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Abstract
Background—Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) shows
widespread hypometabolism even in temporal lobe epilepsy (TLE) patients with mesial temporal
foci. 18F-trans-4-fluoro-N-2-[4-(2-methoxyphenyl) piperazin-1-yl]ethyl-N-(2-pyridyl)
cyclohexanecarboxamide (18F-FCWAY) PET may show more specific 5-HT1A receptor binding
reduction in seizure initiation than propagation regions. 18FCWAY PET might be valuable for
detecting epileptic foci, and distinguishing mesial from lateral temporal foci in MRI negative TLE
patients.

Methods—We performed 18F-FCWAY-PET and 18F-FDG-PET in 12 MRI negative TLE patients
who had had either surgery or subdural electrode recording, and 15 healthy volunteers. After partial
volume correction for brain atrophy, free fraction-corrected volume of distribution (V/f1)
measurement and asymmetry indices (AIs) were computed. We compared 18F-FCWAY-PET
and 18F-FDG-PET results with scalp video electroencephalography (EEG), invasive EEG and
surgical outcome.

Results—Mean 18F-FCWAY V/f1, compared with normal controls, was decreased significantly in
fusiform gyrus, hippocampus and parahippocampus ipsilateral to epileptic foci, and AIs significantly
greater in hippocampus, parahippocampus, fusiform gyrus, amygdala and inferior temporal regions.
Eleven patients had clearly lateralized epileptogenic zones. Nine had congruent, and two non-
lateralized, 18F-FCWAY PET. One patient with bitemporal seizure onset had non-lateralized 18F-
FCWAY-PET. 18FFDG-PET showed congruent hypometabolism in 7/11 EEG-lateralized patients,
bilateral hypometabolic regions in one, contralateral hypometabolism in one, as well as lateralized
hypometabolism in the patient with bitemporal subdural seizure onset. Patients with mesial temporal
foci tended to have lower superior and mid temporal 18F-FCWAY V/f1 binding AI than those with
lateral or diffuse foci.

Conclusion—18F-FCWAY-PET can detect reduced binding in patients with normal MRI, and may
be more accurate than 18F-FDG-PET.
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Introduction
Thirty to forty percent of medically refractory temporal lobe epilepsy (TLE) patients have no
evidence of hippocampal sclerosis or other focal lesions on brain magnetic resonance imaging
(MRI) (Cascino et al 1991, Carne et al 2004). For these patients, non-invasive pre-surgical
identification of seizure foci is particularly challenging. Reported hypometabolism on 18F-
FDG-PET in MRI-negative TLE varies widely (Swartz et al 2002, Willmann et al 2007).

Moreover, previous studies have shown that 18F-FDG-PET may not differentiate mesial from
lateral neocortical temporal lobe foci even if non-invasive lateralization is possible (Uijl et al
2007, Willmann et al 2007). In these patients, invasive evaluation with depth and subdural
electrodes may be needed, increasing the risk, discomfort, and cost of presurgical evaluation.
In order to evaluate a new imaging modality in MRI-negative TLE, we performed PET with
18F-trans-4-fluoro-N-2-[4-(2-methoxyphenyl) piperazin-1-yl]ethyl-N-(2-pyridyl)
cyclohexanecarboxamide (18F-FCWAY), a selective 5HT1A receptor antagonist.

Serotoninergic neurons have cell bodies in the midbrain dorsal raphe nuclei, projecting to
limbic system and neocortex. 5HT1A receptor concentration is highest in limbic regions,
especially the CA1 segment of the hippocampus, moderate in neocortex, and lowest in
cerebellum (Barnes and Sharp 1989). 5HT1A receptor activation leads to CA1 membrane
hyperpolarization and reduces seizure activity in several partial seizure animal models (Barnes
and Sharp 1989, Gasbarri et al 1989).

Several previous studies have reported 5HT1A receptor binding is reduced ipsilateral to
temporal lobe seizure foci (Toczek et al 2003, Savic et al 2004, Giovacchini et al 2005). The
degree of reduction was greatest in the seizure onset zone, and less marked in regions of seizure
spread (Merlet et al 2004a). These data suggest that 18F-FCWAY-PET might be valuable for
delineating mesial temporal foci, and distinguishing them from lateral temporal neocortical
foci in MRI negative TLE patients.

Methods
We studied 12 patients (4 women; mean age ± SD, 30 ± 9 years) with medically refractory
TLE, who were referred to the Clinical Epilepsy Section, National Institute of Neurological
Disorders and Stroke (NINDS), National Institutes of Health (NIH). Four patients had been
included in our previous study (Giovacchini et al 2005). All patients underwent prolonged
surface ictal video-EEG recording and either temporal lobe resection (nine) or subdural
invasive monitoring (ten). Epilepsy duration was 12 ± 7 years. Medications at the time of scan
included carbamazepine, oxcarbazepine, lamotrigine, levetiracetam, phenytoin, and valproic
acid. Three patients were taking a single drug; the others were taking two drugs. We also studied
15 normal healthy volunteers (10 men; 5 women; mean age ± SD, 37 ± 8 years), screened with
history, general physical examination and routine laboratory tests. Ten of the volunteers were
included in our previous studies (Toczek et al 2003, Giovacchini et al 2005). The study was
approved by the National Institutes of Health Institutional Review Board and the Radiation
Safety Committee, under 45 US Code of Federal Regulations part 46.
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18F-FCWAY-PET was performed on a General Electric Advance Tomograph (GE Healthcare),
with full width at half maximum [FWHM] resolution 6–7 mm, scanning 35 simultaneous slices
with 4.25-mm slice separation. Ten millicuries of 18F-FCWAYwere injected over 60 seconds
and dynamic frames (1–5 min) acquired in 3D mode for 120 minutes. Thirty radial arterial
blood samples were taken to quantify 18F-FCWAY concentration and selected samples used
to measure the 18F-fluorocyclohexanecarboxylic acid metabolite (18F-FC) (Giovacchini et al
2005). Unbound 18F-FCWAY fraction plasma protein was measured with ultracentrifugation
(Giovacchini et al 2005). All patients underwent 18F-FDG-PET for CMRglu measurement
within 2 days of 18F-FCWAY-PET scans. None had experienced seizures for at least two days
before PET studies, and patients were observed carefully during scans to exclude ictal activity.
CMRglu parametric images were co-registered to MR images. 18F-FDG-PET was not
performed on normal volunteers due to radiation dosimetry restrictions. However, control FDG
data were available from previous NIH studies (Theodore et al 2001).

1.5-T GE Signa MRI with fluid attenuated inversion recovery (FLAIR), spoiled grass
(SPGR), , , T1 and T2-weighted imagines were performed on all patients and controls. All
MRIs were read by neuroradiologists who were unaware of ictal EEG and PET results.
Anatomical regions of interest (ROI) were drawn on each patient's -co-registered T1, 3D-SPGR
MRI, while 18F-FCWAY radioactivity frames were registered to MRI. Brain tissue activity
frames were corrected for brain acid metabolite 18F-FC uptake, vascular radioactivity,
and 18F-fluoride metabolite spillover from skull. A previously described MRI-based partial
volume correction (PVC) algorithm was applied to correct for brain atrophy (Giovacchini et
al 2005).

We used V/f1 (where V is receptor volume of distribution, and f1 is the 18F-FCWAY plasma
free fraction.) as the outcome measure, rather than binding potential:

For tracers, such as 18F-FCWAY, with low non-specific binding, VCerebell / f1 is very low, and
V/f1 very close to BP. Moreover, it has the advantage of obviating potential cerebellar
measurement inaccuracies related to spill-over of [18F]fluoride activity, or cerebellar atrophy
due to epilepsy or AEDs with consequent binding heterogeneity (Carson et al 2003, Parsey et
al 2005).

Asymmetry Indices (AIs) were computed as 200·(I −C)/(I + C) within amygdala, hippocampus,
fusiform gyrus, parahippocampus, insula and superior, middle and inferior temporal lobes,
where I and C represent PET values in regions ipsilateral and contralateral to the seizure focus,
respectively. A more negative number indicates greater 5HT1A binding (on 18F-FCWAY-
PET) or CMRglc (on FDG-PET) reduction ipsilateral to the epileptic focus. In control subjects,
the right side was arbitrarily called ipsilateral. Two-sample T-tests were used for 18F-FCWAY
binding potential and Asymmetry Index comparison between patient and normal controls. For
the single subject analysis, mean ±2 SD AI of 18F-FCWAY and 18F-FDG in each ROI in normal
controls was used to define the cut-off point for abnormal binding potentials in patients.

Results
All patients had MRIs that showed no evidence of increased signal or structural atrophy. Seven
patients had a left, six a right, and one bitemporal epileptogenic zones, confirmed by scalp ictal
video EEG, subdural, or intraoperative recordings.
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The 18F-FCWAY plasma free fraction (f1) was higher in TLE patients than in healthy controls
(0.13±0.04 vs. 0.09± 0.07, respectively, P < 0.10). Mean 18F-FCWAY V/f1, compared with
normal controls, was decreased significantly in fusiform gyrus, hippocampus and
parahippocampus ipsilateral to epileptic foci, with trends for ipsilateral insula, contralateral
insula, and contralateral hippocampus (Table 1). AIs were significantly greater in
hippocampus, parahippocampus, fusiform gyrus, amygdala and inferior temporal regions
(table 2).

Eleven patients had clearly lateralized epileptogenic zones. Nine had congruent lateralized,
and two non-lateralized, 18F-FCWAY-PET, defined by an AI greater than two standard
deviations beyond the control mean (table 3) (figure 1). One patient with bitemporal seizure
onset on subdural electrode recording had non-lateralized 18F-FCWAY-PET. 18F-FDG-PET
showed hypometabolism ipsilateral to the epileptogenic zone in seven of the eleven EEG-
lateralized patients (including one with negative 18F-FCWAY-PET), equivocal findings in one
(#2) contralateral hypometabolism in one (patient #4), and lateralized hypometabolism in the
patient (#12) with bitemporal subdural seizure onset‥

Nine patients had a resection. Five were seizure-free after at least one year, and two additional
patients had experienced only rare post-operative seizures. Preoperative 18F-FCWAY-PET
detected decreased ipsilateral binding in six, and 18F-FDG-PET hypometabolism in six, of
these patients (table 3). Both PET scans found reduced activity ipsilateral to the epileptic focus
in one patient who had fluctuating post-operative seizure frequency stabilizing in persistent
seizures at night (#3). 18F-FDG-PET found contralateral hypometabolism in one who had only
moderate improvement, but was able to become employed after surgery (# 4).

In order to examine the value of the two PET scans for distinguishing mesial from lateral
temporal neocortical foci, we compared AI between patients with mesial foci alone (table 3:
#2, 7, 8, 11), and lateral or diffuse epileptogenic zones. Patients with mesial temporal foci had
lower superior temporal 18F-FCWAY V/f1 AI of 0.02 ± 0.10, and mid temporal AI of −0.03
± 0.13. Patients with lateral or diffuse foci had superior temporal AI of −0.18 ± 0.21), and mid
temporal AI of −0.14 ± 0.27. These trends were non-significant In mesial temporal regions,
AI did not differ between the patient groups. 18F-FDG-PET also showed no AI differences in
either mesial or lateral temporal regions. . Patients with mesial temporal foci have less reduction
of lateral temporal 5HT1A binding ipsilateral to the epileptic focus than those.with lateral (or
both lateral and mesial) temporal foci, but it is difficult to derive firm conclusions from a small
patient sample.

Discussion
We found decreased ipsilateral temporal 18F-FCWAY-PET 5-HT1A receptor V/f1 and 18F-
FDG-PET hypometabolism in comparable proportions of patients with MRI negative temporal
lobe epilepsy. Our 18F-FDG-PET results are similar to previous reports that described
hypometabolism ipsilateral to EEG foci in 30–90% of patients with MRI-negative TLE
(Lamusuo et al 2001, Carne et al 2004, 2007). Thus, both 18F-FCWAY-PET and 18F-FDG-
PET may be helpful for locating epileptogenic zones in non-lesional TLE. 18F-FDG-PET did
not distinguish mesial from lateral temporal foci, while 18F-FCWAY-PET showed less lateral
temporal binding reduction in patients with mesial than lateral foci. 18F-FDG-PET appeared
to show potentially misleading data in two cases.

18F-FDG-PET tends to show lateral neocortical hypometabolism even in patients with mesial
TLE (Sackellares et al 1990, Kim et al 2003). Patients with mesial foci defined by foramen
ovale electrodes had greater mean depression of mesial metabolism than the group with lateral
foci, but within the mesial focus group itself lateral hypometabolism was as prominent as mesial
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(Hajek et al 1993). Patients with mesial temporal sclerosis (MTS) and microdysplasia may
have greater lateral temporal hypometabolism than those with MTS alone (Diehl et al 2003).
A study using statistical parametric mapping found that medial hypometabolism was less
extensive or severe in the lateral than mesial TLE patients, and patients with lateral temporal
neocortical foci, as a group, had relatively greater lateral temporal hypometabolism. However,
individual variation was too great for 18F-FDG-PET to be used for clinical localization (Kim
et al 2003). Pure lateral temporal hypometabolism makes mesial seizure onset less likely.

18F-FDG-PET has been reported to be sensitive to time since last seizure, and to extent of
seizure spread, which could have affected the results in two of our patients (#2 and 4) although
they had not had seizures detected within two days of the scan (Leiderman et al 1994;
Franceschi et al 1995; Savic et al 1997). Occasional hypometabolism contralateral to EEG foci
has been reported (Carne et al 2004).

In contrast, 18F-FCWAY-PET results may be related to the specific distribution of receptors,
which have their highest concentration in the limbic system and relatively reduced
concentration in neocortex (Hall et al 1997). Previous studies showed greater 5HT1A reduction
in mesial than lateral temporal lobe in patients with TLE (Toczek et al 2003, Savic et al
2004, Merlet et al 2004a, Giovacchini et al 2005). Thus, patients with both mesial and lateral
temporal foci may have mesial 18F-FCWAY binding reduction.

In contrast to previous studies, we did not find significant hippocampal asymmetry ipsilateral
to the epileptic focus in the patients with hippocampal sclerosis on pathological examination
(Toczek et al 2003, Savic et al 2004, Merlet et al 2004a, Giovacchini et al 2005, Ito et al
2007). This was likely due to the presence of bilateral reduction in hippocampal 18F-FCWAY
binding in these patients, also reported in previous studies (Hasler et al 2007). The overall
hippocampal AI, was, however, greater than control.

Other factors in addition to the seizure focus itself may lead to reduced 5HT1A binding in
patients with TLE. More extended binding reduction may be related to seizure propagation
networks (Merlet et al 2004b, Ito et al 2007). Patients with major depressive disorders in
addition to epilepsy have reduced binding in ipsilateral and contralateral regions beyond the
epileptogenic zone (Hasler et al 2007, Theodore et al 2007). These effects may make the use
of asymmetry indices less sensitive for detecting seizure onset regions. In order to use absolute
values to detect clinically important abnormalities a larger control population will be needed.
However, in a study of nine patients who had depth electrode recordings, 5HT1A receptor
binding was significantly lower in seizure onset regions than areas with only interictal or no
discharges (Merlet et al 2004a). Even when MRI was normal, 5HT1A receptor binding
correlated with the seizure activity. Our results generally support these findings.

PVC could have affected our results in two ways. It appears to have a greater effect on
neocortical than mesial temporal structures, possibly because lateral temporal gyral folding
leads to greater partial volume effects in uncorrected images (Givoacchini et al 2005).
However, 18F-FCWAY BP variability is increased by the procedure. This might have reduced
our statistical power, particularly for individual analysis, leading to the slightly greater
sensitivity of 18F-FDG-PET. However, the gain in specificity appears to outweigh a small loss
of sensitivity.

We found a difference in 18F-FCWAY free fraction between patients and controls, probably
due to a protein binding interaction. Although some antiepileptic drugs (AEDs) may have mild
influence on serotoninergic neural transmission, they are unlikely to have affected our results.
Any drug effect would be likely to be bilateral, and thus not lead to greater binding reduction
in the epileptic focus. Moreover, previous studies showed that, after correction for free fraction,
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there were no significant AED effects on 18F-FCWAY volume of distribution (Theodore et al
2006).

Several patients in our study proved to have hippocampal neuronal loss and focal gliosis on
pathological examination, suggesting that reduced 5HT1A receptor binding may occur in early
or mild states of MTS. Serotonin receptor loss has been implicated in the hippocampal atrophy
that occurs in patients with depression, and might be a contributing mechanism in epilepsy as
well (Chugani and Chugani 2003, Husumu et al 2006). 5HT1A receptor activation promotes
cell proliferation in the hippocampus by a direct post-synaptic effect, as well as by affecting
sensitivity of proliferating cells in the dentate gyrus to corticosterone (Huang and Herbert
2005). Antagonists, including WAY-100635, lead to significant reduction in dentate gyrus
proliferating cells, and to cell survival in pilocarpine-induced status epilepticus (Radley and
Jacobs 2002, 2003). 5HT1A receptor loss might be an early step in the development of MTS.
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Figure 1.
1A: FCWAY PET showing decreased binding potential in the left mesial temporal region.
1B: FDG PET showing no metabolic asymmetry.

Liew et al. Page 9

Epilepsia. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liew et al. Page 10
Ta

bl
e 

1
Fr

ee
-f

ra
ct

io
n-

co
rr

ec
te

d 
FC

W
A

Y
 V

ol
um

e 
of

 d
is

tri
bu

tio
n 

in
 h

ea
lth

y 
co

nt
ro

ls
 a

nd
 p

at
ie

nt
s w

ith
 T

LE

R
eg

io
n

C
on

tr
ol

s (
n=

15
)

Pa
tie

nt
s (

n=
11

)#
p

I. 
fr

on
ta

l
69

.0
±

23
.7

62
.7

±
14

.0
0.

45

C
. f

ro
nt

al
68

.3
±

22
.0

63
.0

±
15

.1
0.

50

I. 
in

su
la

r
85

.2
±

39
.7

64
.1

±
16

.9
0.

08

C
. i

ns
ul

ar
87

.1
±

38
.3

68
.6

±
15

.7
0.

11

I. 
hi

pp
oc

am
pu

s
11

6.
2

±
43

.1
81

.3
±

23
.3

0.
02

*

C
. h

ip
po

ca
m

pu
s

11
6.

5
±

43
.7

90
.5

±
25

.6
0.

07

I. 
am

yg
da

la
70

.8
±

26
.4

58
.8

±
24

.9
0.

25

C
. a

m
yg

da
la

73
.7

±
26

.9
69

.0
±

23
.9

0.
64

I. 
pa

ra
hi

pp
oc

am
pu

s
12

5.
8

±
56

.2
86

.7
±

17
.2

0.
02

*

C
. p

ar
ah

ip
po

ca
m

pu
s

12
5.

6
±

58
.0

99
.6

±
21

.5
0.

13

I. 
su

pe
rio

r t
em

po
ra

l
81

.1
±

35
.8

71
.7

±
19

.3
0.

40

C
. s

up
er

io
r t

em
po

ra
l

81
.4

±
30

.6
80

.2
±

14
.3

0.
89

I. 
m

id
dl

e 
te

m
po

ra
l

88
.5

±
36

.8
77

.3
±

22
.4

0.
38

C
. m

id
dl

e 
te

m
po

ra
l

87
.8

±
31

.1
88

.1
±

17
.3

0.
98

I. 
in

fe
rio

r t
em

po
ra

l
95

.5
±

36
.7

81
.0

±
24

.7
0.

27

C
. i

nf
er

io
r t

em
po

ra
l

98
.0

±
32

.7
94

.8
±

25
.1

0.
79

I. 
fu

si
fo

rm
11

5.
1

±
47

.1
82

.2
±

22
.0

0.
03

*

C
. f

us
ifo

rm
11

2.
9

±
43

.0
10

1.
3

±
22

.2
0.

38

# pa
tie

nt
 1

2 
w

as
 e

xc
lu

de
d

I.=
ip

si
la

te
ra

l t
o 

se
iz

ur
e 

fo
cu

s (
ar

bi
tra

ril
y 

rig
ht

 fo
r c

on
tro

ls
).

C
.=

co
nt

ra
la

te
ra

l t
o 

se
iz

ur
e 

fo
cu

s.

* P<
0.

05
, u

np
ai

re
d 

t-t
es

t, 
pa

tie
nt

s v
s. 

co
nt

ro
ls

.

Epilepsia. Author manuscript; available in PMC 2010 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liew et al. Page 11
Ta

bl
e 

2
18

F-
FC

W
A

Y
 v

ol
um

e 
of

 d
is

tri
bu

tio
n 

A
sy

m
m

et
ry

 In
de

x 
(A

I)

R
eg

io
n

C
on

tr
ol

s (
n=

15
)

Pa
tie

nt
s (

n=
11

)
p

Fr
on

ta
l

in
su

la
r

0.
04

±
0.

06
0.

08
±

0.
10

0.
23

hi
pp

oc
am

pu
s

0.
00

±
0.

11
0.

11
±

0.
11

0.
02

*

am
yg

da
la

0.
04

±
0.

11
0.

18
±

0.
17

0.
03

*

pa
ra

hi
pp

oc
am

pu
s

0.
01

±
0.

10
0.

14
±

0.
12

0.
01

*

su
pe

rio
r t

em
po

ra
l

0.
03

±
0.

14
0.

13
±

0.
20

0.
22

m
id

dl
e 

te
m

po
ra

l
0.

02
±

0.
11

0.
12

±
0.

22
0.

21

in
fe

rio
r t

em
po

ra
l

0.
04

±
0.

15
0.

16
±

0.
14

0.
05

*

fu
si

fo
rm

0.
01

±
0.

13
0.

22
±

0.
15

0.
01

*

* p 
<0

.0
5 

un
pa

ire
d 

T-
te

st

Epilepsia. Author manuscript; available in PMC 2010 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liew et al. Page 12
ta

bl
e 

3

Pa
tie

nt
A

ge
Se

x
E

pi
le

ps
y 

du
ra

tio
n

R
eg

io
ns

w
ith

FC
W

A
Y

V
d 
Δ

R
eg

io
ns

w
ith

C
M

R
gl

c
Δ

Pr
ed

om
in

an
t S

ub
du

ra
l f

oc
us

Pa
th

ol
og

y
Su

rg
er

y 
ou

tc
om

e

1
40

M
29

R
 S

T 
↓

R
 A

m
yg

,
su

pT
m

id
T 
↓,

R
ig

ht
 S

ub
te

m
po

ra
l a

nd
 la

te
ra

l
T

H
S

1 
po

st
op

er
at

iv
e 

se
iz

ur
e

2
22

M
7

R
 In

s,
am

yg
 ↓

R
 in

fT
 ↓

;
L 

su
pT

 ↓
R

ig
ht

 m
es

ia
l T

co
rti

ca
l d

ys
pl

as
ia

Se
iz

ur
e-

fr
ee

3
31

M
12

R
 In

s,
pa

ra
hi

pp
,

m
id

T 
↓

R
 m

id
T 
↓

R
ig

ht
 T

C
or

tic
al

 g
lio

si
s

O
nl

y 
no

ct
ur

na
l s

ei
zu

re
s

4
25

M
5

no
ne

L 
m

id
T,

 L
in

fT
 ↓

R
ig

ht
 L

at
er

al
 T

C
or

tic
al

 g
lio

si
s

75
%

 se
iz

ur
e 

re
du

ct
io

n

5
28

M
7

L 
Fr

, i
ns

,
am

yg
,

hi
pp

,
pa

ra
hi

pp
,

su
pT

,
in

fT
,

m
id

T 
↓

L 
Fr

,
am

yg
,

su
pT

,
in

fT
,

fu
si

f ↓

Le
ft 

La
te

ra
l T

C
or

tic
al

 g
lio

si
s;

R
ar

e 
po

st
op

er
at

iv
e 

se
iz

ur
es

6
45

F
14

L 
su

pT
,

in
fT

 ↓
L 

in
fT

,
fu

si
f ↓

Le
ft 

La
te

ra
l T

C
or

tic
al

 g
lio

si
s

Se
iz

ur
e-

fr
ee

7
18

M
4

L 
A

m
yg

 ↓
L Pa

ra
hi

pp
,

in
fT

 ↓

Le
ft 

m
es

ia
l T

H
S

Se
iz

ur
e-

fr
ee

8
43

F
4

L 
In

s,
pa

ra
hi

pp
,

fu
si

f ↓

no
ne

Le
ft 

m
es

ia
l T

H
S

Se
iz

ur
e-

fr
ee

9
24

M
9

L 
H

ip
p,

su
pT

,
m

id
T,

fu
si

f ↓

L 
Fr

, i
ns

,
in

fT
,

fu
si

f ↓

Le
ft 

m
es

ia
l a

nd
 la

te
ra

l T
N

o 
su

rg
er

y

10
23

M
19

L 
Fr

, i
ns

,
am

yg
,

in
fT

, f
us

if
↓

no
ne

Le
ft 

In
fe

rio
r f

ro
nt

al
, m

es
ia

l
te

m
po

ra
l

N
o 

su
rg

er
y

11
27

F
13

N
on

e
L 

In
s,

fu
si

f ↓
Le

ft 
m

es
ia

l T
D

iff
us

e 
LT

 a
nd

H
F 

G
lio

si
s

Se
iz

ur
e-

fr
ee

12
36

F
26

N
on

e
L 

H
ip

p,
fu

si
f ↓

bi
te

m
po

ra
l

N
o 

su
rg

er
y

M
T:

 m
es

ia
l t

em
po

ra
l

LT
: l

at
er

al
 te

m
po

ra
l

T:
 te

m
po

ra
l l

ob
e

H
S:

 h
ip

po
ca

m
pa

l s
cl

er
os

is

Epilepsia. Author manuscript; available in PMC 2010 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liew et al. Page 13
ST

: s
up

er
io

r t
em

po
ra

l g
yr

us
A

m
yg

: a
m

yg
da

la
Pa

ra
hi

pp
: p

ar
ah

ip
po

ca
m

pa
l g

yr
us

Epilepsia. Author manuscript; available in PMC 2010 February 1.


