability in the precise
docking arrangement between two interacting proteins, in-
troducing further heterogeneity in the measured lifetime
distributions; and variation in the expression levels of donor-
and acceptor-labeled proteins will lead to varying degrees
of donor participation in FRET. The FRET efficiency in the
molecular donor-acceptor complex itself is not necessarily
very meaningful as it depends on distance and orientation
differences that are difficult to control or know. How can
one differentiate between a small fraction of donor-labeled
proteins undergoing efficient FRET and a large fraction par-
ticipating in energy transfer with less efficiency? The trans-
lation to biochemical entities like specific activity and con-
centrations of bound molecules is given by the local relative
contribution of the FRET-engaged donor molecule to the
lifetime mixture.

The extraction of fractions of interacting (FRET-
engaged) species implies the fitting of the data to a chosen
model; if two discrete and spatially invariant lifetimes are as-
sumed, then the presence of lifetime heterogeneity may lead
to errors because the variation is forcibly incorporated into
the discrete lifetimes eventually causing the model to fail.
Alternatively, one can consider a continuous distribution of
lifetimes (Esposito et al., 2005; Redford and Clegg, 2005),
for instance representing different interaction docking con-
stellations, or conformational intermediates in or between
proteins, and use our estimator to quantitatively describe het-
erogeneity, but these scenarios become more and more diffi-
cult to relate to biological interpretations.

The phasor method for lifetime analysis takes a different
approach (Clayton et al., 2004; Digman et al., 2007; Forde
and Hanley, 2006; Hanley and Clayton, 2005; Jameson et al.,
1984; Redford and Clegg, 2005). Sine (S) and cosine (G)
transforms of the lifetime data generate a new coordinate

system (G, S). In this new space, lifetime information
behaves in an intuitive manner; single lifetime emitters de-
scribe a half-circle called the “universal circle” (Jameson
et al., 1984) which can only be escaped by the occurrence of
photochemical reactions in the excited state (Lakowicz and
Balter, 1982). Heterogeneous systems will occupy positions
within the universal circle, with points moving further in-
ward as the heterogeneity of fluorescence emission in-
creases. This representation of lifetimes was introduced to
study frequency-domain data where lifetimes are estimated
from the relative phase delay ��� and demodulation �M� of
the fluorescence emission. In the (G,S) space, � and M are
the polar coordinates of the phasors; scatter plots of the G
and S coordinates for all pixels as shown in Fig. 2 are there-
fore also called polar plots (Redford and Clegg, 2005) and
provide a graphical tool to quantify lifetime heterogeneity
(Clayton et al., 2004; Esposito et al., 2005). Digman et al.
now generalize the phasor analysis to include time-domain
data and introduced the helpful concept of trajectories in the
phasor space.

Mixtures of lifetimes lie on straight lines, and these lines
can only be left by nonlinear events like FRET. With FRET a
curved trajectory is followed, where the position along the
trajectory gives the FRET efficiency and the starting point
provides the unquenched donor lifetime and its background

Figure 2. Segmentation „A… and polar plot representation „B… of
the TCSPC data shown in Fig.1. Cells were segmented according
to the selections in the phasor space. Nucleolar regions and cyto-
plasm are shown in cyan and yellow, respectively, and overlaid with
the intensity image. Note the precise selection of the nucleoli, and
the exclusion of the remaining nuclear material containing mixtures
of the lifetimes of both constructs that lie on the line connecting both
pixel clouds.
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contribution. Phasors do not require data fitting, therefore
permitting the user to assess the data content without requir-
ing prior assumptions on the decay model and its initial
parameter guesses that may introduce biases in the final es-
timations. Rather, they provide an immediate visual repre-
sentation of the data that avoids computationally expensive
iterative methods. Phasors permit the visualization of trajec-
tories and pixel clustering with which rapid and quantitative
image segmentation can be performed. For instance, in a first
biological application of the approach in collaboration with
the same authors (Caliolfa et al., 2007), the transmembrane
signaling mechanism of the urokinase-type plasminogen ac-
tivator (uPAR) receptor was investigated. This glycosylphos-
phatidylinositol (GPI)-anchored receptor binds to a variety
of proteins and the extracellular matrix protein vitronectin to
play a role in a variety of cellular responses, including cellu-
lar migration, adhesion, chemotaxis and proliferation. The
phasor approach was used to investigate the dimerization sta-
tus of the uPAR receptor in apical and basal membranes as a
function of adhesion on different substrates and during dif-
ferent stages of receptor endocytosis recycling. It was found
that the lifetime characteristics of GFP-labeled uPAR, co-
expressed with monomeric red fluorescent protein (mRFP)-
uPAR to form a FRET pair, could be completely segmented
between both membrane localizations by a relatively small
phasor selection. When selecting phasors of co-expressing
cells on the line connecting the GFP-uPAR only and non-
transfected background fluorescence locations, most pixels
of the apical membrane were selected and virtually none of
the basal membrane. When, however, phasors away from this
line (corresponding to 8–24% FRET) were selected, almost
all pixels in the basal membrane were mapped, and only very
little of the apical membrane. This result was obtained for
cells grown on serum- and vitronectin-coated coverslips, but
not for cells grown on fibronectin, which is not a substrate for
uPAR. This result shows that the feedback between phasor
and image data intuitively allows the confident and complete
differentiation between monomeric uPAR in the apical mem-
brane, where it does not see its preferred substrate, and the
basal membrane in the presence of the wrong substrate, and
dimeric uPAR in the basal membrane on the proper substrate.
Exposure of cells to extracellular uPA-PAI1 (plasminogen
activator inhibitor 1), known to induce uPAR endocytosis,
dissociated the dimers. After washing of the cells and allow-
ing the internalized receptors to recycle to the plasma mem-
brane, FRET in the basal membrane was again restored.

The phasor-based segmentation of the lifetime images
shown in Fig. 1 is illustrated in Fig. 2. The analysis and
representation for the segmentation of cytoplasmic and
nucleolar locations required only a few seconds to perform
and did not involve assumptions. Instead, it takes minutes to
execute a pixel-by-pixel data fitting of the image to a dual-
exponential model, followed by thresholding of the obtained
distributions to reach the same final result.

Quality assessment and quantitative estimations
A fundamental problem in quantitative imaging is the limited
number of photons that can be collected from a biological
sample due to fluorophore photobleaching and phototoxicity.
For instance, at least 10% of statistical variation is to be ex-
pected in the lifetime determination at the pixel level if only
100 photons are collected (Esposito et al., 2007). More com-
plex models (multi-exponential decays or stretched exponen-
tials) are necessary to fit lifetime heterogeneity, but these de-
mand very high signal levels that typically necessitate data
binning or extremely long exposure times. Furthermore,
careful analysis of the �2 values and residuals of the fit re-
sults is required to decide on the most appropriate model.
The polar plots aid in the quality assessment of the data. The
spread of the pixel clusters is related to the noise content of
the lifetime image, and cluster shape is related to the lifetime
composition. Phasor-assisted image segmentation permits
the facile computation of average lifetimes over biologically
relevant regions of interest. This corresponds to an estima-
tion of the center of mass (G0, S0) of a pixel cluster, which
can typically be determined with high confidence. G0 and S0

are analytically related to the lifetime and lifetime heteroge-
neity of the sample (Esposito et al., 2005), but do not requir-
ing data fitting. Alternatively, complex models can be fitted
to the ensemble of photons collected in the segmented re-
gions, which is beneficial for the speed and precision that can
be achieved with these models.

Global analysis (Pelet et al., 2004; Verveer and
Bastiaens, 2003) is equivalent to the data fitting of the pixel
ensemble with assumptions on global parameters such as
the presence of two constant lifetimes. This approach can
significantly increase the signal-to-noise ratio and the
computational speed in lifetime images. It was shown
(Clayton et al., 2004) that global analysis can be performed
very efficiently in the phasor space. Hanley and colleagues
refer to phasor space as “AB-plots” and extended the analy-
sis to spectrally resolved lifetime imaging (Hanley and
Clayton, 2005; Forde and Hanley, 2006). This is possible be-
cause the sum of two exponential decays is represented in the
phasor space by a line, and simple linear regression therefore
suffices for a global fit.

The concept of trajectories in the phasor space can be
generalized in order to quantitatively and efficiently investi-
gate single or multiple images. For instance, Digman et al.
showed how trajectories for energy transfer behave in the
phasor space.

Concluding remarks
The complicated analysis of FLIM datasets can be a bottle-
neck for its widespread application in the life sciences,
where this imaging technique can catalyze the quantitative
investigation of cellular processes using sophisticated FRET
assays. Such a tool will be central to systems’ biological ap-
proaches that aim at understanding the workings of the mo-

HFSP Journal

10 Quantitative analysis of fluorescence lifetime imaging made easy | F. S. Wouters and A. Esposito



lecular machines generating complex response pathways and
constituting the inner workings of the living cell. The recent
development in biolabeling techniques and FLIM instrumen-
tation aid this goal. What is needed is a user-friendly and
generalized data analysis “standard” to help the user inter-
pret experimental results quantitatively. The phasor represen-
tation of FLIM data provides an intuitive yet very powerful
analytical tool that allows the visual inspection and standard-
ized data analysis of different photophysical scenarios with
the help of data clustering and trajectories. The immediate
feedback between selections in phasor space and the inten-
sity image allow the segmentation of—even complex—
photophysically different behaviors, without the need for as-
sumptions or other prior knowledge. It is this aspect that
makes the method most useful for the life scientist as he/she
can now build a phasor picture with which to segment a fluo-
rescently labeled population exhibiting biologically relevant
behavior. The phasor picture can be globally refined by in-
cluding many representative cells of a given condition or
treatment to achieve increasingly precise segmentations and
species defined at increasing specificity. Phasors thus pro-
vide biology-guided contrast generation on a firm quantita-
tive and physical basis. It brings specialist tools to the non-
expert user and is bound to become the universal standard for
the representation and interpretation of lifetime data, permit-
ting FLIM to become a cornerstone microscopy technique in
the life sciences.
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