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ABSTRACT

Motivation: Significant efforts have been made to acquire data
under different conditions and to construct static networks that
can explain various gene regulation mechanisms. However, gene
regulatory networks are dynamic and condition-specific; under
different conditions, networks exhibit different regulation patterns
accompanied by different transcriptional network topologies. Thus,
an investigation on the topological changes in transcriptional
networks can facilitate the understanding of cell development or
provide novel insights into the pathophysiology of certain diseases,
and help identify the key genetic players that could serve as
biomarkers or drug targets.
Results: Here, we report a differential dependency network (DDN)
analysis to detect statistically significant topological changes in
the transcriptional networks between two biological conditions. We
propose a local dependency model to represent the local structures
of a network by a set of conditional probabilities. We develop an
efficient learning algorithm to learn the local dependency model using
the Lasso technique. A permutation test is subsequently performed
to estimate the statistical significance of each learned local structure.
In testing on a simulation dataset, the proposed algorithm accurately
detected all the genes with network topological changes. The
method was then applied to the estrogen-dependent T-47D estrogen
receptor-positive (ER+) breast cancer cell line datasets and human
and mouse embryonic stem cell datasets. In both experiments using
real microarray datasets, the proposed method produced biologically
meaningful results. We expect DDN to emerge as an important
bioinformatics tool in transcriptional network analyses. While we
focus specifically on transcriptional networks, the DDN method we
introduce here is generally applicable to other biological networks
with similar characteristics.
Availability: The DDN MATLAB toolbox and experiment data are
available at http://www.cbil.ece.vt.edu/software.htm.
Contact: yuewang@vt.edu

∗To whom correspondence should be addressed.

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Recent advances in high-throughput genomic technologies provide
ample opportunities to study cellular activities at the individual gene
expression and network levels, while also presenting new challenges
for data analysis (Clarke et al., 2008). Discovering the mechanisms
that orchestrate the activities of genes and proteins in cells remains
one of the key goals of systems biology studies (Kitano, 2002).
Several approaches have been proposed to model genetic regulatory
networks (Li et al., 2008), such as Bayesian networks (Friedman,
2004; Friedman et al., 2000; Husmeier, 2003), probabilistic Boolean
networks (Shmulevich et al., 2002), state–space models (Rangel
et al., 2004) and network component analysis (Liao et al., 2003).
These methods attempt to construct a static network that can explain
various gene regulation programs.

However, genetic regulatory networks are context-specific and
dynamic in nature (Beyer et al., 2007; Clarke et al., 2008).
Under different conditions, different regulatory components and
mechanisms are activated and the topology of the underlying gene
regulatory network changes accordingly. For example, in response
to diverse conditions in the yeast, transcription factors alter their
interactions and rewire the signaling networks (Luscombe et al.,
2004). While the inference of transcriptional networks using data
from composite conditions could sometimes be contradictory due
to changes in the underlying topology, most network learning
algorithms assume an invariant network topology (Friedman et al.,
2000; Rangel et al., 2004; Shmulevich et al., 2002). Therefore,
some methods have been presented to learn condition-specific
transcriptional networks in yeast (Kim et al., 2006; Segal et al.,
2003). It is important to focus on and examine the topological
changes in transcriptional networks between disease and normal
conditions or under different stages of cell development. For
example, a deviation from normal regulatory network topology may
reveal the mechanism of pathogenesis (Hood et al., 2004), and the
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genes that undergo the most network topological changes may serve
as biomarkers or drug targets.

Several methods have been proposed to utilize network topology
information to carry out various bioinformatics tasks. Liu et al.
(2006) introduced a topology-based cancer classification method,
where correlation networks were first constructed and later
used to perform classification. Fuller et al. (2007) developed
weighted gene co-expression network analysis strategies, via single
network analysis and differential network analysis, to identify
physiologically relevant modules. Qiu et al. (2005, 2007) proposed
an ensemble dependence model to detect the dependence changes
of gene clusters between cancer and normal conditions for cancer
classification, and further extended the dependence model to
dependence networks. Wei and Li (2007) introduced a Markov
random field model for network-based analysis of genomic data
that utilizes the known pathway structures to identify differentially
expressed genes and sub-networks.

In this article, we propose a differential dependency network
(DDN) analysis to model and detect the statistically significant
topological changes in transcriptional networks between two
conditions. We use local dependency models to characterize the
dependencies of genes in the network and represent local network
structures. Local dependency models decompose the whole network
into a series of local networks, which serve as the basic elements
of the network used for statistical testing. Unlike other dependency
models that consider only pairwise relationships (Choi et al., 2005;
Fuller et al., 2007; Kostka and Spang, 2004; Watson, 2006) or
binding triples (Qiu et al., 2007), the local dependency models
select the number of dependent variables automatically by the Lasso
method (Tibshirani, 1996), and thereby learn the local network
structures. Subsequently, we perform permutation tests on the
local dependency models under two conditions and assign the
P-values to the local structures. It may seem straightforward to
construct an entire network under each condition and compare
the differences between the two networks (Fuller et al., 2007;
Qiu et al., 2007). However, in realistic applications this approach
runs into the difficulty that the network structure learning can be
inconsistent with a limited number of data samples. The detection
procedure proposed here assures the statistical significance of the
detected network topological changes by performing a permutation
test on individual local structures. We also pinpoint ‘hot spots’ in
the network where the genes exhibit network topological changes
between two conditions above a given significance level. Lastly,
we extract and visualize the DDN, i.e. the sub-network showing
significant topological changes. We demonstrate the usefulness of
the proposed method on both simulated and real microarray data.
Tested on a simulation dataset, the proposed algorithm accurately
captured the genes with network topological changes. When applied
to the estrogen-dependent T-47D estrogen receptor-positive (ER+)
breast cancer cell line datasets and human and mouse embryonic
stem cell (ESC) datasets, the DDN analysis obtained biological
meaningful and promising results.

2 METHODS

2.1 Local dependency models
Given a set of random variables X={X1,X2,...,XM }, a dependency network
for X is modeled by a set of local conditional probability distributions, one

for each node given its parents, denoted as Zi, which satisfies

P
(
Xi|Zi

)=P
(
Xi|X−i

)
(1)

where X−i ={X1,X2,...,Xi−1,Xi+1,...,XM } and Zi ⊆X−i. P(Xi|Zi) also
represents the local structure of node Xi, i.e. the relationship of node Xi

and its parents Zi on the graph (Heckerman et al., 2000).
Inspired by this formulation, we propose a local dependency model to

describe the dependencies of genes in a transcriptional network. Unlike
a conventional dependency network approach, where there is only one
conditional probability distribution for each node given its parents, our local
dependency model allows more than one conditional probability distributions
for each node. Mathematically, suppose there are M genes in the network of
interest, and the dependencies of gene i on other genes are formulated by a
set of conditional probabilities,

P i =
{
P
(
Xi|Zi,1

)
,P
(
Xi|Zi,2

)
, ... ,P

(
Xi|Zi,si

)}
, i=1,2,...,M (2)

where Zi,1,Zi,2,...,Zi,si are some subsets of X−i and si is the number of
conditional probabilities for random variable Xi. We use Xi to refer both
to the expressions of gene i and to its corresponding node on the graph.
This modification is primarily based on the following considerations. First,
our goal is not to construct the entire network that represents the full joint
distribution of all variables, rather we wish to model the local structures
for further statistical testing. Second, many genes are highly correlated and
the data points are very limited when extracting most biological networks.
Through our experiments, we found that the conventional approach misses
some meaningful dependency connections in data-sparse situations. For
example, regulator genes R1 and R2 have the same target gene A, and
the expression patterns of R1, R2 and A are highly correlated. When the
data points are few, the standard approach may only select one of the
dependencies, for instance, gene A on gene R1, even though the dependency
of gene A on gene R2 is only slightly less significant than the dependency of
gene A on gene R1. However, the dependencies of gene A on genes R1 and
R2 are both important, and we want to keep the rich structural information
for later step to assess the topological changes. Therefore, to retain more
meaningful local structure information, instead of selecting ‘the best’ local
structure, we select a set of ‘sufficiently good’ local structures for further
statistical testing. We achieve this goal by allowing each node to be modeled
by more than one conditional probability distribution.

2.2 Local structure learning
The conditional probability distributions in Equation (2) can be inferred by
regression methods. In our approach, we consider a linear regression model
in which the variable Xi is predicted by a linear function of Zi

Xi =βTZi +εi, i=1,2,...,M (3)

where Zi ∈{Zi,1,Zi,2,...,Zi,si } is a column vector of random variables, β is a
column vector of unknown parameters. The random error εi is independent of
Zi and is assumed to have normal distribution N(0,σ 2

i ). The local conditional
probability P(Xi|Zi) is given by

P
(
Xi|Zi

)=N
(
βTZi,σ

2
i

)
(4)

Learning the structure of the local dependency model requires the selection
of a Zi that shows good predictability of Xi. Given a predefined maximum
size of Zi, K , we examine all CK

M−1 combinations of the elements in X−i with
size K . K can be empirically set to a positive integer between 1 and M −1.
When K =1, the proposed local dependency model only considers pairwise
relationships. When K =M −1, the proposed local dependency model is
equivalent to standard dependency networks as described in Equation (1)
(Heckerman et al., 2000).

Suppose one K-combination of X−i is {Xk1 ,Xk2 ,...,XkK }, where
k1 ,k2 ,... ,kK ∈{1,2, ... ,i−1,i+1,... ,M}, and there are N expression
samples. Lower case letter xi( j) denotes the j-th sample value taken by the
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variable Xi, j=1,2,...,N . We perform a L1 constrained regression of Xi on
Zi ={Xk1 ,Xk2 ,... ,XkK }

β̂Lasso =argmin




N∑
j=1

(
xi
(
j
)− K∑

l=1

βlxkl

(
j
))2


, s.t.

K∑
l=1

|βl|� t. (5)

Equation (5) is known as the Lasso estimator (Tibshirani, 1996), which
minimizes L2 norm loss with constraint on the L1 norm of β. The nature of L1

constraint tends to make some coefficients in β̂Lassoexactly zero, and hence
it automatically selects a subset of features and leads to a simpler model that
avoids overfitting the data, and therefore usually has better generalization
performance. The parameter t ≥0 controls the amount of shrinkage that is
applied to the estimates. In our software implementation, parameter t is
determined by 5-fold cross-validation. Solving Equation (5) is a convex
optimization problem, and can be solved very efficiently. We adopt the
least angle regression (LARS) method to solve this problem. The detailed
procedure of LARS can be found in Efron et al. (2004).

We also use a prescreening strategy to release the computational burden.
We first regress Xi on Zi ={Xk1 ,Xk2 ,...,XkK }, using the ordinary least square
method

β̂OLS =argmin




N∑
j=1


xi

(
j
)− ∑

l=1,2,...,K

βlxkl

(
j
)

2

 . (6)

If the corresponding mean square error (MSE) is above a predetermined
threshold T , which means Xi cannot be accurately predicted by the subset
{Xk1 ,Xk2 ,... ,XkK }, the subset {Xk1 ,Xk2 ,... ,XkK } will be discarded. If the
MSE is below T , we will then perform the L1 constrained regression of Xi.

We perform the above prescreening and local structure learning with
the Lasso on each of K-combinations of X−i, and obtain predictor
sets Zi,1,Zi,2,...,Zi,si and the conditional probability distributions P i =
{P(Xi|Zi,1),P(Xi|Zi,2),...,P(Xi|Zi,si )} for node Xi.

To measure how well variables Zi can predict Xi, or how well the local
dependency model fits gene expression microarray data, we further introduce
the definition of coefficient of determination (COD)

COD= var{Xi}−var
{
Xi −fXi |Zi

(
Zi
)}

var{Xi} (7)

where var{·} is the estimate of the variance of the random variable and
fXi |Zi (·) is the best function in a given function class that minimizes the
residual variance. COD has been successfully used in non-linear signal
processing and probabilistic Boolean network inference (Shmulevich et al.,
2002). Here we only use linear functions, and var{Xi −fXi |Zi (Zi)} is an
estimate of σ 2

i in Equation (4).

2.3 Detection of statistically significant topological
changes

To detect the statistically significant network topological changes between
two experimental conditions, we assume there are M genes in the network
of interest, and N1 samples from condition 1 and N2 samples from
condition 2. We further denote the datasets from two conditions by D(m) =
[x(m)(1),x(m)(2),...,x(m)(Nm)], where superscript (m) indicates condition m,
m= 1, 2. The bold face lower case letter x(m)( j) denotes the column vector
[x(m)

1 (j),x(m)
2 (j),...,x(m)

M (j)]T , where lower case letter x(m)
i (j) denotes the j-th

sample value taken by variable Xi under condition m.
By applying the learning procedure to datasets D(1) and D(2), respectively,

we obtain P (1)
i ={P(Xi|Z(1)

i,1),P(Xi|Z(1)
i,2),... ,P(Xi|Z(1)

i,s(1)
i

)} under condition 1

and P (2)
i ={P(Xi|Z(2)

i,1),P(Xi|Z(2)
i,2),... ,P(Xi|Z(2)

i,s(2)
i

)} under condition 2 for

each node i, i=1,2,...,M. Then we take the union of the local structures
learned under two conditions

P i =P (1)
i ∪P (2)

i , i=1,2,...,M, (8)

for further statistical testing.

For each conditional probability distribution in P i, i=1,2,...,M,
for instance, P(Xi|Zi)∈P i, we perform a permutation test to assess
how significantly it is different between two conditions. Given samples
{[x(1)

i (j(1)),z(1)
i (j(1))]T , j(1) =1,2,...,N1} under the first condition and

{[x(2)
i (j(2)),z(2)

i (j(2))]T , j(2) =1,2,... ,N2} under the second condition, we
calculate COD(1) and COD(2), using Equation (7). A test statistic θ̂ is defined
by the absolute difference of the coefficients of determination under two
conditions

θ̂ =
∣∣∣COD(1) −COD(2)

∣∣∣ (9)

We want to test the null hypothesis, H0, of no difference between P(1)(Xi|Zi)
and P(2)(Xi|Zi). We first combine {[x(1)

i (j(1)),z(1)
i (j(1))]T , j(1) =1,2,...,N1}

and {[x(2)
i (j(2)),z(2)

i (j(2))]T ,j(2) =1,2,...,N2}, and then randomly permute
samples from two conditions and divide the data into two sets of N1 and N2

samples, respectively. We perform the above procedure B times, where B is
set to 5000 in our software implementation, and calculate θ̂∗

b , b=1,2,...,B
according to Equation (9). An estimate of the achieved significance level
(ASL) of the test is

ASL=

B∑
b=1

1{θ̂∗
b ≥θ̂}

B
(10)

where the random variable θ̂∗
b is generated by permutation and 1{θ̂∗

b ≥θ̂}
denotes the indicator function, which takes 1 when θ̂∗

b ≥ θ̂ and 0 otherwise.
The smaller the value of ASL, the stronger the evidence against H0 is.
Equation (10) also is an estimate of the P-value. The detailed permutation
procedure is described in Efron and Tibshirani (1993). This detection
procedure is performed on every local structure in P i, i=1,2,...,M, and
each local structure is assigned a P-value.

2.4 Identification of the ‘hot spots’ in the network and
extraction of the DDN

Given a user-defined P-value cutoff, we obtain a set of statistically significant
differential local structures. The nodes in these differential local structures
are identified as ‘hot spots’ in the network, which are the genes undergoing
topological changes defined by a specified significance level. These genes
may correspond to the genes in disease- or process-related pathways.

DDN is the focused sub-network that exhibits the topological changes.
We consider a connection to exist from each element in Zi to Xi under
one specific condition if the variance of P(Xi|Zi) is below the user-defined
threshold T for that condition (see Supplementary Material for discussions on
the selection of T ). We use different colors to represent connections appearing
under different conditions. DDN provides a way to visualize the topological
changes, and when applied to disease studies, DDN extracts and focuses on
the disease-related pathways that may contribute to the understanding of the
mechanism of the disease.

3 RESULTS

3.1 A simulation experiment
We first used the software SynTReN (Van den Bulcke et al., 2006)
to generate one simulation dataset of a sub-network drawn from an
existing signaling network in Saccharomyces cerevisiae. Then we
changed part of network topology and used SynTReN to generate
another dataset according to this modified network. The network
topology under two conditions is shown in Figure 1. The network
contains 20 nodes that represent 20 genes. The black lines indicate
the regulatory relationships that exist under both conditions. The
red and green lines are the regulatory relationships that only exist
under conditions 1 and 2, respectively. The sub-network comprised
of nodes MBP1_SWI6, CLB5, CLB6, PHO2, FLO1, FLO10 and
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Fig. 1. The network topology under two conditions in the simulation
study. Nodes in the network represent genes. Lines in the network indicate
regulatory relationships between genes. The black lines are the regulatory
relationships that exist under both conditions. The red and green lines
represent the regulatory relationships that only exist under conditions 1 and
2, respectively. The DDN between the two conditions is the sub-network
comprised of nodes MBP1_SWI6, CLB5, CLB6, PHO2, FLO1, FLO10 and
TRP4 and green and red lines.

Table 1. ‘Hot spots’ identified by DDN analysis in simulation study

Gene Fold change P-value Gene Fold change P-value
(t-test) (t-test)

CLB5 8.92E-01 6.92E-043 MBP1_SWI6 3.74E-02 4.58E-001
CLB6 4.79E-02 2.00E-001 PHO2 1.54E-01 1.34E-005
FLO1 −5.04E-02 4.44E-001 SWI4 −1.23E-01 3.64E-007
FLO10 7.73E-01 3.52E-024 TRP4 8.26E-02 1.00E-002

TRP4 and green and red lines is the DDN that our algorithm tries to
identify from expression data.

The parameters for our algorithm are: threshold T is 0.25, P-value
cutoff is 0.01 and the maximum size of Zi, K , is 2. Table 1 presents
the ‘hot spots’ identified by the DDN analysis. Table 1 also shows
the fold-changes of individual genes (after base 2 logarithm), and
P-values of t-tests of individual genes. Our algorithm picked up
all genes involved in topological changes, including some genes
that did not show a significant difference in fold-change or t-tests,
such as CLB6, FLO1 and MBP1_SWI6. This indicates that our
algorithm can successfully detect these interesting genes using their
topological information, even though the means of their expressions
did not change substantially between the two conditions. Therefore,
this method is able to identify biomarkers that cannot be picked
up by traditional gene ranking methods, providing a complimentary
approach for biomarker identification problem.

Figure 2 shows the DDN between the two conditions extracted
by the proposed algorithm. The DDN shows network topological
changes and the genes involved therein. The red lines in Figure 2
represent the connections that exist only under condition 1, and the
green lines represent the connections that exist only under condition
2. Compared with the known network topology shown in Figure 1,
the proposed algorithm correctly identified and extracted all the
nodes with topology changes and 9 of 10 differential connections,
with only the connection between PHO2 and TRP4 under condition 1
falsely missed, and the connection between PHO2 and SWI4 under

 

Fig. 2. The DDN extracted by the proposed algorithm in the simulation
study. The red lines represent the connections (dependencies) that only
exist under condition 1, and the green lines represent the connections
(dependencies) that only exist under condition 2. The proposed DDN analysis
successfully detected 9 of 10 connections that are different between two
conditions and all the genes involved in the network topology changes. The
connections between PHO2 and SWI4 under condition 1 (red) and between
MBP_SWI6 and SWI4 under condition 2 (green) were falsely detected and
the connection between PHO2 and TRP4 under condition 1 (red) was falsely
missed.

condition 1 and the connection between MBP1_SWI6 and SWI4
under condition 2 falsely detected.

3.2 Breast cancer dataset analysis
We applied our method to the dataset from an ER+ breast cancer cell
study by Lin et al. (2004). In that dataset, the estrogen-dependent
T-47D ER+ breast cancer cell line was treated with 17β-estradiol
(E2) and with E2 in combination with the pure anti-estrogen ICI
182 780 (ICI, Faslodex, Fulvestrant). Samples were then harvested
on an hourly basis for the first 8 h (0–8 h) and bi-hourly for the next
16 h (10–24 h) for a total of 16 time points under each condition.
Experiments were performed on microarrays generated by spotting
the Compugen 19 K human oligo library, made by Sigma-Genosys,
on poly-l-lysine-coated glass slides.

Here we are interested in the cellular response to the drug ICI,
which inhibits E2 signaling through the ER (Howell, 2006). We first
selected 55 genes that are reported in the literature to be relevant to
breast cancer and responsiveness to ICI (for example, Kuo, 2007;
Riggins et al., 2005, 2007). We then applied our DDN analysis to
the data under two conditions (E2 versus E2+ICI). The parameters
in our algorithm are: threshold T is 0.25, P-value cutoff is 0.01 and
K is 2.

Table 2 lists the genes that exhibit significant topological changes
in the network identified by DDN analysis. The DDN under these
two conditions is shown in Figure 3. The genes identified by
the proposed algorithm and their expression results (Table 2) are
consistent with published data. For example, XBP1 and BCL2 show
strongly decreased expression in response to E2+ICI relative to E2
alone, and both of these genes are known to be induced by E2
(Gompel et al., 2000; Tozlu et al., 2006; Wang et al., 2004).

In Figure 3, there are 18 red connections in the DDN, which
implies that these connections exist only under E2 condition and
disappear after the addition of ICI. Since ICI 182 780 is an ER
antagonist, which works both by downregulating and by degrading
the ER-alpha, it is plausible that these connections disappear because
ICI is blocking or inactivating their connections. For example, as
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Table 2. ‘Hot spots’ identified by DDN analysis in breast cancer study
(see Supplementary Material for gene annotations)

Gene Fold change P-value (t-test) Gene Fold change P-value (t-test)

ABCB11 2.05E-01 8.48E-01 ESR2 −3.72E-01 8.74E-01
AKT1 −4.02E+00 3.92E-01 F12 4.10E+00 3.81E-01
BCAR3 −4.92E-01 9.37E-01 HOXA10 4.14E+00 7.89E-01
BCL2 −2.46E+00 2.62E-01 MAPK1 −1.35E+00 6.09E-01
BIK −2.75E+00 7.52E-01 MAPK13 2.81E+00 5.01E-01
BIRC1 5.98E-01 8.67E-01 MAPK14 −1.12E-01 9.35E-01
BIRC3 2.66E+00 5.60E-01 MAPK3 2.42E-01 9.67E-01
CAV3 4.12E+00 7.92E-01 MAPK4 1.55E+00 4.84E-01
CGA 4.19E+00 7.00E-01 MAPK8 −6.73E+00 1.65E-01
COX7A2L 3.94E+00 2.32E-01 NFKB1 3.91E-02 9.88E-01
EBAG9 2.04E+00 6.76E-01 NFKB2 −9.15E-02 6.92E-01

Fig. 3. DDN between breast cancer cell line treated with E2 and cell line
treated with E2+ICI. The red lines represent the connections that exist only
in breast cancer cell line treated with E2, and the green lines represent the
connections that exist only in breast cancer cell line treated with E2+ICI.

a transcription factor, XBP1 can directly regulate gene expression
through binding to its response element (Iwakoshi et al., 2003), or it
can act as a co-regulator of other transcription factors, most notably
ER-alpha, to enhance their transcriptional activity (Ding et al., 2003;
Fang et al., 2004). Because BCL2 contains response elements for
both ER-alpha and XBP1 (Gomez et al., 2007; Somai et al., 2003),
the connection between XBP1 and BCL2 in the DDN may either
be direct or involve ER-alpha as a latent variable, or intervening
gene. In direct support of this predicted edge, we have shown that
constitutive overexpression of XBP1 in a different breast cancer
cell line (MCF-7) led to significantly increased mRNA and protein
expression of both ER-alpha and BCL2 and functionally conferred
antiestrogen resistance and estrogen-independence (Gomez et al.,
2007).

Novel relationships between these genes identified by our DDN
analysis will also serve as useful guidance for future studies. For
example, BCAR3 is a well-established effector of cell motility,
estrogen independence and antiestrogen resistance in ER+ breast
cancer cell lines (Felekkis et al., 2005; Riggins et al., 2003;
Schrecengost et al., 2007; Van Agthoven et al., 2006). Expression
of NFKB2 and its activator BCL3 are also associated with estrogen
independence in breast cancer cell lines (Pratt et al., 2003), and
these nuclear factor κ B subunits appear to be selectively activated

in clinical breast cancer (Pratt et al., 2003). However, there is
no experimental evidence linking BCAR3 with NFKB2, so the
suggestion that these two genes exhibit differential dependence
under E2-treated conditions (Fig. 3) provides a starting point for
biological studies of their relationship.

Additional relationships that may be completely new to breast
cancer are also identified by this method. For example, MAPK8
(also known as JNK1) has been shown to be activated by BIRC1
(also known as NAIP) during its inhibition of caspase-mediated cell
death (Sanna et al., 2002). In chronic fatigue syndrome, growth
factor receptor signaling can activate MAPK4, which via Ras
and/or PI3K can subsequently increase AKT1 activity (Englebienne
and Meirleir, 2002). And finally, in B cells from patients with
chronic lymphocytic leukemia NFKB1 (p50) homodimers are able
to stimulate transcription from the BCL2 promoter through binding
to another member of the BCL family (BCL3) (Viatour et al., 2003).

3.3 Human and mouse ESC analysis
ESCs can either maintain their pluripotency by self-renewal or
undergo differentiation. The molecular mechanisms controlling ESC
self-renewal and differentiation are complex and poorly understood
(Sun et al., 2006; Zhan, 2008). ESCs harvested from different
species show common characteristics, yet significant differences
exist. Thus, cross-species analysis may help to distinguish between
fundamental and species-specific mechanisms regulating ESC
development (Sun et al., 2007; Zhan et al., 2005). Network biology
can provide a new avenue for exploring ESC biology (Barabasi and
Oltvai, 2004). Here, we used our new algorithm to conduct a human–
mouse comparative analysis of ESCs, identifying evolutionarily
divergent sub-networks. We focused our analysis on the cell cycle,
a critical process for controlling cell development. In this study,
58 cell-cycle genes were selected for the DDN analysis. The 58
genes are the core components of the cell cycle machinery, and
are orthologous between human and mouse cells. The expression
profile data for these genes were determined from 18 samples from
human ESCs and their earliest differentiation counterparts, embryoid
bodies (EBs) and 18 samples from mouse ESCs and EBs, so that our
inferred networks were directly related to ESC differentiation. The
human ESC and EB expression data were determined from BG01,
BG02 and BG03 cell lines in our previous studies using Illumina’s
BeadArrays (Liu et al., 2006), and from H1 (Sato et al., 2003) and
HES2 (E-MEXP-303 of the ArrayExpress database) cell lines using
Affymetrix chips. The mouse ESC and EB expression data were
determined from V6.5 (GSE3231 of GEO database), R1 (GSE2972)
and J1 (GSE3749) cell lines, based on Affymetrix chips. The final
datasets contained 9 ESC and 9 EB (14-day differentiated) samples
from human and mouse cells, respectively. In the network analysis,
we set K to 1, and threshold T to 0.2 and P-value cutoff to 0.01.

Figure 4 shows DDN of the cell cycle between human and mouse
cells (see Supplementary Material for gene annotations). The red
lines represent the gene connections in human, and the green lines
represent the connections in mouse. As shown, CDC25C, DUSP1
and BUB1 exhibit high connectivity on the network of human cells.
On the other hand, PLK1, CDK2AP1, CDC20, TFDP1 and CDC5L
showed a high connectivity on the network of mouse cells. These
results suggest evolutionary divergence across species during ESC
development and may provide clues for insights into species-specific
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Fig. 4. DDN between human and mouse ES/EB cells. The red lines represent
the connections that exist only in human ES/EB cells, and the green lines
represent the connections that exist only in mouse ES/EB cells.

mechanism of the cell cycle in controlling ESC self-renewal and
differentiation.

4 DISCUSSIONS
In this article, we propose a systematic approach to detect the
statistically significant changes in transcriptional networks between
two different experimental conditions. We tested our algorithm
on simulation data, breast cancer data and ESC data. From the
simulation study, we see that the proposed algorithm can capture
the topological changes efficiently and accurately, even when the
fold change of the expression values of each gene is not statistically
significant. This approach utilizes the network structure information
and provides an alternative way for biomarker identification.
In addition, as knowledge of cellular networks accumulates, many
biological databases will expand to contain more useful information.
The proposed approach is an open framework, into which biological
knowledge in specific applications can be easily incorporated as the
local structure learning constraints.

The high level of correlation among genes is a common feature of
microarray data. Therefore, we propose a local dependency model
that allows multiple predictor sets for each node. Accordingly,
a local structure learning algorithm is also represented. Lasso is
used to select features for the predictor sets (Tibshirani, 1996),
an approach that has been successfully applied to variable selection
and graph structure learning (Meinshausen and Buhlmann, 2006).
In the linear Gaussian case, under certain conditions, it is proved that
the probability of estimating the correct neighborhood converges
exponentially to 1, and as a consequence it is possible to obtain
a consistent estimation of the full edge set (Meinshausen and
Buhlmann, 2006). However, in microarray data, the so-called

irrepresentable condition (Zhao and Yu, 2006) or the neighborhood
stability assumption (Meinshausen and Buhlmann, 2006) can easily
be violated in the presence of highly correlated genes. Some
modified algorithms have been proposed to deal with the highly
correlated cases, for example, elastic net (Zou and Hastie, 2005)
and network-constrained regularization (Li and Li, 2008), both of
which tend to group highly correlated predictors in the regression
process. However, these two approaches are not suitable for our
problem, because the grouping of highly correlated variables can
be different under two conditions and this makes the later statistical
testing problematic. The local structure learning algorithm proposed
here attempts to alleviate the effects of the highly correlated gene
expression data and to preserve local structure information for
further statistical testing.

Some issues are worth further exploration. In this article, only
linear relationships are considered. How non-linear relationships
should be modeled efficiently and correctly, remains a difficult
problem. Second, since many cellular reactions take place in the
genome, transcriptome and proteome, it is essential to construct
pathways by integrating data from heterogeneous sources.

In sum, this article presents a new approach to extract knowledge
of a biological network by emphasizing the dynamic nature of
cellular networks and utilizing a network’s structural information.
It also provides an alternative and promising approach to identify
possible biomarkers and drug targets.
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