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Abstract

A statistical mechanical framework elucidates the significance of structural correlations between
coarse-grained (CG) sites in the multiscale coarse-graining (MS-CG) method [S. Izvekov and G.A.
Voth. J. Phys. Chem. B 109 2469 (2005), J. Chem. Phys. 123 134105 (2005)]. If no approximations
are made, the MS-CG method yields a many-body multi-dimensional potential of mean force
describing the interactions between CG sites. However, numerical applications of the MS-CG method
typically employ a set of pair potentials to describe non-bonded interactions. The analogy between
coarse-graining and the inverse problem of liquid state theory clarifies the general significance of
three-particle correlations for the development of such CG pair potentials. It is demonstrated that the
MS-CG methodology incorporates critical three-body correlation effects and that, for isotropic
homogeneous systems evolving under a central pair potential, the MS-CG equations are a discretized
representation of the well-known Yvon-Born-Green equation. Numerical calculations validate the
theory and illustrate the role of these structural correlations in the MS-CG method.

1. Introduction

Although molecular dynamics (MD) simulations provide a powerful tool for investigating
complex biomolecular systems, 1 their substantial computational cost limits conventional
atomistic MD simulations to investigations on time-scales that are less than microseconds and
length-scales that are significantly less than micrometers. 2,3 such atomlstlc MD simulations
are often madequate to model biological processes such as protein foldlng or signal
transduction,® which may occur on significantly larger time- and length- scales. Consequently,
there has been growmg interest in developing computationally-inexpensive “coarse-
grained” (CG) models,®~18 which can then be simulated over significantly longer time- and
length- scales.

In order to reproduce the thermodynamic and structural properties of the original atomistic
system, the low-resolution CG structures must be sampled according to the probability
distribution function for the fully atomistic representation of the same structures. A formal
prescription for designing CG models thus involves the mtegratlon over atomistic degrees of
freedom to define a reduced description of the system. 2,7 The interactions between CG sites
must therefore include not only energetic, but also entropic contributions that result from
averaging over eliminated degrees of freedom. In principle, the resulting CG model may require
a many-body interaction potential that depends upon the thermodynamic state point. 31n
practice, though, CG force fields typically model non-bonded mteractlons with central pair
potentials that depend only upon the distance between CG sites.2 This effective pair potential
represents an approximate decomposition of the many-body interaction obtained from a formal
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integration over uninteresting degrees of freedom. The procedure for determining this pair
potential must appropriately incorporate the effects of many-body correlations in order to
reproduce the structure of the original system.

The theory of coarse-grained modeling is similar to the ‘inverse problem’ of liquid state theory.

=21 Both theories attempt to determine an interaction potential reproducing an observed
structure. However, in coarse-grained modeling the target structure is a low-resolution
representation of the original structure and the deduced interaction is between the CG sites
defining the reduced structure.2 The theory of the Yvon-Born-Green (YBG) equation provides
a direct solution to this inverse problem,20 under the assumption that such an interaction
potential exists. The YBG equation provides an exact relation between a given two-body
interaction potential and the n- and (n+1)- particle distribution functions obtained from
equilibrium simulations employing the potential. Therefore, a CG pair potential may be
determined by inverting the YBG equation for the observed two- and three-particle CG
distribution functions. This relationship suggests a role for higher order correlations in
deducing a pair potential that will reproduce the observed CG structure.

The multiscale coarse-graining (MS-CG) procedure16 17 determines CG force fields from
atomistic MD simulations by employing a statistical implementation of the Force-Matching
(FM) method. 22,23 This MS-CG method has been successful in developing CG models for
many comflex systems such as ionic I|qU|ds 4 mixed lipid bllayers,25 small peptldes,26 nano-

articles, 27 and even mixed resolution models of trans-membrane proteins in lipid bilayers.

8 Inthe following analysis it is demonstrated that if no approximations in the functional form
of the CG force field are made, the MS-CG method determines a many-body multidimensional
potential of mean force describing the CG representation of the system. Consequently,
simulations employing this many-body MS-CG potential would generate CG structures
according to the underlying atomistic distribution function. However, prior numerical
applications of the MS-CG method have approximated this many- bodg mteractlon potential
with a set of bonded and non-bonded pair potentials between CG sites.16:17,24-28 o present
work demonstrates that the MS-CG equations for this CG pair potential reflect both two- and
three-particle correlations between CG sites within a system. Moreover, for homogeneous,
isotropic systems the MS-CG equations are equivalent to generalized Yvon-Born-Green
(YBG) equations20 for CG sites interacting according to a central pair force field. For such
systems the MS-CG methodology explicitly considers the two- and three- particle correlations
between CG sites within an atomistic MD simulation, assumes that these distribution functions
were generated by a pair-wise decomposable central force field, and then inverts the resulting
YBG equation to determine this force field. The YBG theory thus provides a fundamental link
between the system structure and the CG force field.

In Section 2.1 the relationship between the MS-CG interaction potential and a
multidimensional potential of mean force is derived. The “normal” MS-CG equations are next
derived in Section 2.2 by approximating the many-body interaction potential with a central
pair-wise decomposable force field. The derivation emphasizes the relationship between the
MS-CG equations and the correlations observed between CG sites in atomistic MD
simulations. The YBG equation for a CG system is then presented in Section 2.3 and it is shown
that for a homogeneous, isotropic system this equation reduces to the MS-CG equations.
Numerical illustrations of this analysis are presented in Section 3. In Section 4 the significance
of liquid state theory for developing coarse-grained models is considered, especially with
regards to the MS-CG and reverse Monte Carlo methods. 2,21,29 These results are reviewed
in the Conclusion section, Section 5. Proofs of certain necessary results and generalizations of
the theory for a multi-component system are provided in the Appendices. A more detailed
discussion of the theory is attached as a Supporting Information section.
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2.1. Many-body CG potential of mean force
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The multi-scale coarse—%raining (MS-CG) method of Izvekov and Voth extends the Force-
Matching (FM) method??2 to determine coarse- grained (CG) force fields from atomistic
molecular dynamics simulations. 17 The CG force field is obtained by minimizing a residual
describing the difference between the instantaneous forces defined by the CG force field and
the original atomistic force field. This difference is statistically averaged over all CG sites and
all configurations sampled from the atomistic MD simulations. As shown below, these
configurations must be sampled according to the distribution function for the atomistic
Hamiltonian in order to perform the correct averaging. The FM residual for a system described
by N¢g identical CG sites may be expressed:
2_ 1 NI N(
3N,N,

cG p

G|LIAA  _ICG|?

F; -F,

(1)

In eq (1) and in the following, Latin subscripts (i) indicate particular CG sites and the
superscript ( 1) labels configurations sampled during the atomistic MD simulation. Thus, the
MS-CG residual compares the total force on a given CG site defined by the atomistic force

LAA
field for the sampled atomistic configuration, 7, , with the force on the same site defined by

_ICG
the CG force field for the CG representation of the same configuration, F,

In the limit of adequate sampling, the FM residual may be considered an average over the
region of configuration space, D, sampled by an atomistic trajectory and weighted according

N
to the atomistic distribution function, p,, (r **), defined for the trajectory. The residual may
then be expressed as the configurational integral:

_AA  _CG)?

F. —F;

2 !

1 N,
2: . ~H
X _3NFG Ddr pm(r )§

i

(2)

Now, assume that there exists a canonical transformation that partitions the atomistic phase
space into a set of coordinates describing the CG sites and a set of residual degrees of freedom:

AN N,
=(r 7, ) Such a transformation certainly exists, for example, when the CG sites are
deflned as the centers of mass for groups of atoms. Upon employing this transformation in eq

(2), the residual may be considered a functional of the CG force field:

N, N, N
i ((,fDRdr RPAA( M)Z

L

—AA _N,,  =CG 2

Fy (r )—i(r )| .

1
B 3N(‘G fD

CcG

(3)

The CG force field is defined by minimizing the functional20,30 according to
5 CG ~Neg CG _,
ox [F (r )]/5F,» (r

Neg )=0
~yielding the result:

.CG ~Ngg —Neg —=Np _wAA /_ N, _Np
F;, (r BV )f) 7R v T )F,( «“ )

(4)
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. . .. . ~N A= -
Here the canonical ensemble is explicitly considered: p,, (5 **)=e#""'C W)/ZNYo ) where
Z(N,V(,T) is the canonical partition function. The force on CG site i according to the atomistic

o i _AA N AA —~Neo —Np N . . . .
potential is defined F;, (r “)=-0aV*4(r ~,r ")/dr; where the partial derivative is
performed with respect to the CG coordinate r; while holding all remaining atomistic and CG

AA
coordinates fixed. In general the force F; depends upon all Naa = Ncg + NR degrees of
freedom. The CG force field defined by eq (4) depends upon all Ncg degrees of freedom and
may be considered an average of the atomistic force acting on a CG site with the average
performed over all sampled atomistic configurations consistent with the fixed CG configuration
and weighted according to the atomistic distribution function. The normalization of eq (4)
defines a multi-dimensional potential of mean force (pmf) describing the CG sites that may be
expressed:

_N, N “Npg =N,
e PV m):f dr Re BV T,
Dp

The CG force field defined in eq (4) is the appropriate gradient of this CG potential:

i yCG (?N(‘G )
ar;

_CG ~Ngg
F; (r ):_[

~WNeg =D (®)

2.2. Force-Matching to a Central Pair Potential

Previous numerical applications of the MS-CG method16:17,24-27 haye approximated the
many-body CG potential of mean force (pmf) derived above in eq (5) with a central pair
potential. These applications have determined the optimal CG force field by minimizing the
residual in eq (1) under the assumptions that the MS-CG force field is pair-wise additive, such
that

SICE SO g F b
F; :ZFi.j (’i”’j)
J# (7)

and, furthermore, that this force field is central,

)

_ 4
Fij (rirj)=uisf (r)- ®

In these definitions r; represents the Cartesian coordinates of CG siteii ; ?,—_j:?,- - ?J- represents

ri= ’_i| represents the magnitude of this vector;

the vector from the j to the i CG site; "i.j=

E,-_ j:7,¢ il 7,-_ ;jrepresents the associated unit vector; and f(r )represents the function defining the
magnitude of the interaction between CG sites and depends only upon the inter-site distance.
The force field, f(r ), minimizing the residual under these constraints is uniquely determined

and may be conveniently described by a discrete delta function basis for which 6 (r) =1 when
—Ar /2 <r < Ar /2 and is 0 otherwise. In this basis the force field may be represented as:
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Na
JO=)" fabp(r = ra).
d 9)

This definition corresponds to tabulating the force field at a discrete set of points, rq, about
which (rg—Ar/2<r<rg+ Ar/2) the force field is assumed to be constant. Previous
applications of the MS-CG method16:17.24-27 naye typically employed a spline basis for
representing the FM force field. However, the basis used in eq (9) is particularly amenable for
the following analysis and, in the limit that Ar—0, this representation transparently recovers
a continuous representation of the force field.

By minimizing the residual (1) with respect to the elements of the force table, 9y%/d f,=0, and
employing the definitions in eq (7)—eq (9), a system of linear algebraic equations is obtained:

> JaGaar=ba,
N (10)

in which

_LAA _J
ba=() > (Fi - u )S,(rl ;= ra))

iJH ; (11)

and

N | v |
Gawr =) Y > (i w8t = radd(riy = ra)) .

i J#ik#l J (12)

The angular brackets denote an average over configurations sampled by the atomistic MD
simulation. In the following analysis it will be assumed that this average over configurations
is equivalent to the appropriate ensemble average:

_i IoN_ =N (N ..*N _
(A(r),= N,ZA (V=[dx p(*)AGsT H=A). .

The linear system in eq (10) is referred to as the “normal” MS-CG equations because Ggyq- is
a symmetric, i.e. normal, matrix. Previous numerical implementations of the MS-CG
procedure16'17'24‘28 have employed an additional block-averaging approximation to solve
an equivalent system of over-determined equations for the force field, fy. It is the purpose of
this work to further elucidate the physical significance of the “normal” MS-CG equations and,
in particular, to relate them to well-known theories for the liquid state.20

In eq (10) all information regarding the atomistic forces has been packaged into the term by.
According to eq (11), this information enters as the average projection of the instantaneous

_LAA I
total force on each CG site, F; , onto the sum of unit vectors from all other CG sites, u; ;,

that are a distance rq from i in the given configuration, I. Thus, the quantity by describes the
average correlation between the instantaneous net force on each CG site and the local spatial
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distribution of CG sites a distance rq away. If this distribution is always instantaneously
spherically symmetric, then by = 0. Similarly, Ggq- describes the average instantaneous
fluctuations in the local density of CG sites at distances rq and rg-, respectively, from each CG
site.

Since the j = k term has not been excluded from the triple sum in eq (12), the quantity Ggqg-
includes both two- and three-particle correlations, which may be explicitly separated and
analyzed:

_ @, 3
Gaa =04 Gy +G gy (14)

GP=D > 6, = ra)

i j#i / (15)

Y
GﬂZ(ZZ Z(ui.j : ui.k)él)(ril.j ~ ra)é,(rig = 1)) -
i jEikk#i,j ; (16)

The quantity Gﬁ,z) counts the number of distinct CG sites separated by a distance rqand is closely

related to the radial distribution function for the CG sites. The quantity fod), is a direct measure
of three-particle correlations between CG sites in atomistic MD simulations. The factor

I I
u; ;- u;=cost; ; is the cosine of the angle defined between the three CG sites with the site i

at the vertex of the angle as illustrated in Figure 1. Thus, Gifd), describes the constrained average
value of this quantity for two distinct CG sites, j and k, that are distances rq and ry,, respectively,
from each CG site, i. Because the three CG sites are distinct, excluded volume effects prevent
sites j and k from overlapping. Consequently, for rq ~ rg,, there exists a cone of small angles

‘ EVAN

defined by 0i.jx < 0;.;, = O, (such that u; ; - u;; ~ 1,) that are never sampled during the MD
BV AN |

simulation. Corresponding configurations for which 6;.jx ~ £r (and u; ; - u;; ~ —1) are not

disfavored and, as a result, the constrained average is negative for distances ry = ry- at which
small angle configurations are disfavored. This situation is illustrated in Figure 1b. The form

of Gf,f,) may at first seem somewhat artificial. The dot product factor arises as a consequence
of the assumption in eq (8) that the MS-CG force field is directed along the inter-site vector.
Moreover, it will be shown that this same factor arises quite naturally in liquid state theories
for a central pair potential.

Employing the definitions in eq (14)-eq (16), eq (10) may be re-expressed as:

ba = faGP=)  Ja G-
- (17)

As mentioned above, all information regarding atomistic forces is contained within by. The
left hand side of eq (17) depends only upon two-particle information, while the right hand

expression reflects three-particle correlations through the term Gﬁf ), which couples the
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equations for different force table elements. The first term in the left hand expression (i.e.,
by ) describes the average correlation of the total instantaneous force on each CG particle with
the spatial distribution of CG particles a distance rq away. The second term describes the
average net force on each CG particle from CG particles a distance rq away in terms of the

MS-CG force field and the average two-particle distribution according to fde). The difference
between this average projection of the total force and the average force arising directly from
a CG particle at the fixed distance arises from interactions with a third particle. The right hand
side of eq (17) then describes how forces from a third particle are correlated with the two-

particle structure described in GSZ). The quantity _ferifd), describes the average MS-CG force
from a distinct third particle, k, a distance rq- away from the i CG site, given that the j CG site

isadistance rgaway. The dot product in the definition ofGiZ}, arises because it has been assumed

that the interaction between each pair is along the vector connecting them.

Although the numerical MS-CG procedure explicitly employs information regarding the
atomistic forces, it is proven in Appendix A that the normal MS-CG equations presented in eq
(10) may be recast in a form that is independent of atomistic force information. Under the
assumption that the forces on the CG sites measured in MD simulations may be expressed as
the gradient of a many-body CG potential energy function generating the observed CG
structure, it follows that:

dg(r) 1 1 1 —~LAA - ]
ot I (18)

where

1 1
HGE (4@—2%) ELO N ACISIOR

i 1 (19)

Ineq (18) and eq (19) it has been assumed that the average over MD configurations is equivalent
to the ensemble average, p = N /Vq, and Vj is the total system volume. Equation (19) defines
the radial distribution function for CG sites in an atomistic MD simulation.20 As proven in
Appendix A, eq (18) follows immediately from the definition in eq (19).

Multiplying both sides of eq (17) by the factor 1/(4np>Vy - rf,) and employing the relations in
eq (18) and eq (19), the MS-CG equations for the interaction, fq, may be expressed as:

dg 1 1 3)
k,T—| - = E N——| 5G|
" |"d foal, 7 lfd (4”92‘/0) g (20)

Equation (20) contains the same information as eq (17) but has eliminated the explicit
dependence upon atomistic forces for an equivalent quantity in terms of the radial distribution
function. This equation emphasizes the discrete nature of the MS-CG equations and suggests
a continuous representation. The discrete delta function representation defined in eq (9) is
particularly convenient for this purpose as, in the limit that Ar—0, eq (20) becomes a one-
dimensional linear integral equation

J Phys Chem B. Author manuscript; available in PMC 2009 February 13.
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X ng(r)

b T =, = J(gn= [dr fHYM™M(r,r),

(1)

in terms of a FM kernel which describes the effects of three-particle correlations according to

FM ’ _ 1
MPM(r ) _(W%)

B (4’“’12‘/0) %<ZZ Z(;:.j : ;:.k)é(r{_j =8l =1

i j#ikk#i,j 7 (22)

LG

2

Equation (21) re-emphasizes the significance of three-particle correlations in the MS-CG
procedure. The left hand side of this equation depends only upon two-particle information and,
in the case that the right hand side vanishes, the MS-CG interaction becomes

f(r)=k,T d(In g(r))/dr= — w’(r), where w(r) = —kgT In g(r), i.e., the conventional 2-body pmf.
Thus the MS-CG pair potential differs significantly from the 2-body pmf because it explicitly
considers the effects of three-particle correlations between CG sites in determining a CG force
field.

The normal MS-CG equations for a multi-component system are derived in Appendix C. The
resulting system of equations for the MS-CG interaction between CG sites of types a and f8
may be expressed

d ' J / (03 Y J
(k,,TZ -f ﬂ(r)) gaﬁm:; Jdr 5 | MEM ) oy )+ MEM () 27 ().

(23)

Thisequation generalizes eq (21) to consider multiple types of CG particles (labeled with Greek
indices), the relevant interactions between them, and also the effect of three-particle
correlations centered about the second particle, which is a distinct case for a # . A more
detailed presentation of the derivation is provided in the Supporting Information.

To summarize the preceding analysis, the MS-CG method has been applied to derive a linear
integral equation for the MS-CG force field. By assuming that the CG force field is both pair-
wise additive and central, according to eq (7) and eq (8), and employing the discrete delta
function basis of eq (9), the linear least squares problem defined by the residual in eq (1) has
been transformed into a system of linear algebraic equations (10) describing the relationship
between the CG force field and the distribution of CG sites. By separating two- and three-
particle contributions according to eq (14) and employing the identity in eq (18) to eliminate
atomistic force information, the normal MS-CG equations have been recast in a form that
depends only upon structural information according to eq (20). Finally, using the discrete basis
to pass into the continuum limit, this system of equations has been expressed as the integral
equation in eq (21), which generalizes to eq (23) for systems with multiple types of CG sites.

2.3. Yvon-Born-Green Equation

As demonstrated in subsection 2.2, the normal MS-CG equations are a discrete representation
of aone-dimensional linear integral equation. For ahomogeneous isotropic system, this integral
equation is equivalent to the Yvon-Born-Green equation20 describing CG distribution
functions resulting from a central pair force field. This result is briefly derived for a one-
component system in the present subsection. The general result for multi-component systems
is derived in Appendix D. A more detailed presentation is provided as Supporting Information.
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Consider a system described by N¢g identical CG sites. The Hamiltonian for this system
evolving under an N¢g -particle potential function, VNCG, is defined:

HP ) Z o[ +vva )
(24)

Assuming that the total force on each CG site, 1?,: — Ve |31 ,;, arises from a sum of pair
interactions,

FiZZFi_j("i,"j),
J (25)

then for a homogeneous system with p(r;)=p=const, it follows that the distribution of three
arbitrary, but distinct CG particles, i, j, and k may be described according to

. R o o I
kyT— —Fi.j("i,rj)]g(z)(’i,rj)zpfdfk Fixg®(ririr).

ar; (26)

Equation (26) is the well-known Yvon-Born-Green (YBG) equation20 relating the equilibrium
two- and three- CG particle distribution functions to the pair-wise decomposable force field,
Fij- If the system is also isotropic, the two-particle correlation function is equal to its
translational and orientational average:

(2)( i’ J) fV dr f47rdQ'JIg(2 (V r ) PRTg (Q Aj)zg(ri-j)’ ©7)

o

Equation (27) defines an operator P, = f Ve dr f 4”dQ ;i Which averages over both translation
and rotation of the system, where € ; defines the orientation of the vector rJ i from the i to the
j CG site. For an isotropic homogeneous system the gradient term in egs (26) may then be

N (77 N/0r=u: : - . . .
simplified as 98 (r'~ rf) [0ri=u;;dg ("-/) /dri.j- Under the additional assumption that the
pair interaction between CG sites is central such that,

Fu(é Aj)zgi.jf(ri.j),

(28)

eq (26) may be re-expressed to read

- d - = -
U (kBTFjj — f(r;.j))g(fi.j) =pfdfk uirf (ri.k)g(3)(ri’rf’rk)' 29)

Projecting this equation onto the vector LTi,J- and shifting the integration variable, one obtains
the following result:

J Phys Chem B. Author manuscript; available in PMC 2009 February 13.
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d

P dr (30)

Thus the dot product factor arises naturally in an integral equation theory, just as it did in the
MS-CG equations. For a system described by a central pair potential without an external field,
the average effect of a third particle on two-particle correlations must lie along the two-particle
vector.

Because the left hand side of eq (30) depends only on the distance, rj j, upon application of the
operator PrT eq (30) may be expressed as a one-dimensional integral equation:

(k"Tdri,-_j —f ("i.j)) g(rij)=[drixf (ri)y M (rijorix). 1)

Equation (31) defines a YBG kernel describing the effects of a third particle on two particle
correlations,

M (ri.jJi.k) =p F,-Z_kfko.ilsRT (”i.k U i.j)8(3) ( rirj, rk)- (32)

Moreover, it is shown in Appendix B that

MYBS (1,113 ) =M (1 o) =M (1) (33)

Therefore, for a homogeneous isotropic system evolving under a central pair potential, the
YBG eq (26) may be reduced exactly to the FM equation (21):

d
(kBT; - f(r)) gr)=[dr’ [IM(rr). (34

Appendix D generalizes the YBG theory for a homogeneous isotropic multi-component CG
system. If the system is governed by a set of central pair potentials, the generalized YBG
equation reduces to a form that is equivalent to the multi-component MS-CG equations (23):

(35)

A more detailed derivation is provided in the Supporting Information.

The analysis of section 2 elucidates the general significance of three-particle correlations for
deducing CG pair potentials in general and the MS-CG pair force field in particular.
Furthermore, the equivalence of eq (23) and eq (35) indicates that the MS-CG method
incorporates higher-order correlations in a mechanism that is consistent with the well-known
statistical mechanics of the liquid state.20 However, while the analysis of subsection 2.1 and
subsection 2.2 and, in particular, the “normal” MS-CG equations presented in eq (17), are
generally valid and may be applied to determine a CG force field for any system, the preceding

J Phys Chem B. Author manuscript; available in PMC 2009 February 13.
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analysis of subsection 2.3, which relates the MS-CG equations to the YBG theory, is strictly
valid only for isotropic, homogeneous systems. Moreover, there exists no general proof that
the two- and three- CG particle distribution functions measured from atomistic MD simulations
may be related to a simple pair potential through a YBG-type equation.lgl31 Rather, as stressed
in subsection 2.1, the residual defined by eq (1) is minimized by a many-body CG interaction
potential. The MS-CG pair potential investigated in subsection 2.2 is only an approximate
decomposition of this interaction potential, albeit one that has physical significance and which
incorporates critical three-body correlations as demonstrated in subsection 2.2 and subsection
2.3.

The analysis of the previous section demonstrates that the MS-CG equations reflect two- and
three-particle correlations between CG sites observed in atomistic MD simulations. The
following figures illustrate the effect of these structural correlations on the normal MS-CG
equations for coarse-graining a system of 216 Lennard-Jones (LJ) spheres and a system of 216
simple point charge (SPC) water molecules.32 The CG mapping for the LJ system is an identity
operation and the resulting MS-CG equations reflect the atomistic structure. The SPC water
system is coarse-grained onto two different one-site models: the COM (COG) model maps
each SPC molecule onto a single site located at its center-of-mass (geometry). To facilitate
comparison between these systems, the LJ sphere system was modeled using the LJ parameters
for the oxygen atom in the SPC model. In the following figures, the solid lines correspond to
the LJ system, the dashed lines correspond to the SPC system analyzed in terms of the COG,
and the dotted lines correspond to the SPC system analyzed in terms of the COM. All MD
simulations were performed in the constant NVT ensemble using the GROMACS 3.3.0
software packagse,33 with V=(1.8602 nm)3 and T = 298K maintained with the Nose-Hoover
thermostat. 343> All quantities computed from MD simulation were tabulated on a grid with
Ar =0.001nm according to the discrete delta function basis defined in eq (9). Because the grid
is so fine, the systems were simulated for 30ns in order to adequately converge all relevant
quantities and accurately evaluate necessary numerical derivatives.

Analyzing the MS-CG procedure for the LJ fluid is instructive because the “coarse-graining”
for this system is an identity mapping. Clearly there exists a central pair potential that will
exactly reproduce the system structure (i.e., the LJ pair potential,) and it is illuminating to
investigate the mechanism by which the MS-CG procedure recovers this pair potential from
the relevant distribution functions. In contrast, there does not necessarily exist a pair potential
for a one-site CG model of water that will reproduce both the two- and three- particle
distribution functions measured in atomistic MD simulations.19-31 The MS-CG procedure
determines a central pair potential that would reproduce this structure under the assumption
that the CG distribution functions were related by the YBG equation to the assumed central
pair potential.

Equation (20) expresses the MS-CG equations in terms of the radial distribution function (rdf),
g(r). The rdf’s measured for CG sites in the atomistic simulations are presented in Figure 2.
The maxima and minima of the LJ rdf are roughly evenly spaced, corresponding to simple
packing. In contrast, the first peak of both SPC rdf’s is much more narrow and the first minima
is at shorter range, reflecting the short-range packing effects in water due to the presence of
hydrogen atoms. The SPC-COM rdf has a larger and more pronounced hard core region because
the CG site roughly corresponds to the oxygen atom of each molecule and the hydrogen atoms
that have been integrated out in the CG representation generate a larger excluded volume
between the CG sites. In contrast, the SPC-COG model has a less well-defined hard-core region
and presents a smaller excluded volume effect. The LJ rdf indicates much longer and more
pronounced correlations than either representation of SPC water.
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As indicated in section 2.2, if three-particle correlations were not considered in the MS-CG
procedure, the resulting CG pair potential would be the conventional two-body pmf.
Consequently, the difference between the two-body pmf, w(r), and the MS-CG pair potential
may be attributed entirely to the effect of three-particle correlations. Figure 3 directly compares
the MS-CG force field, f (r), (black curve) with the mean force, f™ (r) = —w’ (r), (red curve)
for each system. In Figure 3, panel (a) corresponds to the LJ system, while panels (b) and (c)
correspond to the SPC-COG and SPC-COM systems, respectively. Figure 4 compares the MS-
CG forces (panel a) and the mean forces (panel b) for the different systems. In Figure 4 solid
curves describe the LJ system, dashed curves describe the SPC-COG system, and dotted curves
describe the SPC-COM system. The mean force is computed from M (r) = kgTg’ (r) / g(r),
where g’ (r) is evaluated using atomistic force information according to eq (18) and the rdf has
been smoothed with a running-average over adjacent table elements. The exact LJ force field
is also presented as a solid light green line in Figure 3a and it can be seen that the difference
between the exact LJ force field and the MS-CG force field for the LJ system is essentially
within the thickness of the lines. The mean force for both SPC models vanishes rapidly with
increasing r and is relatively featureless after the first attractive well, while the mean force for
the LJ model demonstrates longer-range interactions with significant repulsive and attractive
regions. The degrees of freedom that have been integrated out in the coarse-grained SPC model
screen the mean force between molecules. The MS-CG force field obtained from either
representation of the SPC model contains two attractive wells. The first attractive well is deeper
and more narrow than the attractive well in the LJ force field. The rapid decay of the mean
force after the attractive well in both CG SPC models generates a repulsive barrier in the MS-
CG force field at the same distance as the first minimum in the SPC rdf, which corresponds to
the presence of hydrogen bonding between each SPC oxygen atom and the second nearest non-
bonded hydrogen.a6 The barrier between the attractive wells is larger and occurs at shorter
range for the SPC-COM model than for the SPC-COG model. The oscillations in the LJ mean
force correspond to a smooth monotonic decay of the MS-CG force field.

Three-particle correlations enter the MS-CG equations through the quantity Gfd) defined in
eq (16), which in the continuum limit may be represented by the symmetric function

S AN §
G (rr) =<ZZ Z (“i.k : L‘i.k)(s('{.j =r)8(rix=r').

i jikki,j , This quantity is plotted in Figure 5
as a function of r for r' = 0.3 and 0.6 nm . This function reflects the influence of both direct
and indirect excluded volume effects on the fluid structure and, ultimately, on the MS-CG
interaction potential between CG sites. The three-particle correlations couple the equations for
the force field elements, fy, according to eq (17). Figure 5 has been presented to highlight the
fine structure of the three-particle correlations between CG sites within the atomistic system.
The range of the coupling, though, is somewhat exaggerated by Figure 5, since the other terms
in eq (17) scale as r2 due to the statistics of particles on a shell.

For molecular scale coarse-graining (i.e., coarse-graining on length- and time- scales for which
molecular excluded volume is relevant), the presence of a fixed third CG particle impacts the
distribution of a given pair of CG sites. As illustrated in Figure 1, the geometry of contact
between the second and third CG particles defines an excluded volume cone. This cone
corresponds to a range of angles 0;:j x < 0*j.j k = 0 that are not sampled during trle MP simulation
and, as a result, the spherical average of the cosine of this angle (cos 6;:j k = Ujj - Uj ) does not
vanish. This depletion effect is clearly evident in the calculations of Figure 5, where it can be
seen that GO (r,r’) has a negative peak centered at r ~ r'. Figure 5 also demonstrates a
corresponding density enhancement resulting from the solvation shell of the third CG particle,
centered roughly at r = r’ £ 0.3nm. The negative peak of the three-particle correlation function
is most pronounced near the first maximum of the rdf. For larger r’, the peak is more diffuse.
The SPC water and LJ fluid three-particle correlations are quite similar for r,r’ > 0.3nm and
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this similarity increases with increasing r,r’. This result is perhaps quite surprising and suggests
that, for simple fluids, a reasonable approximation to the three-particle correlation functions
important to the MS-CG method might be obtained by appropriately rescaling the LJ three-
particle correlation function. This would dramatically reduce the necessary simulation time
involved in determining the MS-CG force field, since the three-particle correlation function is
clearly the most difficult quantity in the MS-CG equations to converge.

4. Discussion

The analysis of section 2.1 proves that, if no approximations are made in the form of the CG
force field, then the MS-CG method determines a multi-dimensional potential of mean force
between CG sites according to eq (5). Simulations of CG models employing this many-body
interaction potential will sample CG representations of atomistic configurations according to
the atomistic distribution function. Such a simulation would reproduce any structural and
thermodynamic properties of the atomistic system that may be observed in the CG simulation.
However, the calculation and simulation of such a potential are in general not practical. Rather,
CG force fields often employ pair potentials to model non-bonded interactions between CG
sites. Consequently, it is important to understand the mechanism by which CG pair potentials
incorporate many-body effects to approximate this multi-dimensional potential of mean force.

The YBG equation states an exact relationship between the equilibrium two- and three-particle
distribution functions resulting from simulations of a given pair potential function.20 If this
pair potential depends only upon the inter-particle distance, then, for an isotropic homogeneous
system, the YBG equation may be reduced to a one-dimensional integral equation that is
equivalent to the MS-CG equations. Thus the MS-CG equations are equivalent in form to a
statement of the exact relationship between the two- and three- particle distribution functions
that arise from simulations of a homogeneous, isotropic system employing a central pair
potential. (However, it should be noted that the converse of the YBG relationship does not
necessarily follow. Although, a given pair potential determines a set of resulting correlation
functions, a given set of correlation functions does not necessarily determine a pair potential.
Thus this relationship does not directly address the general validity of approximating the many-
body CG force field with a pairwise additive form.)

The MS-CG procedure may therefore be considered a novel numerical mechanism for solving
the “inverse’ problem of liquid state theory,19 i.e., determining an interaction pair potential
that generates a given set of distribution functions. If a given set of two- and three-particle
distribution functions are generated from a pair interaction, then this interaction may be
determined by inverting the generalized YBG equation (26) for F(X;,X)). If, moreover, this
interaction is central and depends only upon the distance between the two particles, then this
pair-wise central force field may be determined by solving the MS-CG equation (23) for f
(rij). The MS-CG method takes advantage of atomic force information rather than directly
evaluating the numerical derivative of the rdf, which may require extensive sampling.

The Ornstein-Zernicke (OZ) and YBG equations are two of the most well known integral
equations for liquid state theory.20 The “direct’ solution to either integral equation for the two-
particle distribution function requires an (approximate) closure relation that determines a
second unknown function in the integral equation. The closure for the OZ equation involves
the direct correlation function, c(r), while the closure relation for the YBG equation involves
the three-particle distribution function. The OZ equation has been particularly useful for
investigating the structure of simple liquids because the direct correlation function is short-
ranged and, consequently, more amenable to theoretical and numerical analysis than the YBG
equation which depends upon the three-particle correlation function, g®). The OZ equation has
also been employed in developing force fields for CG models.14 However, the YBG equation
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may be more useful than the OZ equation for solving the inverse problem in developing CG
force fields. Although c(r) may be determined by directly inverting the OZ equation,
approximate closure relations are necessary to relate the direct correlation function to a CG
pair potential. In contrast, the YBG equation for the CG pair potential may be closed by directly
computing the relevant distributions of CG sites within an atomistic MD simulation. Inverting
the resulting equation provides a force field that will reproduce the correct CG structure, under
the assumption that such a force field exists.

It is a fundamental assumption that the CG distribution functions measured in atomistic MD
simulations may be generated from a pair-wise central force field. In general, there may not
exist such a CG pair potential that will reproduce both the two- and three- particle distribution
functions characterizing a given system. Consequently the MS-CG equations presented in eq
(21) are not necessarily an exact identity describing the CG structure because the assumed pair
potential giving rise to the measured CG two- and three- partrcle distribution functlons may not
exist. In fact, recent work has demonstrated that many- body =41 and non-central42
interactions may be critical for the coarse-grained modeling of proteins.

The underlying variational principle provides tremendous flexibility in the MS-CG
methodology. By minimizing the residual in eq (1), the MS-CG method systematically
determines an optimal approximation to the multi-dimensional many-body CG PMF. If no
assumptions are made in the form of the CG interaction, the MS-CG procedure determines this
many-body PMF, which would reproduce both two- and three-particle structural correlations
in CG simulations. Previous numerical implementations of the MS-CG procedure16'17’24‘
28 have determined and employed an optimal central pair decomposition of this CG PMF.
However, in principle, the MS-CG procedure may be readily generalized to incorporate both
non-central and many-body effects within the CG force field by relaxing the assumptions
explicit in eq (7)~eq (8). Many-body interactions may be incorporated into the MS-CG force
field either by generalizing the approach of eq (9) and tabulating additional many-body
interaction terms on a multidimensional grid or by parameterizing an assumed functional form
by minimizing the MS-CG residual. Similarly, non-central interactions may also be
incorporated into the CG force field, for instance, by expanding the pair interaction in eq (8)
asaseries of spherical harmonics.#3 However, if the interaction does not depend linearly upon
the force field parameters, the minimization procedure for optimizing the MS-CG force field
requires a nonlinear regression algorithm.22

The reverse Monte Carlo (RMC) method has been employed to determine a CG potentlal that
reproduces a given CG rdf when used in CG simulations. 2,29 Chayes and Chayes have
proven that there does indeed exist a unlque4 pair potential that will reproduce an observed
rdf. However this potential is not guaranteed to reproduce higher order distribution
functions.3 Althou%h %y design the RMC method should reproduce CG rdf’s to the desired
numerical precision, simulations employing this pair potential may not necessarily
reproduce the correct three-particle correlations for the system. In particular, using a similar
RMC procedure to generate water configurations from known radial distribution functions,
Jedlovsky et al. 45 have demonstrated that three- particle correlations may be inaccurately
reproduced although the observed rdf’s are quantitatively accurate. In contrast, luchi et al. 46
have demonstrated that the MS-CG procedure accurately reproduces both the two- and three-
particle correlations of a polarizable 4-site water model using a non-polarizable 4-site MS-CG
force field.

It is of some interest to briefly compare the MS-CG and RMC methods for developing CG
potentials in light of the YBG equation for homogeneous isotropic systems. The MS-CG
method implicitly measures the two- and three- particle correlation functions describing CG
sites within an atomistic MD simulation and then directly inverts the YBG equation to
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determine a central CG pair potential that would generate these distribution functions, should
such a potential exist. In general such a potential may not exist and, consequently, simulations
employing the MS-CG pair potential will not necessarily reproduce either the two- or three-
particle correlations exactly. Rather CG simulations employing the MS-CG force field will
satisfy a different YBG equation relating the fixed MS-CG force field and the resulting CG
distribution functions. Although the MS-CG force field does not necessarily reproduce either
the two- or three-particle distribution functions exactly, the method clearly incorporates three-
particle correlations. Moreover, because the method does not necessarily reproduce the pair
correlation functions, comparison of the relevant rdf’s between atomistic and CG MD
simulations is a useful measure of the validity of the CG model.

In contrast, the RMC method only directly considers the two-particle correlation function and
attempts to solve the YBG equation for the pair interaction that reproduces the target rdf while
allowing the three-particle correlation function to vary as necessary.2v29 The repeated MC or
MD simulations used in iteratively updating the pair potential may be considered a nonlinear
regression algorithm that tries to solve the YBG equation for a pair potential reproducing a
fixed rdf. If three-particle correlations were not significant in the YBG equation, then the pair
potential would be simply the two-body pmf, which is often implemented as an initial condition
in the search for the optimal pair potential. With succesive iterations the simulated rdf
converges to the target rdf measured from atomistic MD simulations.2 The RMC method
implicitly incorporates information regarding three-particle correlations by updating the force
field to improve agreement between the measured and target rdf, although in successive
simulations the three-particle correlations may change. The YBG equation that is implicitly
solved through the RMC method incorporates the target rdf and is guaranteed to reproduce this
rdf. However, the three-particle correlations in the final YBG equation may be different than
those in the original atomistic representation of the system.

In closing, two additional points require brief discussion. The preceding analysis directly
addresses non-bonded interactions between CG sites. Bonded interactions may be treated as
special cases of non-bonded interactions or by introducing additional terms into the MS-CG
potential. In the latter case, the contributions from these interactions should be subtracted from
the total forces on CG sites and the preceding analysis still holds for non-bonded interactions.
Additionally, it has been mentioned repeatedly that the MS-CG equations are equivalent to the
YBG equation for a homogeneous, isotropic system evolving under a central pair potential. In
principle, a system described by a central pair potential may be both homogeneous and
isotropic. However, these symmetries are not necessarily realized in MD simulations of
complex interfacial or biological systems. The presence of a lipid bilayer or a protein inan MD
simulation box may break this symmetry. The analysis of Section 2.3, though, requires the
additional assumptions of isotropy and homogeneity. Consequently, the FM equations are
rigorously equivalent to the YBG equations in eq (35) only for relatively simple systems.
However, the analysis of Section 2.2 demonstrates that the FM force field incorporates critical
information regarding three-particle correlations for any system. It has been empirically
demonstrated that even for highlby comflex systems the MS-CG method generates a useful and
quantitatively accurate model 16,17,24-28,46

5. Conclusions

The present work develops a statistical mechanical framework for understanding the
foundations and success of the MS-CG method. It has been shown that the MS-CG method
may be used to derive a multi-dimensional pmf for the interactions between CG sites. The
“normal” MS-CG equations have been derived for approximating this many-body interaction
with central pair potentials. The derivation demonstrates that the MS-CG equations for these
potentials reflect not only two-body, but also three-body correlations observed between CG
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sites during atomistic MD simulations. The generalized YBG equation has been presented for
CG systems and it has been proven that this generalized YBG equation is equivalent to the
normal MS-CG equations for a homogeneous, isotropic system evolving under a central pair
potential. The present analysis provides a connection between the MS-CG method and
equilibrium statistical mechanics and also illuminates the general significance of three-particle
correlations for deriving CG effective pair potentials.
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Appendices

Appendices A and B involve the properties of Dirac delta functions in spherical polar
coordinates. In particular, the derivation of eq (18) and eq (33) employ the following
relation4’

[dQA(T)D(r ~T0)=LA,,(r,Q0)8(r - rp), 50

which is valid for all rg # 0. In eq (36), Asp (r,Qg ) is the representation of the function A(r) in
spherical polar coordinates evaluated in the direction Qg defined by the vector rg.

Appendix A. Derivation of Equation (18)

Assume that the CG configurations employed in the FM procedure were sampled according

R - 7 vee (7 ik 7| jzav,vo
to a distribution function, Pcc | —eap|— - [k, T\ /Z(N.Vo.T)s \here
. (=N,
yeG (7). : : . o . .
is a many-particle CG potential function describing the interactions between CG

N 1 /=~ —
sites. Selecting two arbitrary CG sites, i and j, and transforming into “sum,” R,-j=§ (r,»+ ’j),
and “difference,” Fjj = I — Tj, variables, then it follows that:

0 ?N(‘(;

p(-G 1 ((F F) u ) (AN(VG)

_ = i—Fi|l - uijlpe| 1 .
or;; 2% T\ F) Fii Pes

B

— —WNeg=2)

R;jQj.T (37)

The partial derivative is evaluated with respect to the inter-CG site distance (difference
variable) rij, while holding fixed the relative (difference) orientation €;;, and average position

of the two CG sites Rjj as well as the remaining Neg — 2 sites, 7™
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Consider next the quantity Gjj(r) = (r— rij)). Employing the identity in eq (36), it can be
proven that

1 I
G;i i g ( i ) ii0(r — ,)
f(r) Gij(r) 2k, 27 \Fi = Fif b= rif) (38)

Letiand j correspond to CG site types o and 3, respectively, and define the radial distribution
function

2ap(1)= ( y— pﬂVO) 42 2, G,

lo Jp#ia (39)
then

d 1 1
Q T 6
78 p(r)= T (4ﬂpnppV0) 3 Z,; (F,(, F,ﬁ) Wi, jpS(r = rig js))- o

In the case that o = 3, the two terms in the summations are equivalent and the result simplifies:

d 1
aa Ame e T ip "~ i 0 i
dr ar® (r) k T (47T,U(Yp(y VO) r2 Z Z (F 0 Oj") (r d "JQ)>

iy Jatia (41)

A more detailed derivation is provided in the supporting information section.

Appendix B. Derivation of Equation (33)

Consider the distribution of three distinct CG particles at positions 1, 5, and 3 corresponding
to particles iy, jg, and ky in Figure 1. The FM kernel is defined

FM !
M, g, (ri2,ri3) = (4 ,U(y/JﬁVO)rlz Z Z Z ( ianip " Wink )5 (’, Js ~ 112)0y (r,;,_ky—m))

ia jp#iakykyFia.jp , (42)

The YBG kernel is defined:

(,M(hz r13)=pyr13 fszlf4ﬂd921fv dri(uy - u3)gl) (r1.72.73) (43)

afy

where Q1 defines the orientation of the unit vector Uy, and the three-particle correlation function
is defined:

TN S % SN %
Z 6(3)(1’1-1‘ — r1)5(3)(rj/} = rz)(S(S)(r,\.y — r3)) .

® (7. 7.7
glyﬁy(rl3r2ar3):
ia JpFiarkykyFiasjp , (44)

PaPpPy
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The definitions in eq (42) and eq (44) assume that the average over configurations is equivalent
to the appropriate ensemble average. After integrating over ry in eq (43), the YBG kernel may
be expressed

YGG
M 555 (r2.r3)=

3 - N - I -
47[,(,)‘[,;/,\0(2 Z Z [dQa; [ds, (“12(921)‘ Mlz(ﬂzl))&'})(ﬁyf,it, = ’21)5(3)(%.,1, = r31)>

i Jpzio KyKyFiasJp

1 (45)

The integrals over the orientational degrees of freedom may then be evaluated according to the
identity in eq (36). Upon performing these integrals within the ensemble average, one obtains
the desired result:

YBG _ I I
M, 5 (r2.r13) (4,“,”%‘/0),” (Z Z Z ( 5 u,u )5(4‘“].[’—r12)6(r,.u‘ky—r13))

iq JB¢’(7A k #lq, ./[)' i

FM
Mly;/jy(ﬁz,"]}) (46)

Appendix C. Normal FM equations for a multi-component system

The FM residual for a system with multiple types of CG sites may be expressed:

N Nr NotpaA 1CG

l I T
Vs 222 Fe ~F

la la
1"Ye6 T o

2

(47)

l'ﬂ/

In eq (47) and in the following, Greek indices () represent types of CG sites, Latin subscripts
(i) represent particular sites of a given CG type, and the superscript (1) labels configurations
sampled during the atomistic MD simulation. As before it is assumed that the FM force field
is pair-wise additive, such that

A1co ~CG /1 _I
Fi =20 Fuip(T)

B jp#ia (48)
and, furthermore, that this force field is central:
.CG /.1 _.I N off s o]
Fipjs (ria’rj[})zuin-j/ff (’fn.j/f)- (49)

Employing the discrete delta function basis of eq (9), a system of linear equations (i.e., the
“normal” FM equations for a multi-component system) is obtained by minimizing the residual

in eq (47) with respect to each interaction, f:;ﬁ :

ZZ[ (1= 8up) 7 G+ 17 G| = (1 = 8u) BT+

(50)

in which
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_LAA _,
b= (ZZ( s ,1 jﬂ)(sb (r,’jﬁ —rd)),
la Jp#la . -
and
Gar=3" 3 3 (A,I(, s Ty y)5n (= ra)85 (s —ra)) -
io Jp#iaky#ia

I (52)

Equation (50) generalizes eq (10) and employs the symmetry f"’B = ff". The quantity defined
in eq (52) may be decomposed into two- and three-particle contributions according to:

a;fBy

Gdd =0py 5dd'(G(2))aﬂ (6(3))(1(1' ’ (53)

where

Gm o (Z Z = rd

io Jp#ia I (54)

and

G(S) ny—<z Z Z ( ia+Jp ”Ia )50(’:‘](,.;',;_’d)‘sn(ri]{,.ky_’d')>~

io jp#iakyky#ia.jp

! (55)
Employing these definitions, eq (50) may then be re-expressed:
(1 _ 6(Yﬁ [bdﬂ _ f(Yﬁ G(z) ‘Yﬁ] [ (Y _ .(yﬁ G(z)fnjl _
17 3) ﬂﬂy y ( 3By
ZZ[ nﬁ G )dd Jar (G )dd J
(56)

Upon multiplication by the factor l/(47tpapBV0-rd2) and application of the definition in eq (39)

and the identity in eq (41) from Appendix A, eq (56) may be expressed:

i vy (3> By L By (63 ”VJ
(Yﬂ|d ZZ (47TpapﬁV0) [f G dd’ (G )

d(y
kT””

(57)

Passing into the continuum limit, eq (57) may be represented by a linear one-dimensional
integral equation:

(k P —f"ﬂ<r))gaﬂ(r) Z Jdr S| 1o o)y MEY Gy + 157 ) MEM ()],
(58)
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where

(i) 2B 5 B (e T o = o =D

lo jp#iakyky#iasjp . (59)

and, according to Appendix B, Mﬁ% (r,r") M(ff,é’ (r;r') =My, (r,r').

Appendix D. Generalized YBG equation for multi-component CG system

|

i (7 7 = 1 ) )= 7 7 1) 5 (i)
: y

Ny

G

No . .
The Hamiltonian for a system with N, sites of type o and total CG sites evolving

under an N¢g particle potential function, VNCG, is defined:

H(é e =Ne ) ZZ ’1’,1,

N,
#VNes (7).

(60)

Assuming that the total force on each CG site, fia: — VNee /87,~a, arises from a sum of pair
interactions,

FIO_ZZFIG jﬁ( ia J/?)

(61)

then for a homogeneous system with pa(ﬁa) = p,, = const, the following relations describe the
distribution of three arbitrary but distinct CG particles, i, jg, and ky :

9 7o e® (7 7\ >, G (7. 7. 7
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B

(62)

Equations (62) generalize the Yvon-Born-Green (YBG) equation20 and relate the equilibrium
two- and three- CG particle distribution functions to the pair-wise decomposable force field,
Fia'jB' As before, for an isotropic homogeneous system, the two-particle distribution function

. . . . O 7. )= . .
is equal to its rotational and translational average, 8o (’ a7 m) =8ap (’ ra-m) >and the gradient

terms in egs (62) may then be simplified: 53(4; ( iar> /a) 17, ”"a-jﬁ d8ap (’ia-j/s) /driy.jg-Under
the additional assumption that the pair interaction between CG sites is central,

Fiajp (’ ias T jﬂ) =Uiy.jpf & (’ "mj/s) > the first equality in eq (62) may be re-expressed:

d

(63)
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Projecting this equation onto the vector ula][} and shifting the integration variable, one obtains
the result:

(k Tdr, y ~F <rl"”))gnﬂ 7o) Zfdr””[ (o) Mo (i tins,)
a-Jp (64)

where,

=

2 £ s Ly s oaa
YBG —o(r ; R POl
M(Y,B‘)/ (rin-jﬁ’ri(rk}’) _p‘)/(r’(i'k)’) fkoY‘lnPRT (Mlﬂf*k}/ u’("j/g)gﬂ/ﬁ'}’ ( r’“’ r‘w’ rky) (65)

and, according to Appendix B, M}y (r.r') =MLY, (r.r') =M.y (r.r") . Similar manipulation of
the second relation in eq (62) yields

(k Tdr == % (’ f"~//f)) boi (’ "mf'/f) :Zf drjy iy 7 (’ fﬁ-kw)MﬁM (r ia-jg!" J‘mky)-
ta>Jp Y (66)

The left hand sides and thus the right hand sides of eq (64) and eq (66) are identical. The two
equations may then be averaged to yield the final result, the YBG equation for a homogeneous,
isotropic multi-component CG system evolving under a central pair potential:

d
(k,,T; - (r)) 8ap (V=) [dr' L[ /7 () Mugy (rF) 4177 () Mpaay ().
Y (67)

Therefore, the generalized YBG equation for a homogeneous and isotropic multi-component
CG system evolving under a central pair potential is equivalent to the normal multi-component
FM eqs (58).
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k.
\,
r

Figure 1.

(a) The geometry of three-particle correlations between CG sites relevant to the MS-CG
equations is schematically illustrated. (b) Excluded volume effects define a cone of small angles

Oigsjgky < HTH;jﬁky that is not sampled during MD simulations.
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Figure 2.

The radial distribution functions (rdf’s) are presented for atomistic simulations of the LJ (solid),
SPC-COG (dashed), and SPC-COM (dotted) systems. The inset provides a detailed comparison
of the first peak for each rdf.

J Phys Chem B. Author manuscript; available in PMC 2009 February 13.




1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Noid et al.

nm

-1

kJ mol

Page 26

-50 C)

|
0.2 0.4 0.6 0.8
r (nm)

Figure 3.

The MS-CG force field (black curve) is compared with the mean force (red curve) for the LJ
(panel @), SPC-COG (panel b), and SPC-COM (panel c) systems. The difference between the
MS-CG force and the mean force arises from the incorporation of three-particle correlations
in the MS-CG method according to eq (16). The MS-CG force field for the LJ system is also
compared with the exact LJ force field (light green curve) in panel (a) and the difference is
seen to be within the thickness of the curve.
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Page 27

The MS-CG force fields (panel a) and the mean force fields (panel b) are compared for the
three different systems. In each panel the LJ results are presented as the solid curve, while the

SPC-COG (COM) are presented as the dashed (dotted) curves.
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Figure 5.

Three-particle correlations between CG sites enter into the MS-CG eq (12) through the quantity
G® (r,r'), which is presented as a function of r for fixed r' = 0.3 nm (panel a) and r' = 0.6 nm
(panel b). Each panel presents this quantity for the LJ (solid black), SPC-COG (dashed blue),
and SPC-COM (dotted red) systems.
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