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Abstract
We aimed to clarify responsiveness to angiotensin (Ang) II in the porcine basilar artery and the role
of Ang II receptor subtypes by functional, radioligand binding, and cell culture studies. Ang II
induced more potent contractions in the proximal part than in the distal part of isolated porcine basilar
arteries. The contraction induced by Ang II was inhibited by the Ang II type 1 (AT1) receptor
antagonist losartan, but the Ang II type 2 (AT2) receptor antagonist PD123319 enhanced it. After
removal of the endothelium, the effect of losartan remained but the effect of PD123319 was abolished.
The specific binding site of [3H]Ang II on the smooth muscle membrane was inhibited by losartan,
but not by PD123319. Stimulation of angiotensin II increased nitric oxide (NO) production in cultured
basilar arterial endothelial cells. This production was inhibited by PD123319 and the NO synthase
inhibitor L–NG-nitroarginine. These results suggest that the contraction induced by Ang II might be
mediated via the activation of AT1 receptors on the basilar arterial smooth muscle cells and be
modulated via the activation of AT2 receptors on the endothelial cells, followed by NO production.
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Introduction
Angiotensin (Ang) receptor subtypes are generally classified into two main groups, Ang II type
1 (AT1) and Ang II type 2 (AT2) receptors (Widdop et al., 2003). The distributions of the two
receptor subtypes are different (Timmermans et al., 1993). In general, AT2 receptors are
predominant in the fetus; however, after birth the expression of AT2 receptors is restricted to
some regions and AT1 receptors become predominant (Matsubara, 1998; Horiuchi et al.,
1999). The AT1 receptor is concerned with vasoconstriction in various arteries, whereas the
AT2 receptor is concerned with vasorelaxation in the uterine (McMullen et al., 1999; Hannan
et al., 2003), mesenteric (Matrougui et al., 1999; Touyz et al., 1999; Matrougui et al., 2000),
and cerebral (Tsutsumi and Saavedra, 1991) arteries. However, the role of the AT2 receptor
remains unclear.

Ang II induces contraction in the basilar arteries of the monkey (Toda et al., 1990), rabbit
(Zerrouk et al., 1996), and dog (Manabe et al., 1989; Yen et al., 1990). However, these reports

*Corresponding author. Tel./fax: +81 99 285 8719. E-mail address: pharmaco@agri.kagoshima-u.ac.jp (A. Nishio).

NIH Public Access
Author Manuscript
Life Sci. Author manuscript; available in PMC 2009 February 12.

Published in final edited form as:
Life Sci. 2006 January 25; 78(9): 943–949. doi:10.1016/j.lfs.2005.06.044.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



have not demonstrated the Ang receptor subtypes responsible for contraction in these arteries.
Similarly, there is no information about responsiveness of the porcine basilar artery to Ang II
and its related Ang receptor subtypes. Therefore, we aimed to clarify the response of the porcine
basilar artery to Ang II and determine the role of Ang II receptor subtypes in this response by
functional, radioligand binding, and cell culture studies.

Material and methods
Tissue preparation

Basilar arteries were obtained from freshly slaughtered pigs (both sexes, about 6 or 7 months
old, Landrace–Large White–Duroc crossbreed) at a local slaughterhouse and transferred to our
laboratory in ice-cold physiological saline (119 mM NaCl, 4.7 mM KCl, 1.6 mM CaCl2, 1.2
mM MgCl2, 25 mM NaHCO3, 1.2 mM KH2PO4, and 10 mM glucose, pH 7.4) aerated with
carbogen (95% (v/v) O2, 5% (v/v) CO2). Each artery was dissected free of adherent tissues.

Reagents
We used the following reagents: Ang II acetate salt, [Sar1, Thr8]angiotensin II, bradykinin,
PD123319 ditrifluoroacetate salt, uridine 5′-triphosphate sodium salt (UTP), Dulbecco’s
modified Eagle’s medium (DMEM), nutrient mixture F-12 HAM, penicillin, streptomycin and
amphotericin B (Sigma, Saint Louis, MO, USA), heat-inactivated horse serum (Invitrogen
Corp., NY, USA), fluorescent acetylated low-density lipoprotein (Harbor Bio-Product,
Norwood, MA, USA), Ang II (5-L-isoleucine), [tyrosyl-3.5-3H(N)] (Perkin Elmer, Boston,
MA, USA), NO2/NO3 assay kit (Wako, Osaka, Japan). Losartan potassium was a gift of Merck
and Co., Inc. (Whitehouse Station, NJ, USA).

Functional study
Several (three or 4) rings approximately 4 mm long were cut from each artery. The rings were
mounted vertically between two L-shaped stainless steel holders, with the upper part fixed to
an isometric force transducer (TB-611T, Nihon Kohden Kogyo, Tokyo, Japan), and immersed
in a 5-ml water-jacketed organ bath containing oxygenated salt solution at 37 °C (pH 7.4).
Each suspended ring was left to equilibrate for at least 120 min under a resting tension of 7.5
mN. This tension was chosen because it allowed us to induce maximum contractions in the
artery. KCl (60 mM) was applied every 30 min until the amplitude of the contraction reached
a constant value. Changes in the KCl concentration of the physiological saline were
compensated for by equimolar adjustment of the NaCl concentration. The isometric tension
was displayed on an ink-writing recorder (WI-641G, Nihon Kohden Kogyo, Tokyo, Japan).
The cumulative concentration–response curve of Ang II or the contraction with a single
application was obtained by adding a solution of Ang II directly to the fluid in the bath.
Antagonists were added to the bathing media 30 min before Ang II. There were no effects of
antagonists on the resting tension.

The presence of endothelial cells was confirmed pharmacologically by testing the relaxant
response to bradykinin under precontracted conditions with UTP (this response is abolished
by endothelial denudation; Miyamoto et al., 1999), and morphologically by scanning and
transmission electron microscopy after the experiments.

Radioligand binding study
Isolated porcine basilar arteries for radioligand binding assay were cut longitudinally and the
endothelial cells were removed by gentle rubbing with a cotton rod, followed by rinsing with
physiological saline. The rinsed basilar arteries were minced with scissors and then
homogenized in 8 volumes of 50 mM Tris–HCl buffer (pH 7.4) using a Polytron homogenizer
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at a setting of 8 for periods of 15 s with 45-s intervals in an ice-bath. The membrane homogenate
was centrifuged at 500 ×g for 15 min. Then the supernatant was centrifuged at 100,000 ×g for
30 min. The pellet was resuspended in buffer solution, and the suspension was used for the
binding assay as a crude membrane fraction. These procedures were all performed at a
temperature of 4 °C. The protein concentration of the final suspension was measured by the
method of Lowry et al. (1951), with bovine serum albumin as a standard.

Cell culture
Primary porcine basilar arterial endothelial cells were isolated by infusing 0.05% trypsin–
EDTA solution into the vessel through a polyethylene tube (SP10, I.D. 0.28 mm, O.D. 0.61
mm, Natume, Tokyo, Japan) and cultured in a growth medium containing 45% DMEM, 45%
nutrient mixture F-12 HAM, 10% horse serum and antibiotic mixture of 100 units/ml penicillin,
100 mg/ml streptomycin, and 2.5 mg/ml amphotericin B. The above method was referred to
in a previous report of porcine brain capillary endothelial cells (Huwyler et al., 1997). When
the nitrite (NO2

−) and nitrate (NO3
−) level was measured as an indicator of NO production, a

mixed medium of DMEM and F-12 HAM without phenol red was used to avoid disturbance
of the fluorometric assay (Misko et al., 1993). In this assay kit, the minimum detectable dose
of NO2/NO3 is <1 µM with coefficient of variation (3.5±0.5%). The endothelial cells were
characterized by their morphology using phase-contrast microscopy (Olympus, IX70, Tokyo,
Japan) and by staining for fluorescent acetylated low-density lipoprotein (Voyta et al., 1984).
Only endothelial cells of less than 6 passages were used. Confluent endothelial cells (3–
5×106) were treated with Ang II.

Statistical analysis
Results are expressed as the mean T s.e.m. Statistical analyses were performed by Student’s
t-test or the Bonferroni test after one-way analysis of variance. Significance was established
when the probability level was equal to or less than 5%.

Results
A typical isometric tension response to Ang II in isolated porcine basilar arterial rings obtained
from region [a] (Fig. 1A) is illustrated in Fig. 1B. Ang II induced a concentration-dependent
contraction. The maximum response induced by 10 nM Ang II was 2.2±0.2 mN; this was 19.1
±2.4% of the response to 60 mM KCl. The response to all doses at region [a] was significantly
higher than those in the other regions [b–d] (Fig. 1A) (Fig. 1C). Therefore, we performed the
following experiments in a functional study using the section of artery isolated from region
[a]. Removal of the endothelium had no significant effect on regional differences in the
response to Ang II in the basilar artery (Fig. 1D). The first response to Ang II was significantly
greater than the second; however, the second response was not significantly different from the
third response (Fig. 2). Therefore, the second response was defined as the control, and
antagonists were added to the arterial ring 30 min before the third response was elicited.

The basilar arteries were treated with a non-selective Ang II receptor antagonist, [Sar1, Thr8]
Ang II. This antagonist inhibited the Ang II (10 nM)-induced contraction in a concentration-
dependent manner. The pIC50 of [Sar1, Thr8]Ang II was 8.81±0.21. We then examined the
effects of the selective AT1 receptor antagonist losartan (0.01 to 1 µM) and the selective
AT2 receptor antagonist PD123319 (0.01 and 1 µM) on the Ang II (10 nM)-induced
contraction. Losartan significantly inhibited the Ang II-induced contraction, with a pIC50 of
7.33±0.14 (Fig. 3A) and abolished it at a concentration of 1 µM, whereas PD123319
significantly enhanced the contraction in a concentration-dependent manner (Fig. 3B).
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Fig. 4 shows that the NO synthase inhibitor L–NG-nitroarginine (L-NA) (100 µM) significantly
enhanced Ang II (10 nM)-induced contraction. However, addition of PD123319 (1 µM) to the
L-NA had no effect on enhancement of the Ang II (10 nM)-induced contraction.

After removal of the endothelium, losartan abolished the Ang II-induced contraction at the
same concentration (1 µM) at which it abolished it in the presence of endothelium. However,
PD123319 no longer enhanced the Ang II-induced contraction (Fig. 5).

Fig. 6 shows a typical pattern obtained in the binding assay of [3H]Ang II to the membrane
fraction from porcine basilar arteries without endothelium in the absence (total binding) and
presence (nonspecific binding) of 100 µM Ang II. Similar results were obtained from two other
experiments. The specific binding, which was calculated as the difference between the total
and non-specific bindings, appeared to be saturable. The Bmax value was 4.15 ±1.17 fmol/mg
protein (n =3). A Scatchard plot of the specific binding showed a positive cooperativity. The
Hill coefficient was 1.77 ±0.18 (n =3). Losartan inhibited the specific [3H]Ang II (1 nM)
binding site with a pIC50 of 7.76±0.25 (n =3) in a concentration-dependent manner; however,
the selective AT2 receptor antagonist PD123319 did not (Fig. 7).

To confirm NO production from porcine basilar endothelial cells stimulated by Ang II, the
total amounts of NO2

− and NO3
− (NO final metabolites) were measured using an NO2/NO3

assay kit. This assay kit was suitable for the measurement of 1–10 µM NO2/NO3. Stimulation
of the cultured porcine basilar arterial endothelial cells with 0.1 µM Ang II released NO
metabolites, and their production reached a plateau after 8 h (Fig. 8). NO production 2 h after
stimulation by Ang II (0.1 µM) was significantly inhibited by PD123319 (1 µM) or L-NA (100
µM) (Fig. 9).

Discussion
Our results showed that Ang II induced contractions in the porcine basilar artery through
activation of AT1 receptors located on the smooth muscle cells, whereas AT2 receptors were
located on the endothelial cells and modified the Ang II-induced contraction by production of
NO.

The contraction induced by Ang II was most potent (2.2±0.2 mN) at the proximal part of the
porcine basilar artery. The magnitude of the contraction was weaker than those induced by
histamine (7.7±0.9 mN) (Miyamoto and Nishio, 1993) and serotonin (9.8±1.5 mN) (Miyamoto
et al., 1994) in the same artery. The Bmax of [3H]Ang II (4.15 fmol/mg protein) was lower than
those of [3H]mepyramine (a selective H1 antagonist; 95.6 fmol/mg protein), [3H]cimetidine (a
selective H2 antagonist; 459.8 fmol/mg protein) (Miyamoto and Nishio, 1993), and [3H]
serotonin (high affinity site: 29.5 fmol/mg protein, low affinity site: 1950 fmol/mg protein)
(Miyamoto et al., 1994). The lowest Bmax for specific binding sites might induce the lowest
magnitude of contraction to vasoconstrictors. Regional differences were observed in the Ang
II-induced contraction; however, this phenomenon was not observed in histamine- and
serotonin-induced contractions or in norepinephrine-induced relaxation (Miyamoto et al.,
1993) in porcine basilar arteries. As shown in Fig. 2, the 2nd responses to Ang II were weaker
than 1st responses, but the 3rd responses were not significantly different from 2nd responses.
Precise reasons about the loss of response to Ang II between the 1st and 2nd application were
unclear. But the 2nd responses were abolished by losartan, so the contraction on the 2nd
application was Ang II specific. The similar phenomena were observed in bovine basilar
arteries applied with histamine (Miyamoto and Nishio, 1994). The regional difference in Ang
II-induced contractions remained after removal of the endothelial cells (Fig. 1D). These results
suggest that the different levels of responsiveness to Ang II within the basilar artery are caused
by differences in the distribution of AT1 receptors located on the smooth muscle cells.
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The selective AT1 receptor antagonist losartan inhibited the Ang II-induced contraction with
a pIC50 of 7.33 (Fig. 3A), and the same effect remained after removal of the basilar arterial
endothelial cells (Fig. 5A). Moreover, the radioligand binding study using the membrane
fraction obtained from the smooth musculature of the basilar arteries showed that losartan, not
PD123319, inhibited the specific binding sites of [3H]Ang II with a pIC50 of 7.76 (Fig. 7).
These two pIC50 values (obtained from the functional and binding studies) were not
significantly different. These results suggest that AT1 receptors are located on the smooth
muscle cells and are responsible for vasoconstriction.

The selective AT2 receptor antagonist PD123319 (Widdop et al., 1993), enhanced Ang II-
induced contraction. This effect was abolished by removal of the basilar arterial endothelial
cells. These results suggest that AT2 receptors are located on the endothelial cells and are
responsible for vasorelaxation. This suggestion is supported by the results of our three other
experiments: (1) PD123319 had no effect on Ang II-induced contraction after inhibition of NO
production by the NO synthase inhibitor L-NA (Fig. 4); (2) the specific binding site of [3H]
Ang II on the membrane fraction obtained from smooth muscles was not inhibited by
PD123319 (Fig. 5B); and (3) Ang II increased NO production from porcine basilar arterial
endothelial cells in tissue culture medium (Fig. 8). These results suggest that the relaxing factor
induced by Ang II might be NO. NO production by AT2 receptor activation on endothelial
cells has also been reported in canine coronary arteries (Seyedi et al., 1995), rat aorta (Gohlke
et al., 1998; Pueyo et al., 1998), rat skeletal muscle microcirculation (Nora et al., 1998), and
porcine and rat pulmonary arteries (Hill-Kapturczak et al., 1999; Olson et al., 2004).

The evaluation of Ang II binding using intact basilar arteries might support the functional data
directly. However, small pieces of arteries would preclude picking up the receptors, especially
on the endothelial cells. So, in this study we did not evaluate Ang II binding in intact arteries.
It seems important to evaluate the AT2 receptors on porcine basilar arterial endothelial cells,
so near future radioligand binding study would be done using cultured endothelial cells.

The Scatchard plots and Hill coefficient (1.77) of the specific binding of [3H]Ang II showed
a positive cooperativity in porcine basilar arterial smooth muscle membrane fractions. These
results indicate that the resting state of the Ang receptor in smooth muscle is a low affinity
state, and that interaction with Ang II induces a portion of the receptors into a high affinity
“excited” state (Moore and Kwok, 1987). Positive cooperativity (Hill coefficient for Ang II,
1.41) has been reported in rat aorta smooth muscle cells (Moore and Scanlon, 1989). However,
the Scatchard plots of the specific binding of [3H]Ang II form a straight line in the rat liver
(Widdowson et al., 1993). It remains unclear why our Scatchard plot was not a straight line
and why the Hill coefficient was more than unity. Further studies might be needed to clarify
these points.

On the physiological condition, when Ang II acts on the basilar artery for contraction via
AT1 receptor stimulation, the endothelium would act to prevent too much contraction via
AT2 receptor stimulation and to keep the basilar arterial blood flow via releasing NO. In the
case of diabetes (Trauernicht et al., 2003) or hypertension, for example, spontaneous
hypertensive rat (SHR) (Bueno et al., 2005) or a renin-dependent model of hypertensive rat
(Callera et al., 2000), the endothelium would be injured and dysfunctional because NO
production was low and/or acetylcholine-induced relaxation was impaired. Therefore AT2
receptors might not act on the release of NO. It might be possible to speculate that diabetes or
hypertension bring the blood flow reduction in the basilar artery. This speculation might be
supported by a similar set of studies using SHR or diabetic rat.

In conclusion, Ang II induced more potent contractions in the proximal parts of isolated porcine
basilar arteries than in the distal parts. The response appears to be composed of a main

Miyamoto et al. Page 5

Life Sci. Author manuscript; available in PMC 2009 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



contraction (induced by the activation of AT1 receptors on smooth muscle cells) and relaxation
(induced by the activation of AT2 receptors on endothelial cells, followed by NO production).
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Fig. 1.
Typical response to angiotensin (Ang) II [B] in isolated porcine basilar arterial rings obtained
from region a [A]. Regional differences in responsiveness to Ang II are shown in [C]. After
removal of the endothelium, the regional difference in response to Ang II (10 nM) remained
[D]. The regions of arteries (a–d) used in [C] and [D] were shown in [A]. Each bar represents
the mean±s.e.m. from 7 [C] or 5 [D] pigs.

Miyamoto et al. Page 9

Life Sci. Author manuscript; available in PMC 2009 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Effects of repeated application of angiotensin (Ang) II (10 nM) on isolated porcine basilar
artery. Each bar represents the mean±s.e.m. for 8 pigs.
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Fig. 3.
Effects of the selective AT1 antagonist losartan [A] and the selective AT2 antagonist PD123319
[B] on angiotensin (Ang) II (10 nM)-induced contraction (control) in isolated porcine basilar
artery. Each bar represents the mean±s.e.m. for 8 pigs.
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Fig. 4.
Effects of L–NG-nitroarginine (L-NA) (an NO synthase inhibitor) and L-NA plus PD123319
(a selective AT2 antagonist) on the angiotensin (Ang) II (10 nM)-induced contraction (control)
in isolated porcine basilar artery. Each bar represents the mean±s.e.m. for 8 pigs.
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Fig. 5.
Effects of the selective AT1 antagonist losartan [A] and the selective AT2 antagonist PD123319
[B] on the angiotensin (Ang) II (10 nM)-induced contraction (control) in isolated porcine
basilar artery, after removal of the endothelium. Each bar represents the mean±s.e.m. for 7
pigs.
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Fig. 6.
Typical [3H]angiotensin (Ang) II binding to the membrane fraction from porcine basilar artery
smooth muscle (A), and a Scatchard plot (B). ▼: total binding, ○: non-specific binding, ●:
specific binding.
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Fig. 7.
Effects of the selective AT1 receptor antagonist losartan and the selective AT2 receptor
antagonist PD123319 on [3H]angiotensin (Ang) II (1 nM) binding sites (control) in the
membrane of porcine basilar artery smooth muscle. Each bar represents the mean±s.e.m. for
3 independent experiments performed in duplicate.
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Fig. 8.
Time cores of NO metabolite (NO2

−/NO3 −) production after angiotensin (Ang) II (0.1 µM)
treatment of cultured porcine basilar artery endothelial cells. Each bar represents the mean
±s.e.m. for 3 independent experiments in duplicate.
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Fig. 9.
Effects of PD123319 (1 µM) or L–NG-nitroarginine (L-NA) (100 µM) on NO metabolite
production 2 h after angiotensin II (0.1 µM) treatment of cultured porcine basilar arterial
endothelial cells. Each bar represents the mean±s.e.m. for 3 independent experiments in
duplicate.
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