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Abstract
A case–control study of lung cancer mortality in U.S. railroad workers in jobs with and without diesel
exhaust exposure is reanalyzed using a new threshold regression methodology. The study included
1256 workers who died of lung cancer and 2385 controls who died primarily of circulatory system
diseases. Diesel exhaust exposure was assessed using railroad job history from the US Railroad
Retirement Board and an industrial hygiene survey. Smoking habits were available from next-of-kin
and potential asbestos exposure was assessed by job history review. The new analysis reassesses
lung cancer mortality and examines circulatory system disease mortality. Jobs with regular exposure
to diesel exhaust had a survival pattern characterized by an initial delay in mortality, followed by a
rapid deterioration of health prior to death. The pattern is seen in subjects dying of lung cancer,
circulatory system diseases, and other causes. The unique pattern is illustrated using a new type of
Kaplan–Meier survival plot in which the time scale represents a measure of disease progression rather
than calendar time. The disease progression scale accounts for a healthy-worker effect when
describing the effects of cumulative exposures on mortality.

Keywords
Biostatistics; Cardiovascular disease; Death; Disease progression; Environmetrics; Epidemiology;
Exposure risk; First hitting time; Health status; Healthy worker effect; Kaplan–Meier plot; Latent
process; Lung cancer; Occupational health; Stochastic process; Survival analysis; Wiener process;
Work environment

1. Introduction
Diesel exhaust is likely to be a lung carcinogen (IARC, 1989; EPA, 2002; HEI, 1995). To
investigate the relationship between diesel exhaust exposure and lung cancer we conducted a
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case–control study (Garshick et al., 1987) and recently updated a retrospective cohort study
that included 54,973 white males (Garshick et al., 1988, 2004). In both studies we describe an
increased lung cancer risk in railroad workers with exposure attributable to diesel locomotives.
In Lee et al. (2004), we used a first hitting time regression model to assess lung cancer risk in
the workers included in a retrospective cohort study and demonstrated that the model can
provide additional insight into disease progression.

Since the original analysis of these data, interest in the health risks from diesel exhaust exposure
has expanded from lung cancer to other diseases. Studies such as Pope et al. (2004) have
focused attention on the role of long-term exposure to particulate matter on cardiovascular
mortality. Studies conducted in professional drivers have suggested associations between long
term exposures to diesel and other engine exhaust and ischemic heart disease (Tuchsen and
Endahl, 1999; Hannerz and Tuchsen, 2001; Bigert et al., 2004; Finkelstein et al., 2004). In this
paper, we extend the model by Lee, Garshick et al. and use the threshold regression model to
reanalyze the railroad worker case–control data set to assess both lung cancer mortality and
mortality from circulatory system diseases. The case–control data set also includes information
regarding cigarette smoking that was not available in the retrospective cohort study. Moreover,
the new model and methods are important to the fields of biostatistics and epidemiology in
their own right. The threshold regression model is quite different than traditional models used
in these fields, such as the proportional hazards (PH) model since insight into initial health
status and disease progression attributable to multiple risk factors is provided. For an overview
of threshold regression, the reader is referred to Lee and Whitmore (2006).

2. The data
The case–control data set is described fully in Garshick et al. (1987) so only a brief overview
is provided here. The U.S. railroad retirement board (RRB) manages the retirement system for
railroad workers. To qualify for retirement benefits, railroad workers must have at least 10
years of service. Next of kin can obtain benefits only with notification of the RRB of the
worker's death. This case–control data set consists of 3641 workers that included 1256 workers
who died of lung cancer (ICD 162, Eighth Revision of the International Classification of
Diseases (ICD-8)) between March 1, 1981 and February 28, 1982. There were 2385 controls
selected from the same RRB population so their birth dates were within 2.5 years and dates of
death within 31 days of case subjects and 90% of the cases had two controls. Controls were
drawn randomly from among workers who had no mention of cancer on the death certificate
and who did not die by suicide, accident or an unknown cause. There were 1814 who died of
circulatory disease as a cause of death and 577 who died of other causes. Six subjects had
primary lung cancer noted on the death certificate, but had a circulatory disease as an underlying
cause of death; hence, are included as both lung cancer and circulatory system deaths.
Information on smoking habits of subjects was obtained by surveying next of kin and there
were 72% with a history of smoking, 11% who never smoked, and 17% with unknown smoking
histories. Yearly Interstate Commerce Commission railroad job codes were available for
subjects from the RRB starting from 1959 until death or retirement.

Starting mainly after World War II, the U.S. rail industry converted from steam to diesel power
and by 1959, 96% of the locomotives in service were diesel powered. We considered this year
to be the effective beginning of diesel exposure in this analysis and prior to 1959, exposure
was considered to have been primarily attributable to steam locomotives. A detailed job history
was not available prior to 1959, and job category during the steam locomotive era was based
on the last job held on or before 1959. Workers with jobs with the potential for asbestos
exposure during the steam era were categorized using this job code and included locomotive
shop and boiler repair workers, car repair workers, and workers responsible for the maintenance
of railroad structures.
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Based on an industrial hygiene survey (Woskie, 1988a, b) and a review of railroad jobs
(Garshick et al., 1987) diesel exhaust exposure was considered in three categories: (1) train
operations personnel, such as engineers, fireman, conductors, brakemen, and hostlers, (2)
railroad locomotive shop workers, such as machinists, electricians and supervisors and (3) all
other employees such as clerks, ticket agents, station agents, railroad car repair workers, and
maintenance of way workers. The train operations personnel would experience regular
exposure attributable to operating trains. Although the greatest diesel exhaust exposures were
measured in the locomotive repair shops (Woskie, 1988a, b), the job codes included in the shop
category also included non-diesel locomotive shop workers and the overall degree of exposure
was uncertain. Finally, the other employees would have infrequent or no exposure. For the
analysis that follows, we equate diesel-exhaust exposure with employment in the trains
operations category starting in 1959, subsequently referred to as the engineer–brakeman job
category.

The main explanatory variables for our analysis include age at death (variable age), year the
subject first joined the railroad (variable first), year of retirement from the railroad (variable
retirement), years of work as an engineer or brakeman (variable exposed), years of unexposed
work, i.e., not as an engineer or brakeman (variable unexposed), years in retirement before
death (variable retired) and indicator variables for ‘ever worked as engineer or
brakeman’ (variable engineer), ‘ever worked in a railroad shop’ (variable shopworker), ‘ever
smoked cigarettes’ (variable smoking) and ‘ever exposed to asbestos’ (variable asbestos). Code
0 for the smoking indicator variable includes workers who never smoked and those with an
unknown smoking status. The work history variables allow the experience of each subject to
be divided into years before joining the railroad, years of work in each job category, and years
of retirement before death. We measure each subject's history from birth. The years from birth
until the subject joined the railroad is denoted by variable prior_railroad. Years of railroad
employment from year of hire to 1959 were considered to be unexposed work. Further
breakdowns of the work history are employed to refine the analysis.

3. Disease progression and threshold regression models
A subject's health status with respect to a particular disease (say, lung cancer) is a latent
(unobservable) stochastic process that fluctuates until the first time when the subject's condition
has deteriorated to a threshold that is the point of death. Lee and Whitmore (2004) refer to such
models as first-hitting time (FHT) models. Fig. 1 shows the basic situation. The figure
illustrates health status with respect to lung cancer for case and control subjects starting at birth.
The zero level is the threshold. Observe that the health status of a case subject (a subject who
dies of lung cancer in this instance) deteriorates until it reaches the zero threshold in 1981–
1982 and, hence, the case subject dies from that cause. On the other hand, the health status of
a control subject terminates above the zero level in 1981–1982 because another cause of death
has intervened. Therefore, the survival time of a control subject is a censored observation with
respect to lung cancer death. It will be seen later that, irrespective of how case and control were
defined when the data set was assembled, the role of a case subject may be considered as from
any specific cause, whether it is lung cancer, a cardiovascular disease or another cause.

Lee et al. (2004) introduce the concept of disease progression. Different calendar time intervals
during life will have different rates of disease progression, depending on the disease risk and
health stress to which the subject is exposed during the interval. Disease progression pertains
to the advance of the particular disease under study (say, lung cancer or cardiovascular disease).
The more slowly a disease progresses, the longer the subject postpones potential death from
that disease. Fig. 1 shows how the health status of a subject fluctuates stochastically over time
with a trend that is sometimes shallow and sometimes steep. The varying trend suggests that
a time-scale transformation might be helpful. The disease progression scale is marked off in
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equal units of expected health deterioration. Thus, health status will have a constant expected
rate of change or linear trend when measured against the disease progression scale. Fig. 2
illustrates the mapping of calendar time intervals into disease progression intervals for the work
history of a representative subject. In this figure and later, we represent calendar time and
disease progression by variables t and r, respectively. Observe in this example how the rate of
disease progression varies for different intervals of life experience. The interval corresponding
to time before joining the railroad, represented by variable prior_railroad, involves a slow rate
of disease progression, presumably because the worker is young, healthy and living in a benign
environment. In contrast, the worker's employment interval in an exposed environment,
experienced after joining the railroad and represented by variable exposed, involves more rapid
disease progression per unit of calendar time. Likewise, disease progresses at different rates
during intervals of unexposed employment and retirement. Arbitrarily, we choose retirement
as the reference environment and measure disease progression in units of retirement-equivalent
years. Thus, the interval for retirement, represented by variable retired, maps into an interval
of disease progression of the same length because we mark off the disease progression scale
in retirement-equivalent years.

Following the line of reasoning in Lee et al. (2004), the link between elapsed calendar time
ti and disease progression ri for a particular subject i has the following relationship in this study.

(1)

The mathematical relationship imitates the visual representation in Fig. 2. The general setup
assumes J job categories. Experience prior to joining the railroad and retirement are treated as

two job categories, specifically categories 1 and J. Notation  represents the time spent by

subject i in job category j in calendar interval [0, ti]. Thus, . Disease progression
per unit time in job category j is an unknown parameter αj that will be estimated. The vector
of parameters αj,j = 1,…,J − 1, in (1) is denoted subsequently by α. The Jth job category
(retirement) is chosen as the reference category. Thus, the rate αJ for the Jth job category is
set to unity (i.e., αJ = 1). This specification implies that the unit of measurement on the disease
progression scale corresponds to one retirement-equivalent year.

Observe from both Fig. 2 and formula (1) that the same disease progression value ri will be

given to all work histories that yield the same employment intervals , irrespective of
whether these employment intervals arise early or late in the work history or arise in fragments.
It is the total time spent in each kind of job that matters.

4. Sample log-likelihood function
As in Lee et al. (2004), we take the latent health status process, defined on the disease
progression scale, to be a Wiener diffusion process (i.e., Brownian motion with linear drift).
The first-hitting-time for such a process follows an inverse Gaussian distribution. The cited
article gives a number of arguments for the appropriateness of using a Wiener process to
describe health status. The data analyzed here also lend support to the reasonableness of this
theoretical model, as is shown later.

The inverse Gaussian distribution for the first-hitting-time depends on the mean parameter μ
of the underlying Wiener process and on the initial or starting health status level X(0)=x0. The
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variance parameter of the underlying Wiener process is set to unity because the health status
process is latent and, hence, can be given an arbitrary measurement unit. The parameter μ
measures the rate of decline in health status for each retirement-equivalent year of disease
progression and is assumed to be a constant rate. The constant value of μ implies that the health
status of a subject will tend to have a linear trajectory with reference to the disease progression
scale. The second parameter x0 measures the subject's health at birth and, hence, is the distance
that health status must fall for the subject to die. In engineering parlance, x0 may be viewed as
a subject's initial physiological strength and μ as his expected rate of decline in strength
measured on the retirement-equivalent time scale.

We let f(r|μ, x0) and F(r|μ, x0) denote, respectively, the probability density function (p.d.f.) and
cumulative distribution function (c.d.f.) of the first-hitting-time distribution defined in terms
of disease progression r. Both parameters μ and x0 will be linked to k regression covariates that
will be represented by row vector z = (1, z1,…, zk). The leading 1 in z allows for a constant
term in the regression relationship. An identity function of form

is used to link parameter μ to the covariates and a logarithmic function

is used to link parameter x0 to the covariates. Here β = (β0, β1, …, βk)' and γ = (γ0, γ1, …, γk)',
where β0 and γ0 are regression constants. The disease progression parameters α = (α1, …,
αJ−1)' will enter the sample log-likelihood function in the logarithmic form ln(αj) to ensure
positive parameter estimates.

Lee et al. (2004) derived likelihoods for threshold models for cohort studies. In this article, we
consider likelihoods for threshold models for case–control studies. Let the numbers of case

and control subjects be denoted by n1 and n2, respectively. We use μ(i) and  to denote μ and
x0, respectively, for subject i. Each case subject contributes an observed lifetime from the
reference date to the year of death. Each control subject contributes a censored survival time
(censored by another cause of death) measured from the same reference date. Hence, each case

subject i contributes probability density  to the sample likelihood function, for i =
1,…, n1, and each control subject i contributes survival probability

 to the sample likelihood function, for i = n1 + 1,…, n1 + n2.

Observe that the functions are defined in terms of disease progression r. The sample log-
likelihood function to be maximized therefore has the form:

(2)

The form of the likelihood function requires some justification. We recall that a cohort study
and case–control study differ in the way subjects are chosen (see, for example, Rothman,
1986). In the former, subjects are chosen based on varying exposure to a risk factor of interest
and are tracked over time until an endpoint of interest occurs (e.g., death). In a case–control
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study, subjects are chosen on the basis of the presence (case) or absence (control) of one
particular endpoint of interest and their exposures to a risk factor are compared. In both study
designs, the association of exposure to endpoint is of interest. The concept of latent survival
times is convenient in the context of competing causes of death that is involved in this
application. In a cohort study, a subject is imagined to have latent survival times {S1,…, SC}
for C causes of death, measured from time of birth or some other reference age. The observed
cause of death d and observed survival time Sd are given by

(3)

If follow-up is limited, then the survival time Sd may be censored. Furthermore, the latent
survival time for any cause of death other than the observed cause is also censored because
Sc > Sd for all c ≠ d. In contrast, in our case–control study, all subjects who die of some cause
in 1981–1982 are imagined to have had latent survival times {S1,…, SC} for C causes of death.
The observed cause of death d and observed survival time Sd are again given by (3). The
outcome Sd is the observed time lapse from the reference date until the year of death (1981–
1982). Again, the latent survival time for any cause of death other than the observed cause is
a censored observation because Sc >Sd for all c ≠ d. As a Wiener process is a time-reversible
stochastic process, the formulation of the case–control model, which looks backward from the
year of death, is equivalent to the forward-looking representation for a cohort study. Both give
rise to the same sample log-likelihood expression given in (2). The foregoing formulation
remains unchanged when a disease progression scale replaces the calendar time scale.

As well as justifying the mathematical form of the sample likelihood function, we wish to
elaborate on the limitations of the inferences we are drawing in this case–control sampling
context. As the description of the RRB data set in Section 2 makes clear, the sample contains
all lung cancer deaths during 1981–1982 and one or two randomly matched controls from the
same source of deaths. Subjects whose death certificates mentioned death from cancer, suicide,
accident or an unknown cause were excluded as controls. Control subjects were matched to
case subjects on birth date and time of death. Thus, the reference population for statistical
inferences here is a population of workers whose health and lifestyle characteristics and
occupational exposures correspond to those of U.S. railroad workers in the RRB group who
died in 1981–1982, with the exception of the excluded causes of death. The setup of the sample
likelihood function in (2) takes no account of the population proportions of case and control
subjects in the RRB data set and we do not attempt to estimate these proportions. The
subpopulation of workers with lung cancer deaths (the cases) is accounted for in the study.
Thus, the part of the sample likelihood function dealing with cases yields inferences that are
valid for lung cancer deaths in the reference population. The controls are a sample from a
matching subpopulation of workers. These workers are matched to the cases in the manner just
described and therefore are representative of workers who die from included causes of death,
other than lung cancer, with birth and death dates that match the lung cancer subpopulation.
Thus, the part of the sample likelihood function dealing with controls yields valid inferences
for workers dying of included causes in the matching subpopulation. This subpopulation is
precisely the population of interest in a case–control study where it is desired to assess
differential outcomes for subjects who have matching characteristics except for those of
exposure.

5. Results
The threshold regression model was fitted to the case–control data by maximizing the sample
log-likelihood function in (2). Indicator covariates smoking, engineer and asbestos were used
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as explanatory variables for log-initial health status ln(x0) and mean rate parameter μ. The
effect of adding the indicator variable shopworker will be postponed until later. It was expected
(and later confirmed) that the length of exposure has some effect. For this reason, the variable
exposed was broken into intervals shorter and longer than 10 years, creating variables exposed-
under 10 and exposed-over 10. The latter variable measures the excess of exposure beyond 10
years. Keep in mind that the intervals in question do not necessarily represent continuous
employment in the exposed job category, although for almost all subjects the employment
interval is continuous. The short and long intervals of employment without exposure did not
show similar large differences so variable unexposed was not partitioned. The threshold
regression model was fitted first with lung cancer deaths treated as cases, next with
cardiovascular deaths treated as cases and finally deaths from other causes (neither lung cancer
nor cardiovascular disease) as cases. Tables 1–3 show the results, which we now interpret.

1. Healthy-worker effect
The phrase healthy worker effect describes the phenomenon of employed persons appearing
to be healthier than unemployed persons who are comparable on other characteristics. Thus,
the simple fact of being employed is associated with better health. Adjustments for this effect
are essential in studies of occupational risk. We now look at the evidence for these effects in
the study.

The estimated coefficients ln(αj) show that years prior to joining the railroad, represented by
variable prior_railroad, are clearly healthy, for subjects dying of lung cancer, cardiovascular
disease or other causes. For lung cancer cases, for example, Table 1 gives a log-coefficient of
−2.78791 for prior_railroad. This coefficient corresponds to α̂1 =exp(−2.78791)=0.062, which
implies that disease progression prior to joining the railroad runs at a youthful rate that is only
6% of the rate during retirement, which acts as the reference (i.e., αJ = 1). The employment
interval unexposed also shows a strong healthy-worker effect relative to retirement for all three
causes of death. The healthy-worker effect for exposed-under 10 varies with cause of death.
For lung cancer and other causes of death, the log-coefficient for this variable is negative but
not large in absolute value. In the case of other causes of death, the coefficient is not
significantly different from zero. Thus, for these two causes of death, the healthy worker effect
appears to be weak for short employment as an engineer or brakeman. For cardiovascular deaths
(Table 2), the two coefficients for exposed-under 10 years and unexposed are almost identical,
both being large and negative. For example, for cardiovascular deaths, the rate coefficient for
unexposed is α̂4 = exp(−0.98792) = 0.372, which means that the disease progression rate during
unexposed employment is only 37% of that during retirement. Finally, for exposures in excess
of 10 years, as captured by variable exposed-over 10 years, the log-coefficients for deaths from
lung cancer, cardiovascular disease and other causes are all positive, although only significantly
so for the first two causes. These coefficients show a complete absence of a healthy worker
effect and imply, in fact, disease progression at rates at or exceeding those in retirement.

2. Effects of exposure
Now we turn to consider the regression coefficients of indicator variables smoking, engineer
and asbestos for the parameters ln(x0) and μ. All of the indicator effects are significantly
different from zero, except for those of asbestos for other causes of death (P-values of 0.101
and 0.067, respectively). Those for engineer are largest in absolute magnitude for all causes of
death. In fact, the engineer coefficients are almost an order of magnitude larger than those for
the other indicator variables.

The fact that the coefficients for each indicator variable have opposite signs for ln(x0) and μ
in all cases needs explanation. For example, the effects for engineer in the case of lung cancer
deaths (Table 1) are 1.15681 for ln(x0) and −0.89114 for μ. These coefficients imply that
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workers who have been engineers or brakemen have a higher initial health status x0 but a steeper
rate of decline (i.e., more negative value of μ) than workers who have never been engineers or
brakemen. The expected survival time E(S) for the threshold regression model is given by E
(S) = x0/|μ|, measured in retirement-equivalent years. Thus, the effects of engineer on the two
parameters x0 and μ offset each other in the numerator and denominator of the formula, as both
parameters are larger when the worker has been an engineer or brakeman. The net result of
these offsetting effects on estimated mean survival times will be examined in the Discussion
section.

3. Insights from modified KM plots
In seeking a cleaner summary of the findings, we have prepared three sets of Kaplan–Meier
(KM) survival plots, one set for each cause of death. Each plot has eight curves corresponding
to all possible outcomes of the indicator variables smoking, engineer and asbestos. Because
our model has introduced the concept of disease progression as a time scale, we plot estimated
survival probability against disease progression, which in this case is denominated in
retirement-equivalent years. Thus, the time scales of the survival plots are adjusted for the
subject's work history in terms of healthy-worker effects and other variability in the progress
of disease. To our knowledge, this kind of plot is new and, in this application, shows striking
contrasts between subjects who were engineers or brakemen (engineer = 1) and those who were
not (engineer = 0), for all three causes of death. Figs. 3–5 show the plots. The plots are semi-
parametric because although the disease progression scale has parameters estimated from the
threshold regression model, the KM plots themselves are nonparametric estimates of survival
distributions.

The KM plots show distinct clusters of survival curves for subjects who were engineers or
brakemen (engineer = 1) for all three disease categories. The survival curves for subjects dying
of lung cancer who were not in the engineer–brakemen job category show secondary clusters
based on whether they smoked or not. The survival curves for subjects dying of cardiovascular
disease or other causes who were not in the engineer–brakeman job category show less
separation based on smoking but pull apart in the right tails (a feature that is not highlighted
in the figures). For subjects in the engineer–brakemen job category (and presumably highly
exposed to diesel exhaust), the KM plots show high survival probabilities over a long initial
range of disease progression and then a sharp decline toward zero as disease progression
reaches the neighborhood of 30 retirement-equivalent years. This feature is found in the KM
plots for engineer = 1 for all three causes of death.

To contrast the modified KM plots with conventional KM plots in which survival probability
is plotted against age, we have prepared Fig. 6. This plot shows the conventional KM plot of
survival probability against age (in years) for lung cancer deaths. The plot has eight curves
corresponding to all possible outcomes of the indicator variables engineer, smoking, and
asbestos. Observe that the survival curves in Fig. 6 are roughly ordered in two groups by the
variable engineer with the engineer–brakeman job category engineer = 1 having poorer survival
prospects (more leftward survival curves). This conventional KM plot does not reveal the
distinctive shape and separation of the survival curves seen in the corresponding modified KM
plot for lung cancer shown in Fig. 3.

6. Discussion
1. Effects of shop employment

A total of 665 workers had worked in a railroad shop at some point of time (evershop = 1). Of
these, 17 had also worked in the engineer–brakeman job category at some time. The indicator
variable shopworker was added to the regression models displayed in Tables 1–3. The
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regression coefficients of this indicator variable for parameters ln(x0) and μ are tabulated below.
Its effects on ln(x0) are negative for all three causes but significant only for lung cancer and
cardiovascular disease. Its effects on μ are all positive but are significant at the conventional
0.05 level only for lung cancer.

Parameter ln(x0) μ

Estimate γ ̂j P-value Estimate β ̂j P-value

Lung cancer −0.19269 0.000 0.07744 0.028

Cardiovascular disease −0.12689 0.002 0.05568 0.132

Other −0.10315 0.111 0.04102 0.423

Introduction of covariate shopworker to the three regression models leaves the other regression
coefficients essentially unchanged (the results are not shown). Thus, on balance, shop workers
appear to experience some increased risk of death from both lung cancer and cardiovascular
disease.

2. Mean survival time
Tables 1–3 showed that the effects of the indicator variables engineer, smoking, and asbestos
have opposite signs for parameters ln(x0) and μ. The effects for variable engineer, for example,
are largest and imply higher values for initial health status x0 and more negative values for μ.
As noted earlier, the expected survival time E(S) for subjects (measured in retirement-
equivalent years) is related to the model parameters as follows: E(S) = x0/|μ|. Thus, the effects
of engineer on the two parameters are offsetting in the numerator and denominator as both
parameters rise with exposure.

Panels (a), (b) and (c) of Table 4 show the estimated mean survival times, calculated from the
fitted regression models, for all 23 = 8 possible outcomes of the three indicator variables
smoking, engineer and asbestos for the three diseases. The means are denominated in
retirement-equivalent years. Panel (d) shows the number of subjects for each of the eight
outcome combinations. The two rows in each disease panel compare the estimated means for
engineer = 0 and engineer = 1, respectively, for all combinations of the other two indicator
variables. Although the log-coefficients for engineer and the modified KM plots show distinct
survival patterns, depending on whether engineer = 1 or engineer = 0, the estimated mean
survival times show mixed comparisons. For example, for lung cancer deaths, non-smoking
subjects who were never exposed to asbestos (smoking = 0 and asbestos = 0) have an estimated
mean survival time E(S) of 39.9 and 30.1 retirement-equivalent years when engineer = 0 and
engineer = 1, respectively. A clear decrement in life expectancy with exposure is evident. The
corresponding numbers for cardiovascular deaths are 25.1 and 26.2 retirement-equivalent
years, respectively. Note that the latter two estimates for cardiovascular deaths are close,
suggesting that the offsetting effects come close to cancelling each other with respect to mean
survival time (in retirement-equivalent years) in this instance.

3. Pattern of the KM plots
The study raises interesting questions about the causes of the peculiar pattern of survival seen
in the modified KM plots. Certainly, within the first decade of exposure (i.e., during the interval
exposed-under 10), subjects in the engineer–brakemen job category enjoy a good measure of
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the healthy-worker effect. This effect is completely erased, however, beyond 10 years (as
measured by covariate exposed-over 10) when they experience a high rate of disease
progression. Moreover, as parameter μ is large (and negative) for engineers and brakemen,
health status declines rapidly with every retirement-equivalent year of living. Yet, because
these workers start from an elevated initial level of health status x0, the rapid decline does not
cause death until after an initial delay. Thus, in spite of their high rate of decline in health status,
workers who were most exposed to diesel exhaust have a stay of death because they are
inherently healthier to start. Nevertheless, when death finally comes, it happens to almost all
of them in rapid succession (at about 30 retirement-equivalent years of survival). These
observations suggest an exposure model where there is a latent period of exposure that may
initiate disease. Any of the diseases, once initiated, generally proceed very quickly and
predictably. The suggestion in the data that workers attracted to the engineer–brakeman job
category are initially healthier than other workers is an interesting conjecture that needs further
study.

4. Comparison with proportional hazards models
We noted in the introduction that the threshold regression model is quite different than
traditional models used in these fields, such as the proportional hazards (PH) model. It is evident
from the plots in Figs. 3–5 that the proportional hazards assumption is not appropriate for the
groups of survival curves corresponding to engineer = 1 and engineer = 0 because the curves
can be seen to cross over each other. This crossing property is inconsistent with proportional
hazards. Nonetheless, if PH regression were applied in this context, it would tend to overlook
the effects that our threshold regression model has detected. On the other hand, a comparison
of inverse Gaussian c.d.f.s (implied by the Wiener diffusion threshold regression model) with
the modified KM plots show good agreement and, hence, support the use of the model. We do
not present these comparative plots here.

5. Validity
Lee et al. (2004), in their cohort study of railroad workers, described the elevated risk of lung-
cancer death for subjects employed in the engineer/brakeman job category. A similar
association was observed using the case–control data set. This re-analysis also supports the
findings of the original case–control analysis, and has extended the findings in ways that give
greater insight into the effects of diesel exposure, especially with respect to risks from
cardiovascular diseases.

6. Collapsible lifetime regression model
The lifetime model presented here and in Lee et al. (2004) is a special case of a class of lifetime
regression models referred to in the literature as collapsible models. These models have evolved
from theoretical and practical suggestions put forward by several authors including, most
recently, Oakes (1995), Kordonsky and Gertsbakh (1997), Duchesne and Lawless (2000), and
Duchesne and Rosenthal (2003). The practical contexts for much of this development work
have been various degradation and internal wear processes for equipment. The analogy to
degradation of human health is immediate, where the engineering role of cumulative equipment
usage corresponds to our disease progression measure here.

Acknowledgements
This research is supported in part by NIH Grants OH008649 (Lee), CA79725 and CCR115818 (Garshick), and the
Natural Sciences and Engineering Research Council of Canada (Whitmore).

Lee et al. Page 10

J Stat Plan Inference. Author manuscript; available in PMC 2009 February 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
Bigert C, Klerdal K, Hammar N, Hallqvist J, Gustavsson P. Time trends in the incidence of myocardial

infarction among professional drivers in Stockholm 1977–1996. Occup Environ Med 2004;61:987–
991. [PubMed: 15550604]

Duchesne T, Lawless J. Alternative time scales and failure time models. Lifetime Data Anal 2000;6:157–
179. [PubMed: 10851840]

Duchesne T, Rosenthal JS. On the collapsibility of lifetime regression models. Adv Appl Probab
2003;35:755–772.

Finkelstein MM, Verma DK, Sahai D, Stefov E. Ischemic heart disease mortality among heavy equipment
operators. Am J Ind Med 2004;46(1):16–22. [PubMed: 15202121]

Garshick E, Schenker MB, Munoz A, Segal M, Smith TJ, Woskie SR, Hammond SK, Speizer FE. A
case–control study of lung cancer and diesel exhaust exposure in railroad workers. Amer Rev Respir
Dis 1987;135:1242–1248. [PubMed: 3592400]

Garshick E, Schenker MB, Munoz A, Segal M, Smith TJ, Woskie SR, Hammond SK, Speizer FE. A
retrospective cohort study of lung cancer and diesel exhaust exposure in railroad workers. Amer Rev
Respir Dis 1988;137(4):820–825. [PubMed: 3354987]

Garshick E, Laden F, Hart JE, Rosner B, Smith TJ, Dockery DW, Speizer FE. Lung cancer in railroad
workers exposed to diesel exhaust. Environ Health Perspect 2004;112:1539–1543. [PubMed:
15531439]

Hannerz H, Tuchsen F. Hospital admissions among male drivers in Denmark. Occup Environ Med
2001;58(4):253–260. [PubMed: 11245742]

Health Effects Institute. Diesel exhaust. A critical analysis of emissions, exposure, and health effects.
Diesel Working Group, Health Effects Institute. 1995

IARC (International Agency for Research on Cancer). IARC Monographs on the Evaluation of
Carcinogenic Risks to Humans. Vol. 46. IARC; Lyons: 1989.

Kordonsky KB, Gertsbakh I. Multiple time scales and the lifetime coefficient of variation: engineering
applications. Lifetime Data Anal 1997;3:139–156. [PubMed: 9384619]

Lee, MLT.; Whitmore, GA. First hitting time models for lifetime data. In: Rao, CR.; Balakrishnan, N.,
editors. Handbook of Statistics: Advances in Survival Analysis. Vol. 23. 2004. p. 537-543.

Lee MLT, Whitmore GA. Threshold regression for survival analysis: modeling event times by a stochastic
process. Statist Sci 2006;21:501–513.

Lee MLT, Garshick E, Whitmore GA, Laden F, Hart J. Assessing lung cancer risk to railroad workers
using a first hitting time regression model. Environmetrics 2004;15:1–12.

Oakes D. Multiple time scales in survival analysis. Lifetime Data Anal 1995;1:7–18. [PubMed: 9385093]
Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ. Cardiovascular

mortality and long-term exposure to particulate air pollution. Circulation 2004;109:71–77. [PubMed:
14676145]

Rothman, KJ. Modern Epidemiology. Little Brown and Company; Boston, MA: 1986.
Tuchsen F, Endahl LA. Increasing inequality in ischaemic heart disease morbidity among employed men

in Denmark 1981–1993: the need for a new preventive policy. Int J Epidemiol 1999;28(4):640–644.
[PubMed: 10480690]

US Environmental Protection Agency. Health assessment document for diesel engine exhaust.
Washington, DC: 2002.

Woskie SR, et al. Estimation of the diesel exhaust exposures of railroad workers: I. Current exposures.
Amer J Ind Med 1988a;13(3):381–394. [PubMed: 3354586]

Woskie SR, et al. Estimation of the diesel exhaust exposures of railroad workers: II. National and
historical exposures. Amer J Ind Med 1988b;13(3):395–404. [PubMed: 3281456]

Lee et al. Page 11

J Stat Plan Inference. Author manuscript; available in PMC 2009 February 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Illustrative lung cancer health status paths for a case subject (lung cancer death) and a control
subject (another cause of death) who died in 1981–1982. The control subject has a censored
survival time with respect to lung cancer.
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Fig. 2.
Correspondence of calendar time (t) and disease progression (r) scales for a representative
subject having exposed and unexposed employment intervals prior to retirement (and death).
Disease progression is measured in retirement-equivalent years.
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Fig. 3.
Kaplan–Meier plot of survival probability against disease progression for lung cancer deaths.
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Fig. 4.
Kaplan–Meier plot of survival probability against disease progression for cardiovascular
deaths.
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Fig. 5.
Kaplan–Meier plot of survival probability against disease progression for other deaths.
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Fig. 6.
Kaplan–Meier plot of survival probability against age (in years) for lung cancer deaths.
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Table 1
Lung cancer deaths form the cases

Parameter Variable Estimate P-value

ln(x0)

Engineer 1.15681 0.000

Smoking 0.08389 0.000

Asbestos 0.08202 0.000

Constant 2.40497 0.000

μ

Engineer −0.89114 0.000

Smoking −0.16693 0.000

Asbestos −0.07824 0.000

Constant −0.27750 0.000

ln(αj)

j = 1 prior_railroad −2.78791 0.000

j = 2 Exposed-under 10 yr −0.33369 0.001

j = 3 Exposed-over 10 yr 0.08839 0.014

j = 4 Unexposed years −1.37027 0.000

Covariates smoking, engineer and asbestos are retained for ln(x0) and μ. Exposure intervals are divided between short (‘under 10’ years) and long (‘over
10’ years).
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Table 2
Cardiovascular deaths form the cases

Parameter Variable Estimate P-value

ln(x0)

Engineer 0.67089 0.000

Smoking −0.08175 0.001

Asbestos 0.14787 0.000

Constant 2.78009 0.000

μ

Engineer −0.56060 0.000

Smoking 0.09355 0.000

Asbestos −0.12960 0.000

Constant −0.64107 0.000

ln(αj)

j = 1 prior_railroad −4.04036 0.000

j = 2 Exposed-under 10 yr −0.86899 0.000

j = 3 Exposed-over 10 yr 0.11498 0.001

j = 4 Unexposed years −0.98792 0.000

Covariates engineer, smoking and asbestos are retained for ln(x0) and μ. Exposure intervals are divided between short (‘under 10’ years) and long (‘over
10’ years).
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Table 3
Deaths from causes other than lung cancer and cardiovascular disease form the cases

Parameter Variable Estimate P-value

ln(x0)

Engineer 0.91553 0.000

Smoking 0.11826 0.000

Asbestos 0.04706 0.101

Constant 2.61406 0.000

μ

Engineer −0.70169 0.000

Smoking −0.10049 0.001

Asbestos −0.05413 0.067

Constant −0.33419 0.000

ln(αj)

j = 1 prior_railroad −2.98270 0.000

j = 2 Exposed-under 10 yr −0.17049 0.167

j = 3 Exposed-over 10 yr 0.02736 0.624

j = 4 Unexposed years −1.19148 0.000

Covariates smoking, engineer and asbestos are retained for ln(x0) and μ. Exposure intervals are divided between short (‘under 10’ years) and long (‘over
10’ years).
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Table 4
(a)–(c) Estimated mean survival times in retirement-equivalent years, classified by cause of death, and (d) numbers of
subjects, for all combinations of indicator variables engineer, smoking and asbestos

Engineer Smoking = 0 Smoking = 1

Asbestos = 0 Asbestos = 1 Asbestos = 0 Asbestos =1

(a) Lung cancer

Engineer = 0 39.9 33.8 27.1 25.0

Engineer = 1 30.1 30.7 28.7 29.4

(b) Cardiovascular disease

Engineer = 0 25.1 24.3 27.1 25.4

Engineer = 1 26.2 27.5 26.2 27.2

(c) Other cause

Engineer = 0 40.9 36.9 35.4 33.0

Engineer = 1 32.9 32.8 33.8 33.8

(d) Numbers of subjects

Engineer = 0 467 291 1062 630

Engineer = 1 205 104 543 339
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