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ABSTRACT

Motivation: Gene expression Quantitative Trait Locus (eQTL)
mapping measures the association between transcript expression
and genotype in order to find genomic locations likely to regulate
transcript expression. The availability of both gene expression and
high-density genotype data has improved our ability to perform
eQTL mapping in inbred mouse and other homozygous populations.
However, existing eQTL mapping software does not scale well when
the number of transcripts and markers are on the order of 105 and
105–106, respectively.
Results: We propose a new method, FastMap, for fast and efficient
eQTL mapping in homozygous inbred populations with binary allele
calls. FastMap exploits the discrete nature and structure of the
measured single nucleotide polymorphisms (SNPs). In particular,
SNPs are organized into a Hamming distance-based tree that
minimizes the number of arithmetic operations required to calculate
the association of a SNP by making use of the association of its
parent SNP in the tree. FastMap’s tree can be used to perform both
single marker mapping and haplotype association mapping over
an m-SNP window. These performance enhancements also permit
permutation-based significance testing.
Availability: The FastMap program and source code are available at
the website: http://cebc.unc.edu/fastmap86.html
Contact: iir@unc.edu; nobel@email.unc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Quantitative Trait Locus (QTL) mapping is a set of techniques
that locates genomic loci associated with phenotypic variation
in a genetically segregating population. QTL mapping has been
highly successful in determining causative loci underlying several
disease phenotypes (Cervino et al., 2005; Hillebrandt et al., 2005;
Wang et al., 2004) and can broadly be subdivided into two
classes: linkage mapping and association mapping. For standard
linkage mapping in experimental crosses, likelihood or regression
approaches are used to map QTL, with flanking markers used to
infer genotypes in the intervals between widely spaced markers
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(i.e. >1 cM) (Haley and Knott, 1992; Lander and Botstein, 1989).
As marker density increases, linkage statistics may be computed
at individual marker loci, with minimal loss in precision or
power (Kong and Wright, 1994). In contrast, simple association
mapping does not attempt to explicitly consider the linkage
disequilibrium structure between marker loci, and thus typically
considers association statistics computed only at the marker loci. In
either case, the statistics computed at the markers in experimental
cross-linkage designs, and in association studies, are often identical,
e.g. t-statistics to detect differences in phenotype means as a function
of genotype. Here, we consider the case of markers collected at
sufficient density so that association statistics may be calculated
only at the observed markers.

Recent advances in gene expression and single nucleotide
polymorphism (SNP) microarray technology have lowered the cost
of collecting gene expression and high-density genotype data on
the same population. These technologies have been used to produce
high-density SNP datasets with thousands of transcripts and millions
of allele calls in both mice (Frazer et al., 2007b; Szatkiewicz
et al., 2008) and humans (Frazer et al., 2007a). eQTL mapping has
been successfully carried out in several inbred mouse populations
(Bystrykh et al., 2005; Chesler et al., 2005; Gatti et al., 2007;
McClurg et al., 2007; Pletcher et al., 2004; Schadt et al., 2003).
These studies have provided a revealing genome-wide view of the
genetic basis of transcriptional regulation in multiple tissues, and
form a necessary foundation for systems genetics (Kadarmideen
et al., 2006; Mehrabian et al., 2005).

The calculation of associations between tens of thousands
of transcripts and thousands to millions of SNPs creates a
computational challenge that can stretch or overwhelm existing
tools. These challenges are further compounded by multiple
comparison issues arising from the large number of available SNPs
and transcripts. Various methods have been used to address these
issues. A resampling approach (Carlborg et al., 2005; Churchill and
Doerge, 1994; Peirce et al., 2006) is one common way of addressing
multiple comparisons among markers, and it is used by several
available QTL mapping tools (Broman et al., 2003; Manly et al.,
2001; Wang et al., 2003). Multiple comparisons among transcripts
has been previously addressed by thresholding transcripts using
q-values (Storey and Tibshirani, 2003) obtained from transcript-
specific testing of association with SNPs using Likelihood Ratio
Statistic (LRS) (Chesler et al., 2005) or the mixture over markers
method (Kendziorski et al., 2006).
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While parallel computation has been suggested as a potential
solution to the computational challenges associated with eQTL
analysis (Carlborg et al., 2005), many researchers have neither the
expertise nor the resources required to administer and maintain
a computing cluster. To address the growing need for eQTL
mapping in high-density SNP datasets, and the poor scalability
of the existing computational tools, we developed the FastMap
algorithm and implemented it as a Java-based, desktop software
package that performs eQTL analysis using association mapping. We
achieve computational efficiency through the use of a data structure
called a Subset Summation Tree, which is described in Section 2
below. FastMap performs either single marker mapping (SMM) or
haplotype association mapping (HAM) by sliding an m-SNP window
across the genome (Pletcher et al., 2004). FastMap is currently
intended for the use with inbred mouse strains. Significance
thresholds and p-values are calculated for each transcript using
multiple permutations of transcript expression values. In order to
address multiple comparisons across transcripts, FastMap assigns
a q-value (Storey and Tibshirani, 2003) assessing FDR, to each
transcript. We apply our software tool to two publicly available
datasets consisting of gene expression measurements in panels of
inbred mice and compare our results to other software tools.

2 METHODS
This section first describes the calculations of test statistics (correlations) for
SMM in a 1-SNP sliding window. First we introduce the concept of a subset
sum Mg(s) and a Subset Summation Tree. Subset sums are quantities that
can be efficiently calculated using the Subset Summation Tree, and are used
in the calculation of correlations. We then show how the subset sums and
Subset Summation Tree can be adapted to the fast calculation of ANOVA
test statistics for m-SNP sliding windows (m>1).

In association mapping for homozygous inbred strains, the input data
consists of two matrices: the first contains real-valued transcript expression
measurements and the second contains SNP allele calls, coded as 0 for the
major allele and 1 for minor allele. Each matrix has the same number of
samples (strains) n. Let S be the number of SNPs and let G be the number
of transcripts.

Homozygous SNPs: 1-SNP window: we use the Pearson correlation as an
association statistic in the case of a 1-SNP window. For a given transcript
g and SNP s the correlation between g and s is

cor(g,s)= cov(g,s)√
Var(g)Var(s)

=
1
n

n∑
i=1

gisi − 1
n2

n∑
i=1

gi

n∑
i=1

si√
Var(g)Var(s)

To simplify the formula, we assume without loss of generality that each
transcript expression vector g is centered and standardized such that

n∑
i=1

gi =0 and
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i=1
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i =1 (1)

In this case, the correlation expression reduces to
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The denominator can be calculated once for each SNP, because it depends
only upon the Hamming weight of s. In contrast, the numerator must be
calculated for every SNP–transcript pair (S×G computations). Our goal is
to speed up calculation of the numerator. Denote the numerator by Mg(s):

Mg(s)=cov(g,s)=
n∑

i=1
gisi = ∑

i:si=1
gi

Fig. 1. The Subset Summation Tree is used to calculate the covariance sums
in Pearson’s correlation statistic. The table shows one gene expression vector
and six corresponding SNP vectors for seven strains. At each node, the
covariance of the gene expression with each SNP is calculated with one
addition operation.

As the SNPs are binary, Mg(s) is simply the sum of transcript expression
values over a subset of samples defined by the minor allele of the SNP.

To illustrate how the calculation of the Mg(s) can be simplified, consider
two SNPs s and s′ that differ only at the i-th position (thus s and s′ have
Hamming distance of 1):

s= (s1,s2, ...,si−1,si =0,si+1, ...,sn)

s′ = (s1,s2, ...,si−1,s
′
i =1,si+1, ...,sn)

In this case, the quantity Mg(s′) can be calculated quickly (in one arithmetic
operation) from Mg(s) as follows:

Mg(s′)=
∑

gis
′
i =

∑
gisi +gi(s

′
i −si)=Mg(s)+gi (2)

For any given transcript, the association statistic is the same for SNPs with the
same strain distribution pattern (SDP). Hence, we calculate the association
statistic once for each unique SDP. The McClurg mouse data used in this
article contains 156 525 SNPs, but has only 64 157 unique SDPs.

Additional improvements are based on Formula (2). To take full advantage
of this relationship between correlations, we construct a tree, which we call
a Subset Summation Tree. The vertices of the tree correspond to unique
subsets of samples. Each SDP defines a subset of samples associated with
its minor allele. The tree contains all SDPs appearing in the SNP matrix.
By construction, the edges of tree connect SDPs which differ in one position
(i.e. Hamming distance 1). The process of tree construction is described later
in this section. It ensures that the tree is at least as efficient (in terms of weight
based on the Hamming distance) as the minimum spanning tree connecting
all SDPs from the SNP matrix. An illustration of a subset summation tree is
given in Figure 1.

Traversing the tree we can calculate the covariance Mg(s) for all SDPs
in the tree with one arithmetic operation per SDP. One additional arithmetic
operation is required to calculate the correlation from Mg(s).

Homozygous SNPs: m-SNP sliding window: The use of a consecutive
3-SNP sliding window has been shown to improve the associations that can
be detected in mouse studies (Pletcher et al., 2004). FastMap is capable of
employing any m-SNP window specified by the user. Within each m-SNP
window, the strains form haplotypes that partition strains into ANOVA
groups. A one way ANOVA test statistic is then used to assess the relationship
between a gene g and an m-SNP window.

Consider a 3-SNP window that contains k unique haplotype (ANOVA)
groups across the n stains. Let Ai denote the set of samples in the i-th ANOVA
group, and let the transcript expression values in the i-th ANOVA group be
gij, j = 1,...,ni. The associated ANOVA test statistic is calculated as

F = (n−k)SSB

(k−1)SSW
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where the between group sum of squares SSB, and within group sum of
squares SSW are calculated as follows:

SSB=
n∑

i=1
ni(ḡi − ḡ)2 SSW =

k∑
i=1

ni∑
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The sums of squares are related by SST =SSB+SSW .
For a given transcript, the total sum of squares (SST ) remains constant

across all SNPs. As in the 1-SNP window case, the gene expression values
are standardized to satisfy the conditions in Equation (1). For standardized
expression measurements, the SST and SSB calculations simplify as follows:
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where Mg(Ai) is sum of the transcript expression values for the i-th ANOVA
group. As before, Mg(Ai) can be calculated efficiently using the Subset
Summation Tree. The difference is that the tree for these calculations
connects subsets of samples defining the m-SNPANOVA groups, as opposed
to SDPs defined by single SNPs. Once the SSB is calculated, the F-statistic
is calculated as:

F = (n−k)SSB

(k−1)(1−SSB)

Tree construction: The Subset Summation Tree is used for fast calculation
of Mg(Ai)—sums of transcript expression values over subsets of samples
{Ai}. Tree construction is initiated by obtaining the family of sample subsets
of interest {Ai} from the set of SNPs. The tree is grown starting from single
root element (empty subset) by sequential addition of the nearest element
from {Ai} to the tree.

All the subsets {Ai} are put in a hash table (HT) that stores the subsets that
are not yet members of the tree. The tree is grown by connecting subsets that
are at the minimum distance from the tree. Node selection and connection
to the tree can be optimized by taking advantage of two facts. First, the
Hamming distances are positive integers. Thus, once we find a subset in the
HT within distance 1 of a particular tree vertex, we connect them, adding the
subset to the tree and removing it from the HT. To find such an SDP in the HT
we use the second fact: for any subset, there are only n possible subsets that
are within hamming distance 1 from it. Thus, instead of calculating distances
from a certain tree vertex to all subsets in the HT we can check if the HT
contains any of the n possible neighbor subsets. This approach reduces the
complexity of the search for close (within distance 1) neighbors of a given
tree vertex from O(nS) to O(n).

The procedure above is applicable as long as there are SDPs in the HT
within distance 1 from the tree. Once there are no SDPs in the HT within
distance 1 from tree vertices, the search continues for SDPs within distance 2.
The same optimizations are applicable here—once an SDP within distance 2
is found, it should be connected to the tree and there are n(n−1)/2 possible
SDPs within distance 2 from a given tree vertex. The same technique is
applied even for the search for subsets within distance 3. When the remaining
vertices are at Hamming distance 4 or greater, an exhaustive search is
performed to find a node in HT that is a minimum distance from the tree.
This process is repeated until all SNPs have been inserted into the tree.

Permutation-based significance thresholds: for a single transcript, the
association statistic is calculated between the observed values of that
transcript and all SNPs. The transcript data are then permuted while the SNP
data are held fixed. Association statistics are calculated between the permuted

transcript values and all SNPs and the maximum association statistic is
stored. The distribution of the maximum association statistics obtained from
1000 permutations of the transcript’s values is used to define significance
thresholds for individual (transcript, SNP) pairs, and to assign a percentile-
based p-value to the observed maximum association of the transcript across
SNPs.

Significance across multiple transcripts: the procedure above assigns a
p-value to each transcript that accounts for multiple comparisons across SNPs
through the use of the maximum association statistic. In order to correct for
multiple comparisons across transcripts, we calculate q-values (Storey and
Tibshirani, 2003) for each transcript, using the p-values obtained from the
permutation-based maximum association test.

2.1 Data
2.1.1 BXD gene expression data The BXD Liver dataset is available from
genome.unc.edu, and is described in Gatti et al. (2007). Briefly, it consists
of microarray-derived expression measurements for 20 868 transcripts in 39
BXD recombinant inbred strains and the C57BL/6J and DBA/2J parentals.
The data were normalized using the UNC Microarray database and QTL
analysis was performed on all transcripts.

2.1.2 BXD marker data The BXD marker data consist of 3795
informative markers taken from a larger set of 13 377 markers. Briefly,
consecutive markers with the same SDP were removed and only the flanking
markers of such regions were included. The data were downloaded from
http://www.genenetwork.org/genotypes/BXD.geno; further information is
available at http://www.genenetwork.org/dbdoc/BXDGeno.html.

2.1.3 Hypothalamus gene expression data The mouse hypothalamus
dataset GSE5961 was downloaded from the NCBI Gene Expression Omnibus
website. These data are described in McClurg et al. (2007). The 58 CEL
files were normalized using the gcrma package from Bioconductor (version
1.9.9) in R (version 2.4.1). The data were subset to include only the 31 male
samples, and removing the NZB data because the entire array appeared as
an outlier in hierarchical clustering of the arrays. There were 36 182 probes
on the array; of these a subset of 3672 transcripts having an expression
value >200 and at least a 3-fold difference in expression in one strain were
selected. Transcripts containing a single outlier strain with expression values
>4 SDs from the mean were removed from the dataset. There were 402 such
transcripts, leaving 3270 transcripts for analysis in FastMap.

2.1.4 Hypothalamus SNP data The SNP data were obtained from
McClurg et al. (2007) and originally contained 71 inbred strains. Missing
genotype data were imputed using the algorithm of Roberts et al. (2007a).
There were 156 525 SNPs, of which 99 were monomorphic across the 32
strains. These SNPs were removed from the analysis, leaving 156 426 SNPs.
There were 64 790 unique SDPs in this final dataset.

2.2 Settings
In Section 3.2, we compare FastMap performance with two other publicly
available tools: SNPster (McClurg et al., 2006) and R/qtl (Broman et al.,
2003). The setting used to run them are detailed below.

2.2.1 Snpster settings SNPster runs were performed using the tool
available at snpster.gnf.org. The following settings were selected and are
listed in the order in which they appear on the website. (i) Log transform
data: No. (ii) Test statistic: F-test. (iii) Method of calculating significance:
parametric. (iv) Compute gFWER: No. The default settings were used for
the remaining options on the web site.

2.2.2 R/qtl settings R/qtl version 1.08-56 for R 2.7 was used to perform
eQTL analysis on the BXD Liver dataset. R/qtl was configured to perform
Haley–Knott regression only at the observed markers. eQTL significance
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(a) (b)

(c)

Fig. 2. FastMap application GUI. (a) FastMap with a list of probes on the
left and the QTL plot on the right. (b) A zoomed in view of the significant
QTL on Chr 1. (c) The same region in the UCSC Genome browser, to which
FastMap can connect.

was determined by performing 1000 permutations for each transcript and
selecting only those eQTLs above the 95% LOD threshold.

2.2.3 Computer for performance testing A Pentium 4 with a clock
speed of 3.4 GHz and 4 GB of RAM running Microsoft Windows XP
Professional(r), SP2 was used for all timing runs. No other applications were
open during the runs.

3 RESULTS AND DISCUSSION

3.1 FastMap application
FastMap is written in the Java programming language and is driven
by a simple graphical user interface (GUI, Fig. 2a). The required
input files are (i) a transcript expression file with mean expression
values for each mouse strain and (ii) a SNP file containing allele
calls for all strains, with the major and minor alleles coded as 0
and 1, respectively. Once the SNP file has been loaded, FastMap
constructs a Subset Summation Tree (see Section 2) for the SNP
data, a computational task that is performed only once for a given
set of strains. FastMap allows the user to perform either SMM by
calculating the Pearson correlation of each transcript expression
measurement with each SNP, or HAM by sliding an m-SNP window
across the genome and calculating the ANOVA F-statistic for the
phenotype versus the distinct haplotypes observed in the window
(Pletcher et al., 2004). The association statistic at each SNP is
displayed in a zoomable panel that links to the University of
California at Santa Cruz Genome Browser (Kent et al., 2002; Pontius
et al., 2007) (Fig. 2b and c). Association plots may be exported as
text files or as images.

QTL mapping with sparsely distributed markers has traditionally
used maximum likelihood methods and has employed the LRS
or the related Log of the Odds ratio (LOD) as a measure of the
association between genotype and phenotype [LRS = 2ln(10)×
LOD]. When marker density is high, regression techniques applied
only at the observed markers will produce results which are
numerically equivalent to the LRS or LOD (Kong and Wright,
1994). In fact, the LRS, Student t-statistic, Pearson correlation
and the standard F-statistic, can be shown to be equivalent when
they are applied at the marker locations (Supplementary Material).
While previous literature has shown that regression methods produce
estimates with a higher mean square error and have less power
(Kao, 2000), these results apply primarily to the case of interval

mapping when the spacing between markers is wide (>1cM). For
these reasons, FastMap employs the Pearson correlation for SMM
and the F-statistic for HAM when employing high-density SNP
datasets.

The significance of eQTLs for a single transcript may be
determined using a permutation-based approach (Churchill and
Doerge, 1994). The expression values of each transcript are
permuted, the association statistics of each transcript with all SNPs
are calculated and the maximum transcript-specific association
statistic is retained. This process is repeated 1000 times, and a
significance threshold is taken as the 1−α percentile of the empirical
distribution of the maxima. Both the number of permutations and the
significance thresholds may be specified by the user. Since the
various association statistics are equivalent when applied at the
markers, the significant marker locations will be the same for
any choice of these statistics. Once a QTL peak that exceeds a
user selected threshold has been identified, the width of the QTL
must be defined in order to identify potential candidate genes for
further study. Given a local maximum d, a confidence region can
be defined as all markers q in an interval around d such that
2ln(LR(q))≥maxd 2ln(LR(d))−x and this interval is referred to as
an (x/2ln10)-LOD support interval (Dupuis and Siegmund, 1999).
The choice of x=4.6 yields a 1-LOD confidence interval, which has
been widely used in linkage analysis. A more conservative choice of
x=6.9 (a 1.5-LOD interval) is more appropriate to situations with
dense markers, yielding approximate 95% coverage under dense
marker scenarios. Intervals for non-LR association statistics can
be calculated from the relationships between statistics provided in
the Supplementary Material. In practice, eQTL peak regions are
limited by the effective resolution determined by breeding and
recombination history.

FastMap assigns a p-value to each transcript that indicates the
significance of the maximum association of that transcript across
all the available markers. In situations where it is necessary or of
interest to simultaneously consider multiple transcripts, additional
steps must be taken to account for the resulting multiple comparison
problem. We address this by calculating the q-value (Storey and
Tibshirani, 2003) of every transcript. The q-value of a transcript is
related to the false discovery rate. In particular, the q-value of a
transcript is an estimate of the fraction of false discoveries among
transcripts that are equally or more significant than it is. For example,
if we create a list of transcripts consisting of a transcript with q-value
equal to 10%, and all those transcripts having smaller permutation-
based values, then we expect 10% or less of the transcripts on
the list to have a significant association with at least on SNP or
haplotype.

Permutation-based significance testing is frequently used in eQTL
analysis (Doerge and Churchill, 1996; Peirce et al., 2006), and
typically forms the bulk of the computational burden in eQTL
mapping. It is natural to ask whether a parametric approach, based on
Gaussian p-values, would be just as effective and save a significant
amount of time. We note that permutation-based testing offers
several advantages over parametric approaches. Permutation testing
deals cleanly with the problem of multiple comparisons, and induces
a null distribution under which there is no association between
transcript expression and genotype, regardless of the underlying
distributions from which the data are drawn, and the correlations
between SNPs. In addition, the normality assumptions underlying
parametric tests are often violated in practice.
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Table 1. FastMap eQTL mapping times

Software DataSet Method Transcripts Markers Time (min)

R/qtl
BXD

LRS 100
3795

33.73
FastMap SMM 20868 29.95
SNPster

McClurg HAM 3672 156 525
6609.6

FastMap 737.5

3.2 Performance and speed
In order to gauge the performance improvement provided by
FastMap over existing software, we compared computation times
using two microarray datasets. The first consists of 20 868 transcripts
and 3795 markers in 41 strains of mice [BXD dataset; (Gatti
et al., 2007)]. This dataset was selected because, unlike the
following larger dataset, it can be loaded into the widely used R/qtl
package without exhausting computer memory. The second is a
hypothalamus dataset (McClurg et al., 2006) that consists of 3672
transcripts, 156 525 markers in 32 strains of laboratory inbred mice.
This dataset was selected for its dense genotype information, which
is on the scale of the expected high-density SNP data for which we
designed FastMap.

The amount of time required to perform eQTL mapping in these
datasets is summarized in Table 1. In the BXD dataset, FastMap
performs SMM for the entire set of 20 868 transcripts in about half
an hour, which is the same time required for R/qtl to analyze 100
transcripts. The hypothalamus data were previously analyzed with
an association mapping tool called SNPster (McClurg et al., 2006),
which is available as a web application hosted by the Genomic
Institute of the Novartis Research Foundation (GNF). A single
transcript typically requires <5 min to analyze, depending on the load
on SNPster’s web server. However, obtaining results for thousands
of transcripts from submissions to an external website is impractical
in most cases. Another version of SNPster runs at GNF in parallel on
a 200 node cluster, which is not publicly available, in batches of 10
transcripts per node. It requires 18 min to process these 10 transcripts
using 1 000 000 bootstrap resamplings for each transcript, and a
−log(P-value) threshold of 2.5, which implies ∼1.8 CPU-minutes
per transcript (T.Wiltshire, personal communication). If these 3672
transcripts were analyzed serially rather than in parallel, this would
require 110.2 h. In contrast, FastMap runs on a standard desktop
computer and can perform eQTL mapping for these same 3672
transcripts with 156 K SNPs in 32 strains in 12.3 h. Large computing
clusters, and the expertise required to administer them, are not
available to all laboratories. FastMap offers the convenience of
running on a single, local computer in a reasonable amount of time
(overnight, or over a weekend for more than 10 000 transcripts).

We evaluated the scalability of FastMap with increasing numbers
of transcripts and SNPs using the hypothalamus dataset. Since we are
aware of no stand-alone software that can perform eQTL mapping
with hundreds of thousands of SNPs, we compared FastMap’s
performance in these plots to a brute force approach in which all
calculations are performed without any optimizations. In the case of
both SMM and HAM, computation time for FastMap scales linearly
with increasing numbers of transcripts (Fig. 3a). FastMap also scales
linearly with increasing number of SNPs (Fig. 3b).

In order to examine the scalability of our algorithm with
increasing numbers of strains, we determined tree construction times

(a) (b)

Fig. 3. FastMap scales linearly with increasing numbers of genes and SNPs.
(a and b) The time required to compute the association of increasing numbers
of transcripts with 156K SNPs. (c and d) The time required to compute the
association of one transcript with increasing numbers of SNPs. In all four
cases, 1000 permutations per transcript were performed.

Table 2. FastMap tree construction and association mapping times with
increasing numbers of strains (in seconds)

1-SNP window 3-SNP window

No. of Strains Tree Constr. SMM Tree Constr. HAP

16 1 0.05 8 2.8
32 168 2.5 320 12.9
54 3791 2.8 27138 16.5
71 13672 4.6 81186 25.5

for various sets of inbred strains genotyped at approximately 156 525
SNPs (Table 2). The amount of time required to construct the tree
is a function of both the number of strains as well as their ancestral
relationships. Strains that are closely related (i.e. all derived from
Mus musculus domesticus (M.m.domesticus)) will produce nodes in
the tree that are close to each other. As more distantly related strains
are added (i.e. M.m.domesticus-derived strains combined with Mus
musculus musculus (M.m.musculus)-derived strains), the distance
between SDPs becomes larger and tree construction times increase.
Most existing eQTL studies in panels of inbred strains have used less
than 40 strains (Bystrykh et al., 2005; Chesler et al., 2005; McClurg
et al., 2007). Tree construction required 5.3 min for the 32 strains
of the hypothalamus dataset. In contrast, for a panel of 71 inbred
strains derived from both M.m.domesticus and non-M.m.domesticus
strains, tree construction requires ∼10 h using a 1-SNP window and
∼24 h using a 3-SNP window. Tree construction is carried out only
once, and the resulting calculations still require less time than a brute
force approach. Faster algorithms for tree construction that improve
scalability with increasing numbers of strains are currently under
investigation.

3.3 Population stratification
As noted by McClurg et al. (2007), considerable population
stratification is present when panels of laboratory inbred strains
are used. Common laboratory inbred strains are a mixture of
M.m.domesticus, M.m.musculus, M.m.castaneus, M.m.molossinus
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Fig. 4. SNP similarity matrix demonstrates population stratification among
laboratory inbred strains. In one row, each cell represents the proportion
of SNPs (in the 156K dataset) with the same allele in the other strains. The
similarity matrix has been hierarchically clustered (distance = SNP similarity,
linkage = average).

and M. spretus, which arose during the creation of the laboratory
inbred strains (Beck et al., 2000; Yang et al., 2007). Figure 4 shows
a SNP similarity matrix for the 32 inbred strains in the hypothalamus
dataset, where each cell represents the proportion of SNPs that
have the same allele between two strains (normalized Hamming
distance) across all 156K SNPs. The non-M.m.domesticus-derived
strains cluster tightly in the lower left hand corner, indicating
that they are more genotypicly similar to each other than to the
M.m.domesticus-derived strains. Numerous transcripts and SNPs
exhibit systematic differences across these two strata. Consequently,
each such transcript will show a significant association with every
such marker. In eQTL mapping, this produces numerous markers
that show significant associations with the expression of a single
transcript, leading to horizontal banding in the transcriptome map
(Fig. 5a and b). When such differences exist, most permutations
of the transcript will yield a lower association statistic than
the observed one, this leads to inappropriately low significance
thresholds (Fig. 5c). In order to remove this strata effect, we median
center the values of each transcript within M.m.domesticus and
non-M.m.domesticus strata. As shown in Figure 5d, the resulting
transcriptome map becomes interpretable with cis-eQTLs along the
diagonal. The few horizontal bands that remain are due to a subset of
the M.m.musculus-derived strains with transcript expression levels
that differ from the other strains; this prevents the median subtraction
method from removing the strata effect completely. We recommend
removing those few transcripts that demonstrate this effect.

FastMap allows the user to select strata by genotype a priori, and
subtracts strata means or medians from the transcript values in each
stratum (Pritchard et al., 2000). While there are more sophisticated
methods for addressing population stratification (Kang et al., 2008),
FastMap is not primarily designed to address this problem. While
laboratory inbred strains have been useful in mapping Mendelian
traits, eQTL mapping with FastMap will have greater utility in
well-segregated populations like the Collaborative Cross (Churchill

(a) (b)

(d) (e)

(c)

Fig. 5. Strata median correction dramatically improves transcriptome map.
(a) The transcriptome map for 3270 transcripts without correcting for the
population structure for all eQTL above a transcript-specific 5% significance
threshold. The horizontal bands dominate the plot and are due to gene
expression profiles like the one in (b), which is marked by the red arrow
in (a). The grey colored strains are the M.m.domesticus-derived strains and
the red ones are the non-M.m.domestic-derived strains. By subtracting out
the strata median from each strata, the transcriptome map (d) is greatly
improved. Gene expression values are no longer split by genotypic strata (e)
and the permutation-derived thresholds are appropriate (f).

et al., 2004; Roberts et al., 2007b), due to increased genetic
diversity, as well as the finer recombination block structure. In such
well-mixed populations, mean/median subtraction within strata or
the non-uniform resampling technique used by SNPster should not
be required.

3.4 Comparison of FastMap to other QTL software
We compared the eQTL results produced by FastMap to those
produced by R/qtl. R/qtl was configured to use Haley–Knott
regression (Haley and Knott, 1992) and 1000 permutations to
determine significance thresholds. While R/qtl is designed to
perform linkage mapping, we note that when linkage mapping is
performed exclusively at the markers, the calculations are identical
to those performed in eQTL (Supplementary Material). eQTLs may
be broadly separated into two categories; eQTLs located within 1 Mb
of the transcript location (cis-eQTLs) and eQTLs located further than
1 Mb from the transcript location (trans-eQTLs). Both FastMap
and R/qtl found similar numbers of total eQTLs, cis-eQTLs and
trans-eQTLs (Fig. 6a). Figure 6b shows that the eQTL locations
found by each software package are essentially identical; 98% of the
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(a) (b)

(c) (d)

Fig. 6. FastMap eQTL mapping results almost equivalent to those obtained
with R/qtl. (a) The BXD dataset and the number of matching eQTLs between
FastMap and R/qtl at varying distances. (b) The high degree of concordance
between FastMap and R/qtl. (c and d) eQTL histograms produced by
FastMap and R/qtl. They are substantially equivalent with differences on
Chr 1 and 12 being due to histogram binning effects (insets). Data are shown
at 5% significance threshold.

eQTLs found by each method are within 5 Mb of each other, a margin
of resolution consistent with the resolution of the BXD marker set.
Since permutation-based testing involves randomization, it should
not be expected that 100% of the eQTLs would match between the
two methods. Furthermore, the eQTL histograms produced by each
method (Fig. 6c and d) are similar, with differences being due to
histogram binning effects (see insets).

eQTL mapping in the hypothalamus dataset was performed to
evaluate computational performance, rather than to compare the
results with SNPster. However, it is natural to ask how the results
of the two methods compare when we employ median centering
in FastMap to correct for population stratification. We correct for
population stratification by median centering transcript values within
M.m.domesticus-and non-M.m.domesticus-derived strains.

Since SNPster does not provide a fixed threshold for significance,
we selected 2413 transcripts which had SNPster p-values <10−4.
Of these, 105 were cis-eQTLs and 2308 were trans-eQTLs. FastMap
produced eQTLs for 382 transcripts at or above a 0.05 significance
threshold, of which 29 were cis-eQTLs and 353 were trans-eQTLs.
The locations of 55 eQTLS were common between the two methods
and all of these were cis-eQTLs, which have been reported to be
more reproducible than trans-eQTLs (Peirce et al., 2006).

It should be noted that FastMap and SNPster differ in several
important respects. SNPster uses a heuristic weighted F-statistic
who’s null distribution is not known, it employs a resampling
approach that selects strains in a random manner with a non-uniform
distribution. FastMap uses the standard F-statistic and conventional
permutation-based significance thresholds. For these reasons, it is
unclear whether the results of the two methods should be concordant,
and biological validation of both eQTL mapping approaches may be
necessary to address the differences.

4 CONCLUSION
We have introduced new software for fast association mapping
that uses a new method to speed the time required to calculate
summations involved in QTL mapping. These improvements are
particularly advantageous in the context of eQTL mapping when
thousands of transcripts are analyzed, and permutation-based
significance thresholds are calculated for each transcript. The utility
of the Subset Summation Tree extends beyond eQTL mapping: the
idea can be applied to any situation where sums must be calculated
over groups whose membership can be specified with a binary string.
FastMap does not require the use of computer clusters and can be
run on a standard desktop computer. FastMap performs both SMM
and HAM over m-SNP windows, and calculates permutation-based
p- and q-values. These performance enhancements make FastMap
suitable for eQTL mapping in high-density SNP datasets.
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