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Abstract

Background: SSADH (aldehyde dehydrogenase 5al (Aldh5al); y-hydroxybutyric (GHB) aciduria)
deficiency is a defect of GABA degradation in which the neuromodulators GABA and GHB accumulate.
The human phenotype is that of nonprogressive encephalopathy with prominent bilateral discoloration of
the globi pallidi and variable seizures, the latter displayed prominently in Aldh5al-- mice with lethal
convulsions. Metabolic studies in murine neural tissue have revealed elevated GABA [and its derivatives
succinate semialdehyde (SSA), homocarnosine (HC), 4,5-dihydroxyhexanoic acid (DHHA) and
guanidinobutyrate (GB)] and GHB [and its analogue D-2-hydroxyglutarate (D-2-HG)] at birth. Because of
early onset seizures and the neurostructural anomalies observed in patients, we examined metabolite
features during Aldh5al-- embryo development.

Methods: Embryos were obtained from pregnant dams sacrificed at E (embryo day of life) 10-13, 1415,
16—17, 18—-19 and newborn mice. Intact embryos were extracted and metabolites quantified by isotope
dilution mass spectrometry (n = 5-15 subjects, Aldh5al**and Aldh5al--) for each gestational age group.
Data was evaluated using the t test and one-way ANOVA with Tukey post hoc analysis. Significance was
set at the 95 centile.

Results: GABA and DHHA were significantly elevated at all gestational ages in Aldh5al-- mice, while GB
was increased only late in gestation; SSA was not elevated at any time point. GHB and D-2-HG increased
in an approximately linear fashion with gestational age. Correlative studies in human amniotic fluid from
SSADH-deficient pregnancies (n = 5) also revealed significantly increased GABA.

Conclusion: Our findings indicate early GABAergic alterations in Aldh5al-- mice, possibly exacerbated
by other metabolites, which likely induce a heightened excitatory state that may predispose neural
networks to epilepsy in these animals.
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Background

Succinic semialdehyde dehydrogenase (SSADH) defi-
ciency (aldehyde dehydrogenase 5al (Aldh5al); E.C.
1.2.1.24; OMIM 271980, 610045) is a rare neurometa-
bolic defect of the GABA catabolic pathway (Fig. 1). The
phenotype is variably that of a static encephalopathy,
associated with developmental delays, hypotonia, ataxia,
defects or absence of speech, and seizures [1]. Older
patients may demonstrate a prominent component of
neuropsychiatric morbidity. A cardinal finding from
imaging of patients is hyper-intense signals in the globi
pallidi bilaterally [2]. Identification of affected probands
is facilitated by detection of increased y-hydroxybutyric
acid (GHB) during routine urine organic acid analysis.
GHB, a by-product of defective GABA catabolism (Fig. 1),
is a compound with its own unique pharmacological pro-
file, and it remains a topic of debate as to whether it is a
neurotransmitter as is the case for its parent compound,
GABA [3]. Treatment options for patients are limited and
primarily palliative, although recent findings in mice sug-
gest that a ketogenic diet may have therapeutic relevance
[4,5].

In an effort to examine the pathophysiology of SSADH
deficiency and explore effective preclinical treatment par-
adigms, Hogema and coworkers [6] developed a murine
knockout model. While lethality does not occur in the
early newborn period, this animal demonstrates almost
uniform lethality in status epilepticus at about 3-4 weeks
of life, associated with a marked failure to thrive. Neuro-
physiological evaluations have revealed a seizure transi-
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tion process that progresses from absence to generalized
tonic-clonic convulsions [7], associated with marked dys-
regulation of GABAergic neurotransmission in the pres-
ence of essentially normal glutamatergic and GHBergic
function [7-10]. Pharmacotherapeutic approaches to off-
set early lethality have been described above, but also
have included the GHB receptor antagonist NCS-382, the
GABA; receptor antagonist CGP 35348, and the irreversi-
ble GABA transaminase inhibitor vigabatrin (Fig. 1), the
latter perhaps the most widely invoked pharmacotherapy
in this disorder, despite potential side-effects [11,12].

Previous studies from our laboratory have shown that sig-
nificant elevations of GHB and GABA occur in newborn
Aldh5a1-/- mice, and these persist until premature death
[13]. Elevations of GHB were accompanied by a progres-
sive decrease in glutamine levels with age, which is of
interest since glutamine serves as a key shuttle molecule
maintaining astrocytic and neuronal concentrations of
glutamate and GABA [14] (Fig. 1). GABA, the GHB precur-
sor, was also significantly elevated in the newborn
Aldh5al-+/- mice [13]. Based upon these accumulations,
and in view of the seizure phenotype of Aldh5al-/- mice
and the imaging abnormalities observed in human
patients, we hypothesized that GABA might be signifi-
cantly elevated in embryonic Aldh5al-/- mice. The rele-
vance of this question is underscored by the observation
that early in rodent embryonic development, and through
the first week of postnatal life, GABA exerts excitatory
actions that do not transition to inhibitory potentials
until chloride concentrations level out by approximately
postnatal week 2 [15,16]. The current report summarizes
our metabolic characterization of Aldh5al embryos, and
provides evidence that a heightened excitatory state may
exist in Aldh5a1-- mice during early development.

Methods

Husbandry and PCR-genotyping of the Aldh5al mutant
mouse colony has been previously described [17]. Mutant
mice were generated by heterozygous matings (Aldh5a1+/
-x Aldh5a1+/-); animals were C57Bl/6 congenics. All pro-
cedures involving mice were approved by the Institutional
Animal Research Care Committee (ARCC), and were per-
formed in accordance with NIH guidelines for laboratory
animals.

Timed matings were established for embryo generation.
During daily checking, the identification of a vaginal plug
in the dams was set at E6.5, and pregnancies were allowed
to continue to predetermined timepoints. Dams were rap-
idly sacrificed and the embryos dissected on a cold-plate
(4°C), being careful to avoid maternal decidua. Embryos
were either prepared immediately or stored at -80°C until
further work-up. Because dissection of embryos was not
feasible, all were identically handled without dissection of
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neural tissue. Additionally, it might have been optimal to
isolate enriched neural tissue from these embryos (e.g.,
brain). However, GABA exerts activities (and is found in
measurable quantities) in peripheral tissues, including
liver, kidney and pancreas, and thus in these studies we
sought to obtain the most complete picture of GABA (and
related metabolites) in these embryos [18]. After weigh-
ing, a powder of each embryo was prepared by rapid pul-
verization in dry-ice/acetone. The powders were
reconstituted using phosphate-buffered saline (pH 7.4) at
a constant ratio of 0.2 g tissue/ml, extracted with a
Dounce homogenizer on ice, and finally clarified by cen-
trifugation. The supernatants were stored for metabolite
quantification at -80°C; protein content was determined
using the Bradford method with BSA as standard. To
achieve a statistically significant number in each group,
embryos were grouped as follows: E10-13, E14-15, E16-
17, E18-19 and P (postnatal)1. For each group (Aldh5a1+/
+, Aldh5al1+/-), n = 5-15 separate subjects.

GABA, D- and L-2-hydroxyglutaric acids (D-2-HG/L-2-
HG), SSA, DHHA, GHB and guanidinobutyrate (GB) were
quantified by isotope dilution methodology employing
either gas chromatography-mass spectrometry or liquid
chromatography-tandem mass spectrometry (LC/MS-MS)
[17,19-23]. The same metabolites were quantified in
amniotic fluid specimens submitted for prenatal diagno-
sis in pregnancies at-risk for Aldh5al deficiency. In the
amniotic fluids characterized, the subsequent propositus
was identified as Aldh5al-deficient either via enzyme or
mutation analysis in blood, or both. Amino acids in clar-
ified supernatants were quantified by HPLC analysis with
ninhydrin post-column detection, using established
methods [13]. Data was evaluated using the GraphPad
Prizm program (version 4.0) using the ¢ test and one-way
ANOVA with Tukey post hoc analysis. Significance was set
at the 95t centile.

Results

Relevant metabolite findings in embryos of both geno-
types (Aldh5al1+/+, Aldh5a1+/-) are described in Figs. 2 and
3. GABA was significantly increased at all embryonic ages
as a function of genotype (Fig. 2). The concentration by
genotype was roughly constant during embryonic devel-
opment, although a drop in GABA concentrations at birth
in both genotypes failed to reach statistical significance
(one-way ANOVA with Tukey post-hoc analysis). The con-
centration of the GABA transamination reaction product,
succinic semialdehyde (SSA), was not different by geno-
type at any gestational timepoint, implying an efficient
conversion of SSA to other intermediates (e.g., DHHA,
GHB). As noted in Fig. 3, however, there was considerable
variation of SSA with genotype, yet none of the differences
achieved statistical significance. While it is tempting to
speculate that these variations in SSA might represent bio-
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logical variation, more likely this reflects methodological
variation since SSA is a reactive aldehyde that may be par-
tially lost prior to analytical measurement. Nonetheless,
the absence of elevated SSA contrasts with the minor
increase previously detected in whole brain extracts of
Aldh5al+/- mice [24]. The putative metabolite of GABA
(via further oxidative metabolism of SSA; see Fig. 1),
DHHA, increased with gestational age for Aldh5al-/-mice
(Fig. 2), and it was significantly increased at all embryonic
ages. For DHHA, there was insufficient material available
to examine the concentration at E10-13. Guanidinobu-
tyrate (GB), also believed to derive from GABA, showed a
significant increase in Aldh5al”/- mice, but only later in
gestation and at birth (Fig. 2).

GHB was significantly increased with genotype at all
embryonic ages (Fig. 3). This increase revealed a linear
progression with increasing gestational age, as was the
case for the GHB analogue, D-2-hydroxyglutaric acid (D-
2-HG; Fig. 1). These data provide further evidence that
both species are interrelated in their metabolic sequences.
For D-2-HG, the significance at E10-13 was reversed, in
that Aldh5a1+/+ mice had significantly larger concentra-
tions than did Aldh5a1-/-mice. The reason for this remains
unclear. In the same embryo extracts, we also examined
total amino acid patterns to see if particular trends were
present. There were no consistently significant differences
for any amino acid by genotype, with the exception of
GABA. Results for glutamate and glutamine, the direct
precursors of GABA, are displayed for E15-17, E18-19
and P1 embryos (Fig. 4). In only a single instance
(glutamine, E15-17, p < 0.05), there was no significant
difference for either amino acid by genotype, although the
trend was for lower levels of both in Aldh5a1+- mice (Fig.
4). These data are consistent with earlier studies in new-
born Aldh5al”/- mice, in which no differences were
observed in glutamine and glutamate by genotype at birth
[13,18]. Of note, however, was the considerable decrease
in glutamate levels with age. One way ANOVA with Tukey
post hoc analysis revealed a significant difference (p <
0.05) for glutamate levels at E15-17 and E18-19 as com-
pared to the same levels at P1 (Fig. 4). This decrease at
birth corresponded to the trend toward lower GABA at
birth (Fig. 2) for both genotypes.

The finding of elevated embryonic GABA concentrations
suggested that amniotic fluid derived from human preg-
nancies affected with SSADH (Aldh5al) deficiency might
also demonstrate elevated GABA. We have previously
shown that an affected pregnancy can be identified by
increased GHB levels in amniotic fluid [25]. Accordingly,
we examined GABA and other metabolic intermediates in
archival amniotic fluid samples for which an SSADH-defi-
cient fetus had been identified. For these fluids from at-
risk pregnancies, Aldh5a1-deficiency was documented for
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the propositus utilizing either enzyme or molecular stud-
ies in blood, or both, and a prior affected proband existed
in the family. The normal control value for GHB in amni-
otic fluid was 1.18 + 0.08 umol/L (SEM; range 0.42-2.20,
n = 31 samples) while the same value for affected amni-
otic fluids was 5.78 + 1.25 pmol/L (range 2.10-8.96, n =
5; p<0.0001). As depicted in Fig. 5, the GABA concentra-
tion in these same affected pregnancies was also signifi-
cantly elevated (1.38 + 0.05 (SEM), n = 5 for unaffected;
1.88 + 0.20, n = 5 for affected; p < 0.05). These data imply
that GABA is also increased in the SSADH-deficient
human fetus, consistent with our results in the murine
embryo studies.

Discussion and conclusion

A cardinal manifestation of SSADH deficiency is hyperin-
tense signals in the globi pallidi bilaterally. This is not
unique to this disorder, however, and may relate to ongo-
ing oxidative damage [26]. Nonetheless, this feature is
prominent on the MRI of documented patients. We
recently identified a 19 year-old patient with SSADH defi-
ciency who, having experienced recurrent seizures for 6
years, died suddenly and unexpectedly [27]. Detailed
post-mortem examination revealed striking discoloration
of the globi pallidi bilaterally. Accordingly, we hypothe-
sized that the CNS of SSADH-deficient patients might be
predisposed to neuroanatomical lesions linked to prena-
tal exposure to supraphysiological concentrations of
GHB, GABA and other intermediates known to accumu-
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Concentrations of GHB (gamma-hydroxybutyric acid) and D-2-HG (D-2-hydroxyglutarate) in embryo extracts
as a function of age. A linear representation of means + SEM by genotype is depicted as well. Abbreviations and statistical
analysis as described in Fig. 2. SEM, standard error of the mean.

late in SSADH deficiency. Our laboratory has previously
shown that alterations of myelin formation occur in
Aldh5al+/- mice [28]. We have hypothesized that the
metabolite accumulations detected in Aldh5al/- mice,
including GHB and GABA, alter signaling components
(MAP kinase and neurosteroids) that link to use-depend-
ent down-regulation of GABAergic receptors. Other
groups have demonstrated that myelin abnormalities can
induce oxidant stress [29]. The current report supports our
findings of metabolite perturbations in neonatal Aldh5a1-
/- mice, and has laid the groundwork for exploration of
additional pathophysiological studies in embryonic mice.

GABA is significantly elevated in very early embryonic
development of Aldh5al-- mice; as well, GHB is similarly
increased, suggesting that the enzyme responsible for con-
version of SSA to GHB, SSA reductase (aldo-keto reductase

7a2; AKR7a2), is also active in early embryonic develop-
ment. The linear increase in GHB (Fig. 2) would suggest
that AKR7a2 is also demonstrating a developmental
ontogeny, which has not been previously documented.
Rumigny and colleagues [30] demonstrated that putative
AKR7a2 activity was, however, roughly constant in differ-
ent rodent brain regions for the first two months of life. A
similar process occurs for the GHB derivative, D-2-HG
(Fig. 2). D-2-HG is derived from GHB in a reaction cata-
lyzed by d-2-hydroxyglutarate transhydrogenase (HOT),
an enzyme known to manifest a developmental ontogeny
in the rodent [31,32]. The corresponding linear increases
for GHB and D-2-HG provides further evidence for the
existence of HOT in embryonic rodents, and raises the
possibility that D-2-HG may have a pathophysiological
role in the developing Aldh5a1+/-embryos, since this com-
pound has been shown to induce oxidative damage in
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rodent tissues [33-36]. The accumulation of D-2-HG was
specific, since there was no increase in isomeric L-2-
hydroxyglutarate with any embryological age (data not
shown).

Previous studies from our laboratory demonstrated a
small, yet significant, increase in total brain SSA levels for
Aldh5al-/- mice [24]; conversely, we saw no evidence for
accumulation of SSA in developing embryos. These data
suggest that the requisite enzymes which convert SSA
either to GHB or DHHA are functional at the develop-
mental time-points we examined. Our data for DHHA, a
species unique to Aldh5al deficiency, were also revealing.
The synthetic pathway for DHHA formation remains to be
conclusively demonstrated, but it has been proposed that
DHHA derives from condensation of SSA with a 2-carbon
species related to pyruvate metabolism (e.g., acetyl-CoA,
pyruvate, etc; see Fig. 1) [37]. If this hypothesis is correct,
potential disruptions of intermediary metabolism are
occurring very early in the development of the Aldh5al
embryo. These perturbations, especially focused in mito-

chondrial metabolism, may underlie a component of the
imaging abnormalities observed in patients. Additionally,
we have shown that DHHA is a weak ligand for the GHB
receptor [38], possibly potentiating the excitatory state
induced by early GABA and GHB accumulation. GABA-
related guanidinobutyrate (GB) reached significant
increases in Aldh5al”/- mice at ~E18-19 (Fig. 2). GB is
purported to derive through the catalytic action of the
arginine glycine amidinotransferase (AGAT) reaction,
which normally produces the creatine precursor guanidi-
noacetate from arginine and glycine. Substitution of
GABA for glycine would lead to production of GB, as has
been previously demonstrated [17,39]. Braissant and col-
leagues [40] demonstrated that AGAT is expressed as early
as E12.5 in rat hepatic primordial, and rapidly attains an
adult expression pattern thereafter, verifying the impor-
tance of creatine formation in the developing embryo.
Increased GB in Aldh5al-/-embryos is consistent with the
temporal expression demonstrated by Braissant and col-
leagues, and suggests that accumulated GABA in these
embryos may alter the production of creatine, an impor-
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GABA concentration in amniotic fluid derived from
pregnancies carrying an affected SSADH-deficient
human fetus. Data are depicted as box and whiskers,
showing the range of values and quartiles. The box extends
from the 25th centile to the 75th centile, with a line at the
median (50th centile). Whiskers extend above and below the
box to show the highest and lowest values. Statistical analysis
performed using a two-tailed t test, n = 5 fluid samples for
each group. Concentrations of other metabolites (DHHA,
D-2-HG and SSA) were not significantly different as a func-
tion of pregnancy status.

tant mediator of energy production both in muscle and
neural tissue.

During central nervous system (CNS) development, the
role of forebrain GABA is switched from an excitatory
transmitter to an inhibitory transmitter, the result of an
inhibition of calcium influx into postsynaptic neurons
derived from the release of GABA. The switch is influenced
by the neuronal chloride concentration. Prevailing data
suggest that GABA remains excitatory until approximately
the first postnatal week in rodents, and that chloride con-
centrations level out after approximately postnatal week
2. When the neuronal chloride concentration is at a high
level, GABA acts as an excitatory neurotransmitter. When
neuronal chloride concentration decreases to some
degree, GABA acts as an inhibitory neurotransmitter. The
neuronal chloride concentration is increased by the Na+-
K+-Cl--cotransporter 1 (NKCC1), and decreased by K*-CI--
cotransporter 2 (KCC2) [16,41,42]. As well, GABA is
thought to have significant effects on cell migration, dif-
ferentiation, and synaptogenesis, yet fetal brains of mice
lacking both GAD65 and GAD67 have 0.02% of normal
GABA content and die at birth, but they have no obvious
structural brain abnormalities [15]. Thus, the question
posed by our data is whether a marked increase in fetal
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brain GABA affects cell migration, differentiation, and
synaptogenesis or has an effect on the propensity for sei-
zures? Elevation of GHB may play a role on GABAgR pre-
synaptically, since the presynaptic GABA,R is functional
at or around birth, but the postsynaptic GABAZR is not
functional until about P14. Additionally, the combina-
tion of elevated GABA plus GHB would be predicted to
have a greater summed effect on GABAR since GHB has
no affinity for the GABA,R. Another key question is
whether elevated GABA in the embryo would alter expres-
sion of the cotransporters described above?

Several experiments are underway to address the preced-
ing questions. We are performing pilot studies to evaluate
GABA and glutamatergic receptor expression in selected
Aldh5al7/- and Aldh5al+/+ embryos, in order to test the
hypothesis that there is use-dependent down-regulation
during development. As well, Western blot studies and
real time PCR evaluation of the neuronal ion cotransport-
ers have been planned in conjunction with the preceding
evaluations. Studies of axonal and neuronal number and
localization have been planned to ascertain if elevations
of GHB and GABA have an adverse effect of these param-
eters during embryo development. Nonetheless, MRI
analysis of human Aldh5al-deficient brain does not pro-
vide evidence for structural abnormalities, beyond the
characteristic globi pallidi abnormalities observed. Lim-
ited neuroimaging in Aldh5al-/- mice has provided evi-
dence of cerebellar atrophy and some subtle differences in
neuronal counts, but more extensive studies are needed
[43]. Finally, an emergent approach in our laboratory is to
examine methods to deplete elevated GABA and GHB lev-
els in developing embryos. Accordingly, one series of
studies in progress is testing the hypothesis that adminis-
tration of L-histidine to pregnant Aldh5al+/- dams may
drive the formation of homocarnosine from GABA (see
Fig. 1) in brain. Whether this has an adverse or positive
effect on phenotypic outcome in Aldh5al-- mice remains
to be determined.
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