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Abstract
In this paper, we report new progress in developing the instrument and software platform of a
combined X-ray mammography/diffuse optical breast imaging system. Particularly, we focus on
system validation using a series of balloon phantom experiments and the optical image analysis of
49 healthy patients. Using the finite-element method for forward modeling and a regularized
Gauss-Newton method for parameter reconstruction, we recovered the inclusions inside the
phantom and the hemoglobin images of the human breasts. An enhanced coupling coefficient
estimation scheme was also incorporated to improve the accuracy and robustness of the
reconstructions. The recovered average total hemoglobin concentration (HbT) and oxygen
saturation (SO2) from 68 breast measurements are 16.2 μm and 71%, respectively, where the HbT
presents a linear trend with breast density. The low HbT value compared to literature is likely due
to the associated mammographic compression. From the spatially co-registered optical/X-ray
images, we can identify the chest-wall muscle, fatty tissue, and fibroglandular regions with an
average HbT of 20.1±6.1 μm for fibroglandular tissue, 15.4±5.0 μm for adipose, and 22.2±7.3 μm
for muscle tissue. The differences between fibroglandular tissue and the corresponding adipose
tissue are significant (p < 0.0001). At the same time, we recognize that the optical images are
influenced, to a certain extent, by mammographical compression. The optical images from a
subset of patients show composite features from both tissue structure and pressure distribution.
We present mechanical simulations which further confirm this hypothesis.
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I. INTRODUCTION
BREAST cancer is among the top threats to women's health. In the U.S., breast cancer
accounts for 15% of cancer mortality and ranks second in all cancer deaths in the female
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population [1]. Early detection of breast cancer is critical to reduce the mortality rate [2].
Several novel noninvasive imaging methods have been proposed and applied to breast
cancer early diagnosis. Near-infrared (NIR) spectroscopy/tomography [3]-[5] shows great
promise for breast cancer detection and treatment monitoring [6]-[13]. In this imaging
modality, NIR light is strongly scattered by tissue structures and absorbed by chromophores
as it propagates through the breast tissue. In the 650-900 nm spectral range, the important
chromophores are oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR). By
performing optical measurements at multiple wavelengths, the HbO and HbR concentrations
can be extracted by fitting measured light attenuations using the known tissue chromophore
absorption spectra. In diffuse optical tomography (DOT), the absorption spectra fitting is
performed not only on local measurements, but also on the measurements between spatially
distributed source and detector arrays. In this case, 2-D or 3-D images of HbO and HbR
concentration maps can be produced [7], [10], [14]. Because the tumors normally present
metabolism and vascular structure significantly different from those of normal tissues, the
hemoglobin images from NIR imaging are potentially useful in assessing tissue status and
malignancy [15], [16].

Because of the nonlinear nature of the light diffusion and subsequent severe illposedness of
the inverse problem [14], diffuse optical tomography generally produces smooth images
with spatial resolution much lower than that of the standard X-ray mammography or the
emerging tomosynthesis (DBT) technique. However, the ability to image tissue metabolism
using NIR measurements is rather attractive for assisting diagnosis. To this end, we have
implemented a multimodality approach: combining NIR tomography with X-ray
mammography to produce accurately co-registered optical and X-ray images. Because of the
spatial co-registration, the optical images, i.e., HbO, HbR, and oxygen saturation (SO2), can
be better interpreted in conjunction with high resolution X-ray images; on the other hand,
the inherent drawbacks of mammography, such as low contrast between lesion and normal
tissues, especially in dense breasts, and susceptibility to unclear lesion boundaries, can be
partially overcome with the additional functional information from NIR imaging, resulting
in improved diagnosis. Functional overlay on structural images in this combined approach is
analogous to that in the combination of positron electron tomography and computed
tomography (PET/CT) [17].

A combined X-ray/optical breast imaging system was built at Massachusetts General
Hospital (MGH), Charlestown, between 2001 and 2005. The original prototype of the
system included only a radio-frequency (RF) modulated imaging unit [10]. After the first
clinical trial of the system in 2004, significant modifications were applied. These changes
include an additional Galvo multiplexer (MUX) with three continuous-wave (CW) lasers, a
dedicated CW unit for continuous monitoring of tissue status at two wavelengths, an
optimized RF laser wavelength spacing, and more flexible probe design. The additional
multiplexed CW lasers greatly improved the measurement spatial sampling, and potentially
improved the image resolution; the new 685-nm RF lasers and the extended CW
wavelengths (Fig. 1) also helped to determine the hemoglobin concentration more
accurately. Note that the selected wavelengths do not have sufficient sensitivity to detect
tissue water and lipid concentrations, therefore, the recovery of the hemoglobin distribution
is the major focus of this paper.

In parallel, the optical image reconstruction algorithms have been improved dramatically in
both accuracy and computational efficiency. A finite element method-based forward solver
[18] was developed to replace the Born approximation with infinite-slab assumption used
previously [10]. The use of an FEM solver allows the utilization of an unstructural mesh to
model the curved breast boundary extracted from DBT images. It is also powered by a
highly optimized iterative multiright-hand-side solver and is able to compute multiple
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forward solutions with a single forward-backward substitution [19]. A Gauss-Newton
iterative reconstruction algorithm [14], [20] was implemented to produce reliable images for
measurement data even when corrupted by large source/detector coupling variabilities (or
SD) [21]. A detailed discussion on the forward and inverse algorithms can be found in
Section II.

A clinical trial of the combined X-ray/optical imaging system started in August 2005. To
date, we have scanned 65 subjects with the improved system and software platform (39 of
them have bilateral breast measurements). Forty-two of those subjects were recruited from
screening patients and 23 from patients recalled for diagnosis. The diagnostic results
indicated that 49 patients were healthy, 12 had tumors, and four had benign lesions. In this
paper, we focus on image reconstruction and analysis of the data from healthy patients. The
primary goals of this analysis are 1) to outline the key components and improvement in a
working prototype of a combined X-ray and DOT imaging system, 2) to characterize the
system performance by phantom experiments, 3) to interpret the reconstructed breast images
by directly comparing the structural and functional images produced by the system, and 4) to
use the findings to guide the future development of multimodal DOT breast imaging.

In Sections II and III, we discuss the experimental procedures and analysis workflow for
image reconstructions of healthy subjects using our imaging hardware and software
platform. Sections II-A and II-B focus on the imaging system and the experiment protocols.
They are followed by five more subsections expanding on the algorithmic details, including
the forward/inverse models and coupling coefficient estimation. In Section III, we first
report phantom imaging examples to assess the performance of the system. For clinical data
reconstructions, we tabulate the average bulk optical properties for all subjects based on the
density of their breasts. We also report the reconstructed images of 12 representative healthy
breasts with region-of-interest overlays, and interpret the images by comparing with the
corresponding X-ray scans. Our conclusions are summarized in Section IV, together with a
discussion of the prospects for this combined X-ray/DOT approach.

II. METHODS
This section is dedicated to elaborating the experimental settings and image reconstruction
details for this analysis. The first half of this section, including Sections II-A-II-C, focuses
on the clinical aspect of the study. Readers can find an overview of the combined imaging
system, the experimental protocols and data analysis steps in this section. The second half of
this section, including all subsections of Section II-D, further discusses forward modeling,
image reconstruction algorithm and measurement calibration.

A. System Overview
A block diagram of the tomographic optical breast imaging system (TOBI) is shown in Fig.
1. A picture of the combined TOBI/tomosynthesis (DBT) system in the clinical environment
can be found in Fig. 2, shown with a close-up view of the optical probe (Fig. 3).

The TOBI system developed at MGH consists of two subsystems: the RF modulated
imaging system and the CW system. The RF unit provides two laser wavelengths (685 and
830 nm) modulated at 70 MHz [10]. Optical switches (DiCon, Richmond, CA) multiplex the
RF signal into 40 source locations and the light scattered through the tissue is collected by 8-
RF avalanche photodiode detectors (APD, Hamamatsu, Bridgewater, NJ). The CW
multiplexer unit (MUX) has three frequency-encoded lasers at 685, 810, and 830 nm. A fast
Galvo scanner (Innovations in Optics Inc., Woburn, MA) is used to deliver the CW lasers to
a maximum of 110 available locations on the optical probe with an average dwell time of
200 ms per location. A second frequency encoded CW system (TechEn Inc., Milford, MA)
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[22] provides 26 frequency encoded lasers, split equally between 685 and 830 nm, which are
used for continuous monitoring of tissue changes at 26 source locations. The CW units share
32 APD (Hamamatsu C5460-01) detectors and the CW signals are subsequently
demodulated for each channel and wavelength. For all MUX CW signals, de-multiplexing
follows to separate the signals for each multiplexed source. The optical emission power
exiting from the probe ranges from 10 to 20 mW for various RF and CW lasers. In addition
to the optical system, a high-resolution linear encoder (Unimeasure Inc., Corvallis, OR) and
four pressure transducers (Omigadyne Inc., OH) are mounted on the optical probes to give
accurate readings of source-detector separation and applied pressure, respectively.

The TOBI optical probes (see Fig. 3) were specially designed to provide the capability of
co-registration with 2-D mammography or tomosynthesis (more specifically, for GE units,
though it could easily be adapted for other mammography machines). The anodized
aluminum source probe covers a total area of 20 cm × 18 cm with fiber optics mounting
locations over a 5-mm spacing grid. The metallic part of the probe can be securely attached
to an optically transparent cassette modified from a standard mammography compression
paddle. This cassette is fastened on the mammography machine. Similarly, the metallic
detector probe can also be easily mounted on and detached from the moving compression
arm using a push-button lock. The source/detector probes are inserted into the cassettes
before taking the optical measurement and removed before taking X-ray scans. In both
cases, the compression paddles retain their positions to ensure no movement of the target
breast. Three groups of fiber optic bundles, mapped to different areas on the detector probe
with partial overlaps, extend from the detector probe, terminated by metallic planar fiber
connectors. These connectors can be interchangeably mounted to a female planar connector,
aligned by mounting holes and magnet, and guide the transmitted light to RF and CW
detector units. This design made it possible to conveniently switch optical scanning area
based on mammographical views, such as cranio-caudal (CC), left mediolateral-oblique
(LMLO), or right mediolateral-oblique (RMLO).

The tomosynthesis unit used in this study was developed by GE Healthcare, with the
capability of collecting 15 projections within a 90° swing angle. The 3-D DBT images were
reconstructed offline by a maximum-likelihood-type algorithm [23], [24]. The spatial
resolution for a typical DBT image is 0.1 mm in the x and y axes and a z slice thickness of 1
mm.

B. Experiment Protocols
Two protocols were used in the clinical trial of this study. The operating steps for the
protocols were as follows.

Protocol 1

1. Mount optical probes to X-ray compression paddles.

2. Compress patient breast to desired strength with compression paddles.

3. Perform optical data acquisition.

4. Remove optical probes from paddles while leaving patient's breast unmoved.

5. Perform DBT scan.

6. Release compression.

7. Repeat the above process for the contralateral breast (optional).

Protocol 2
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1. Compress patient breast with compression paddles.

2. Perform DBT scan.

3. Mount optical probes to X-ray compression paddles while the patient breast
remaining in compression.

4. Perform optical data acquisition.

5. Release compression.

6. Repeat the above process for the contralateral breast (optional).

In both cases, a solid calibration phantom measurement (optical only) is required before or
after the patient data acquisition. For most of the experiments, more than one RF and CW
source scan is completed within a 45 s duration. Typically the RF sources are scanned twice
at 20 locations, while the MUX CW sources are scanned 7 times at 28 locations. The
repeated measurements were averaged and used for the image reconstructions in this paper.
The major difference between the two protocols is the temporal duration between the initial
breast compression and the optical data acquisition. In Protocol 2, the elapsed time between
the initial compression and optical data acquisition is roughly 1 or 2 min longer than in
Protocol 1. Based on our study of breast compression induced tissue changes [25], we
expect more hemodynamic change during the measurement period in Protocol 1 than in
Protocol 2. However, tissue dynamics are not the major concern of this paper, a preliminary
study on spatio-temporal image reconstruction of tissue dynamics can be found in Boverman
et al. [26].

C. Data Analysis Procedure
Our data analysis procedures are outlined in the flow chart shown in Fig. 4. Most of these
processing steps have been streamlined by software tools and require only minimum
operator interference.

The first step after retrieving the DBT image is to construct a coordinate mapping (or
registration) between the DBT image voxels and the optical probe coordinates. The physical
positions of curved breast boundaries are subsequently extracted from the registered DBT
scan, from which the unstructured FEM mesh is generated with the simple algorithm
described in Section II-D2. In most cases, not all of the optical sources/detectors were
covered by the target breast. The stray light measurements from the uncovered sources/
detectors therefore need to be removed from the raw data based on the registered DBT
images and fiber locations.

The image reconstruction in this paper was done in two steps. In the first step, we estimated
the bulk optical properties of the patient's breast as well as the mean source/detector
coupling coefficients [21] (described in Section II-D). In the second step, we performed a
full image reconstruction starting with the homogeneous initial guess from the output of the
previous step. An indirect reconstruction scheme was used to obtain the hemoglobin
concentrations and oxygen saturation (SO2) of the breast, meaning that we reconstructed the

absorption and reduced scattering coefficients  of breast tissue at multiple wavelengths
and then computed the hemoglobin concentration and SO2 based on HbR/HbO absorption
spectra with assumed water and lipid concentrations [10], [27], [28].

D. Image Reconstruction Algorithm
In both the bulk optical property estimation and image reconstruction, we employed an
iterative Gauss-Newton reconstruction approach. The forward problem is modelled by the
finite element method (FEM) [14] under the diffusion approximation. The forward solutions
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at all valid sources and detectors are used to construct the Jacobian matrix using the adjoint
method [29]-[31]. The absorption and reduced scattering coefficients of the target breast are
iteratively updated by solving the normal equation. A major complication in this process is
the simultaneous reconstruction of the source/detector coupling coefficients [21]. In this
section, we outline the principal mathematical models used in the forward and inverse
phases of the reconstruction paying especial attention to the coupling coefficient estimation.

1) Forward Model—A mathematical model for light propagations in human tissue is the
radiative transport equation (RTE). In the regions where tissue is highly scattering, as is the
case for breasts, RTE can be well approximated by a diffusion equation (DE). Assuming the
light fluence rate is Φ, the diffusion equation for light propagation in the tissue can be
written as [14]

(1)

where μa is the absorption coefficient,  is the diffusion
coefficient and μ′s is the reduced scattering coefficient, c = c0/n is the speed of light in the
medium, c0 is the speed of light in free-space, and n is the medium refraction index. S0(r,t)
denotes the light source. For harmonic sources, with assumed time dependence exp(jωt), the
frequency-domain diffusion equation can be written as

(2)

where ω is the angular frequency, Φ(r) is the phasor of Φ(r,t), and S0(r) is the phasor of the
source S0(r,t. Discretizing the continuous form by expanding Φ(r) on the 3-D forward mesh

by  along with expanding optical parameters on the reconstruction mesh

by , respectively, followed by integrating with
weight function φj, we can get the FEM weak-form of (2) as

(3)

where ϕk is the basis on the reconstruction mesh, φi and φj are the basis and weight functions
on the forward mesh (assuming Galerkin's method [32]), respectively, the notation ⟨f,g⟩

denotes the intergration ∫Ω fgdr over volume Ω, and  represents the surface

integration  On the boundaries ∂Ω.

On the boundaries, a partial-current boundary condition [33] was applied to correctly
account for the refraction index discontinuity. This boundary condition can be expressed as
[34]

(4)

where α is defined as
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(5)

and Reff is the effective reflection coefficient [33]. Incorporating (4) into (3), we get the final
form for the forward equation

(6)

Assembling (6) for each element, we obtain a linear equation in form of Ax = b which can
be solved by any linear equation solver.

2) Mesh Generation—A simple mesh generation approach was used to model the 3-D
volume of the target breast. With this approach, we first create a uniform 3-D grid, and then
split each cube based on a T5 rule (i.e., splitting a cube into five tetrahedrons) [35]. The
resulting tetrahedral mesh is subsequently masked and truncated to fit the 3-D DBT images.
Sometimes, a scaling along the z-axis is performed to match the probe separation in the
experiment. To correctly consider the chest-wall area outside the DBT field-of-view, we
also extend the DBT image toward the chest-wall direction for 2 cm before mesh generation.
In this study, we used a dual-mesh scheme [36] in our reconstruction, i.e., a forward mesh
for diffusion modeling and a separate reconstruction mesh to represent the optical properties.
In particular, we create two sets of meshes based on the above process with different mesh
densities, the higher one for the forward mesh, the lower one for the reconstruction mesh.
The mesh files and the bilateral basis function mapping files are generated for each subject
once and saved for all subsequent reconstructions.

3) Inverse Problem—The reconstruction of the tissue absorption and scattering properties
is achieved by solving a nonlinear optimization problem, with the object function defined by

(7)

where y is the measurement vector and Φ(μa, D) is the data computed with the diffusion
model (2) per given μa, and D; λ is a Tikhonov regularization parameter selected manually
and ǁ·ǁ denotes the L2 norm or the sum of squares of log-amplitude/unwrapped phase
differences [37]. The Gauss-Newton method iteratively updates the μa and D vectors by
solving the following equation at each iteration:

(8)

where △kμa and △kD are the property updates of absorption and diffusion coefficients,
respectively, at the kth iteration, γk is a Levenberg-Marquardt-type parameter determined by
an empirical approach [38] at each iteration, I is an identity matrix. Jk is the Jacobian matrix
defined as

(9)

From (6), the submatrixes Jμa and JD can be computed by the adjoint method as [14], [29],
[30], [39], [40]
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(10)

(11)

where Φs,r represents the fluence rate measured at the rth detector under the illumination of
the sth source, Σe∈Ωτ denotes the summation over all forward elements that fall in the
immediate vicinity of the τth parameter node (in another word, where ϕτ is nonzero); the
elements of matrixes  and  have forms of

(12)

(13)

and vectors  and  are the Φ values at the four vertexes of the eth forward element under
the illumination of the sth source and a unitary source at the rth detector (also referred to as
an adjoint source), respectively.

In our work, using the log-amplitude and unwrapped-phase differences between y and Φ(μa,
D) as the right-hand side of (8) was found to be superior in convergence [37] for bulk optical
property estimation. The corresponding Jacobian matrix can be written as [40]

(14)

where ν represents either μa or D;  and  are the real and imaginary parts,
respectively, of a complex quantity. For CW data, we simply set the imaginary part of (14)
to zero as the data only provide amplitude information.

Moreover, we applied a heuristic re-weighting scheme when solving (8). The weighted
update equation can be written as

(15)

where  and . The unitary vector 1 has

the identical length of μa or D and  is the squared L2-norm of the jth column of the
Jacobian matrix.

4) Data Calibration and Source/Detector Coupling Coefficient Estimation—
Assuming a multiplicative model for the source-detector coupling coefficients [21], an
appropriate calibration scheme is to divide the measurement of the target by that of a
calibration phantom, and subsequently restore the calibration phantom data by multiplying
the model prediction of the phantom. This can be written down as
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(16)

where , and  denote the measured target data, measured, and model
prediction of calibration phantom data, respectively. For diffuse optical tomography, the
simple calibration scheme in (16) usually is not sufficient to remove all the systematic errors
due to modeling approximations and experiment limitations. The uncalibrated systematic
errors typically are manifested as artifacts aggregating around source/detector locations [21],
[41]. In addition, TOBI does not use a liquid coupling bath as found in some DOT systems
[42], [43]. As a result, the surface condition and contact between the calibration phantom
and the breast measurement may vary significantly. This magnifies the source/detector
artifacts. Thus, it is critically important to choose an appropriate model for the coupling
coefficients to obtain meaningful images in our study.

As proposed by Boas et al. [21] and further explored by Oh et al. [44], Tarvainen et al. [45],
and Schweiger et al. [46], we assumed a multiplicative measurement model with unknown
source/detector coupling coefficients

(17)

where si and dj are the multiplicative coupling coefficient for the ith source and jth detector,
respectively. The image reconstruction problem involves the simultaneous determination of
coupling coefficients, s = {si} and d = {dj} , along with the estimation of optical properties,
μa and D. The normal equation is now reformulated as

(18)

where

(19)

and ⊗ denotes the Kronecker product. From (17), it is not difficult to show

(20)

(21)

Simultaneously estimating source/detector coupling coefficients and optical images greatly
reduces the previously mentioned artifacts [21]. However, a side-effect of this scheme is the
reduction of target contrast, particularly when measurements were collected within limited
projection angles. In these cases, a factor of 2 or higher of contrast reduction can be found in
simulations and phantom data reconstruction. This is not surprising since (18) is effectively
estimating three images simultaneously: the 3-D optical property distributions, the source
coupling coefficient distribution at the source plane and analogously for detectors. Without
properly constraining the unknowns, the contrast from one image could be easily “stolen” by
other images. In order to get images with appropriate optical contrast, a priori knowledge
about s and d should be applied when solving (18). If the surface condition and fiber contact
are fairly close between calibration phantom and patient, we can reasonably assume that SD
coefficients are likely to have norm 1 on average. Mathematically this constraint can be
represented by adding an additional Tikhonov regularization term into the object function as
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(22)

where α is an additional regularization parameter controlling the strength of this constraint.
Meanwhile, we noticed that applying a spatial high-pass filter to the SD distribution is useful
to reduce the crosstalk between the optical images and SD coefficients, for the fact that our
optical images contain mostly the low spatial-frequency components. This leads to a third
regularization term in the object function

(23)

where matrix Γ is a discrete integration operator. For the cases where the number of
measurements is less than the number of unknowns, i.e., the underdetermined cases, the
presence of the third term in (23) could lead to a increase in computational time. A low-cost
alternative is to perform a high-pass filter on SD distributions as a post process in each
iteration. The filtered source coefficient can be expressed as

(24)

where the index j loops over the neighbors of the ith source from a tesselated source location
mesh. A similar expression can be used for the detector coefficients. Although the filtering
scheme in (24) is not as rigorous as the regularization approach in (23), numerical
simulations show that the results from the filtering approach are reasonably close to the true
values. Equation (24) was used for all reconstructions in Section III.

5) Bulk Property Estimation and Image Reconstruction—With the derived
reconstruction scheme, we estimated the breast bulk optical properties from the RF
measurements. This is done by regarding the whole reconstruction mesh as a single set of
(μa,D)pairs. In this case, the Jacobian matrix is equal to the sum of columns for all
parameter nodes. The SD unknowns are also updated simultaneously in the bulk property
estimation to absorb the systematic errors.

The estimated bulk optical properties were used as homogeneous initial guess for the image
reconstruction stage. However, the SD estimated from the bulk estimation can not be used
for the second stage. This is because the SD coefficients in the bulk estimation have
maximum coupling to the optical images since they are the only degree-of-freedom used to
represent spatial variability. However, averages of source and detector coefficients can be
used to initialize the SD coefficients in the image reconstruction.

III. RESULTS
In this section, we first present several phantom data reconstructions to illustrate the
robustness of the imaging system and the algorithm. We used a homogeneous phantom to
test for image artifacts that might result from systematic errors, calibration, geometric
modeling, and algorithmic inaccuracy. The inhomogeneous phantoms, on the other hand,
were used to test the sensitivity of the imaging data to objects that mimic the size and
contrast of a tumor. A range of patient data reconstruction results follow and are shown in
four groups based on the sizes of the glandular regions. For each group, the common
findings are summarized and then further compared across groups. The mean bulk optical
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properties of each group were tabulated to facilitate comparisons to other published studies
[42], [47]-[49].

For all patient reconstructions, a finite element forward mesh with uniform node spacing of
4 mm and a reconstruction mesh with node spacing of 8 mm were generated from DBT
images. This typically results in 10 000-50 000 forward nodes and 1500-6000 reconstruction
nodes depending on the volume of the breast. The FEM forward solver uses an optimal
block size of 8 [18] to solve the solutions for all sources and detectors by an iterative block
solver [19]. On a Pentium Xeon 2.4-GHz CPU PC, the average solving time for a solution
with 20 000 unknowns is about 1 s.

The source/detector positions for phantoms and clinical data reconstructions are plotted in
Fig. 5. The source/detector coverage for clinical measurements were specially optimized
using a histogram generated from DBT images from 40 patients to capture 80% of the breast
coverage. For phantom reconstructions, only RF data were included, therefore, we only plot
the RF source/detector positions in Fig. 5(a) and (b). In all cases, both the source and
detector probes are parallel to each other and directly contact the target surface through a
thin transparent acrylic paddle.

The Gauss-Newton iterations were applied to both the bulk property estimation and the full-
image reconstruction, where the maximum iteration numbers were set to 20 and 5 for
phantom and clinical data, respectively. In both cases, the SD coefficients and optical
properties were estimated simultaneously. As we discussed in Section II-D5, we used the
estimated bulk optical properties and the averages of the estimated SD to set the
homogeneous initial guess for the full-image reconstruction. Both the RF and CW MUX
measurements were used in the bulk estimation and image reconstruction of the patient
measurements to achieve improved image resolution and accuracy. For a typical
reconstruction, constructing the Jacobian matrix takes about 2 s, with another 4-5 s needed
to solve the update equation. The average iteration time for the reconstruction ranges from
about 1-3 min (depending on the number of useful sources and detectors).

A. Phantom Reconstructions
The phantom used in this paper is a balloon filled with intralipid/ink solution. The balloon is
vertically compressed between the two compression paddles to mimic a breast under
compression. The dimensions of the compressed balloon are roughly 15 cm × 18 cm
horizontally and 5 cm in the compression direction. A picture of the compressed balloon is
shown in Fig. 6(a). The liquid solution inside the balloon contains 0.8% intralipid and
0.017% Higgins India ink (Stanford, IL). The horizontal extent of the balloon was identified
by tracking the contours from the top-view photo in Fig. 6 and mapping to the probe
coordinates assisted by landmarks. Smooth nonuniform rational B-spline (NURBS) patches
were used to connect these contours, from which the surface and volumetric forward/
reconstruction meshes were generated [Fig. 6(b)].

The raw measurement of the balloon phantom was calibrated by (16). In this example, we
used the 830-nm RF measurement only. The bulk properties of the balloon phantom

estimated from (23) are μa = 0.063 cm-1 and  at 830 nm. An independent
measurement on a similar sample with a 8-wavelength RF NIR spectrometer (ISS Inc.,
Champaign, IL) was performed and the measured optical properties are μa = 0.081 cm-1 and

 at 830 nm. Given the significant differences between the two instruments,
including measurement geometry, probe design, wavelengths, the discrepancy between the
two estimates seem comparable with published studies on cross-instrument validation [50],
[51]. Full-image reconstructions of the balloon phantom yield the absorption and scattering
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profiles at 830 nm. Horizontal slices extracted from 3 cm above the bottom of the phantom
are shown in Fig. 7. The reconstructed images demonstrate reasonable homogeneity in the
target domain with maximum perturbations of ±2.1% in the absorption and ±1.9% in the
scattering image.

A 2.5-cm-diameter glass sphere filled with the same solution except with doubled ink
concentration was positioned inside the balloon and manipulated by moving a wood-stick
through a translation stage. A picture of the inclusion is shown in Fig. 6(c). We first position
the sphere near the center of the balloon, and then moved it slightly to the right side.
Vertically, the sphere is close to the bottom plate. In both cases, top-view pictures were
taken while vertically lifting the inclusion in order to track its position. With the
measurement calibrated by a homogeneous balloon measurement, we performed optical
image reconstruction for the two measurements and slices of the absorption images are
shown in Fig. 8. A 2.5-cm-diameter circle was overlayed on top of the images based on the
position from the top-view photos in both cases.

From these images, we can see that the positions and the sizes of the target were recovered
fairly accurately. However, the maximum absorption contrast in both cases are 1.3:1 and
1.5:1, respectively, which are both lower than the expected contrast of 2:1. The
underestimation of the contrast was considered a result of the smoothing effect of the
regularization and as previously reported in similar reconstructions [52]. The thin glass wall
of the inclusion may also contribute to the underestimation; however, given the contrast
reduction due to smoothing of the image reconstruction as shown for example in [52], the
systematic error introduced by the glass-wall may be negligible.

B. Clinical Data Reconstructions
With confidence in both the measurement data and reconstruction algorithm, we applied the
above analysis to the clinical data acquired from healthy subjects between August 2005 and
December 2006. The processing steps for the clinical data are generally identical to those for
the phantoms, with the exception that the forward and reconstruction meshes were generated
from 3-D tomosynthesis images with the registration and mesh generation described in
Section II-D2.

A total of 49 healthy subjects were enrolled in our study, including cases of single-side and
bilateral breast measurements for a total of 68 data sets with both valid optical and DBT
measurements. A semi-automatic segmentation software, Insight-SNAP [53], was used to
generate the 3-D volumetric segmentation of the fibroglandular regions from the DBT scans,
from which a fibroglandular volume fraction (g) was calculated by taking the ratio of the
fibroglandular volume by the imaged breast volume. Using this metric, we divided all
imaged breasts into groups and the sample size of each group, the means and standard
deviations of the recovered bulk oxygenated-hemoglobin concentration (HbO),
deoxygenated-hemoglobin concentration (HbR), total hemoglobin concentration (HbT =

HbO + HbR), oxygen saturation (SO2 = HbO/HbT), and reduced scattering coefficient 
at 830 nm are listed in Table I. From this table, we can see that with the increase in g, an
increase in HbT, HbO, and HbR is also observed except for the last group, while the SO2
values show a decreasing trend. The mean values of HbT is relatively low compared with
literature values for uncompressed breasts [42], [47]-[49]. However, due to the applied
mammographic compression, removal of blood is anticipated from our previous studies [25]
and the values in Table I are reasonable.

Twelve DBT image slices (six for LMLO view, six for RMLO view) are shown in Fig. 9
(right-hand side image of each image pair). In these images, one can easily identify the
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boundaries of the breast, the fibroglandular tissue (circled by thin contour lines), the fatty
tissue (areas surrounding the fibroglandular region), and chest-wall muscle [the triangular
regions delimited by white dashed lines in cases Fig. 9(b)-(f) and Fig. 9(i)-(j)].

Reconstructed HbT and DBT images for 12 representative healthy breasts are shown in Fig.
9. They are divided into four groups based on their radiological breast densities: fatty (FA),
scattered density (SC), heterogeneously dense (HD), and extremely dense (ED) [54]. For
each group, we show glandular region outline overlays on top of the HbT and X-ray images.
A thick dashed line was used to mark the field-of-view of the optical probes. The optical
images between the dashed line and the nipple are not expected to have reconstructed
contrast because of the extinction of measurement sensitivity. All slices were extracted from
the horizontal plane 2 cm above the bottom of the compressed breast. The HbT values for
the images were computed from absorption coefficients at 685 and 830 nm by fitting the
oxygenated/deoxygenated hemoglobin absorption spectra to the data while assuming water
and lipid concentrations are 23% and 58%, respectively. The water and lipid concentrations
were reasonable extrapolations from literature values 31% and 57%, respectively [42], [55],
considering a reduction due to mammographic compression. To investigate the sensibility to
water and lipid, we doubled water concentration and found that the HbO values decreased
only about 20% and the HbR values increased less than 10%. Reducing the lipid
concentration to 20% made less than 2% changes to HbO and HbR.

Here, we summarize the observations by examining the images for each group in Fig. 9. For
breasts with very little glandular content, i.e., Fig. 9(a)-(c), the averaged HbT values are
relatively small compared with the other three groups, similarly for the perturbations in HbT
distributions. For breasts with a small amount of glandular tissue, i.e., those in Fig. 9(d)-(f),
a positive contrast in HbT from the bulk values at the glandular region appears in the
images. The low-HbT region is located mostly on top of the fatty tissue. The triangular
chest-wall muscle areas for all three cases were successfully reconstructed and present the
highest HbT concentrations in the image. For heterogeneously dense breasts, the findings
are largely identical to the scattered density group, except for Fig. 9(i), where the positive
contrast of the glandular regions appears slightly deformed by the low-HbT region at the
top-right of the breast. For breasts with a high percentage of glandular tissue, the image
features largely resemble those of the fatty breast group, i.e., relatively small contrast in the
breast; however, the baseline HbT for this group is about twice as high. We also noticed that
the contours of the recovered glandular regions in the dense breast group contain a
somewhat low HbT region similar to Fig. 9(i). The HbT decrease in these regions ranges
from about 5% to about 20%.

To generalize the findings from Fig. 9, we performed a region-of-interest (ROI) analysis for
the breasts with small to moderate amounts of fibroglandular tissue and simultaneous RF
and CW measurements (N = 26). The ROIs were manually created based on the X-ray
segmentation and the field-of-views of the optical probes for each breast. The average HbT
of the fibroglandular tissue is 20.1 ± 6.1 μm (N = 24), that for adipose is 15.4 ± 5.0 μm (N =
26), and for muscle 22.2 ± 7.3 μm (N = 17). Paired t-test indicates that the HbT of the
fibroglandular tissue in these breasts is significantly greater than that of adipose tissue (N =
24, p < 0.0001) with an average contrast of 1.4:1. Note that the estimated contrast is likely
lower than the true contrast as shown in our phantom results.

The reconstructed  distributions are similar to those of HbT for each patient.

Representative images of the  from two breasts, i.e., Fig. 9(i) and (d), are shown in Fig.
10(a) and (c), respectively, where the glandular regions demonstrate higher scattering
values. The corresponding SO2 images of the two subjects [Fig. 10(b) and (d)] seem to
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present lower values within the fibroglandular segmentations, which suggest higher
metabolic activities in the fibroglandular tissue.

We can conclude from these observations that: 1) the chest-wall muscles, where visible,
normally present higher HbT and sharper edges in the image; 2) the glandular regions within
the coverage of the optical detectors have a roughly 10% increase in the HbT images; 3)
both fatty and dense breasts show less variation within the image than the heterogeneous
group; 4) for some cases, a region of slightly decreased HbT can be seen partially
overlapping on the glandular area around the central part of the breast.

C. Pressure Simulations
The presence of a decreased-HbT region in some images is a unique feature for this study
and deserves further explanation. As we know, mammography scans are typically associated
with applying large compression to the breast. It is reasonable to assume that the blood in
the tissue is redistributed, driven by the gradient of tissue internal stress. In this case, we
would expect lower-HbT content in the region where tissue stress is stronger.

The key component to validating the hypothesis above is to obtain the stress distribution and
correlate it with optical images. To accurately model the breast under large deformation is
fairly complicated and beyond the scope of this paper. In this section, a mechanical
simulation is presented under simplified assumptions to qualitatively support our hypothesis.

The simulation was performed with multiphysics software ANSYS ED. The simulated
breast geometry is shown in Fig. 11(a). It was created by cutting a sphere with a radius of 8
cm centered at the origin by three planes at z = -3 cm, z = 3 cm, and y = 2 cm, respectively,
and subsequently scaling the model in the z axis by a factor of 5/6. The breast model was
treated as a linear isotropic material with Young's modulus of 25 MPa and a Poisson
constant of 0.48 (for semi-volume-preserving) [56]. Two displacement boundary conditions
were applied to the upper and bottom surfaces, respectively, with Δz = -0.2 cm at the top
and Δz = 0.2 cm at the bottom. No constraints were applied for the x and y directions for the
two flat surfaces and other surfaces.

The von Mises stress plots on the (x,y) and (y,z) cross sections of the compressed breast are
shown in Fig. 11(b) and (c). As hypothesized, the center part of the breast has higher stress
than the periphery regions. Driven by the gradient of the internal stress, the blood in breast
tissue will be “squeezed” away from the high-stress regions and results in the low HbT
regions in the images shown in the previous section.

One must note that the simulation shown above presents a simplified view of the effect of
compression on breast tissue. These static features of stress distribution provide a qualitative
justification for the patterns of hemoglobin distribution observed in our reconstructed
images. However, the establishment of pressure gradients due to external compression sets
in motion several other processes [25].

Immediately after breast compression, external force leads to an instant increase in
interstitial fluid pressure in the breast sufficient to squeeze some of the blood out of the
tissue and consequently leads to an immediate drop in overall blood volume. At the same
time, breast tissue (and biological tissue in general) is visco-elastic [56], meaning that the
stress-strain response curve of breast tissue is different from that of linear elastic materials in
that it exhibits “creeping” (relaxation) due to water movement and collagen matrix
reorganization [57], [58]. Also, the breast has a heterogeneous internal structure composed
of both higher stiffness fibroglandular tissue as well as less stiff adipose tissue. Furthermore,
breast tumors have been shown to have even higher stiffness [59] and interstitial pressure
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[60] than normal breast tissue. The combined effect of these features is a dynamic stress
redistribution following compression manifested by a partial return of blood to tissue and
stress/strain transfer from the stiffer areas to the less stiff ones.

The additional complexities of the tissue compression response also represent an opportunity
for identifying dynamic characteristics useful in cancer diagnosis. However, this is beyond
the scope of the current publication.

IV. CONCLUSION
We have demonstrated a working prototype of a combined X-ray and optical breast imaging
system and its successful application to imaging healthy breasts in a clinical setting. The
capability of performing optical and X-ray scans in a spatially co-registered manner allows
us to interpret the optical images with greater confidence. The reconstructed HbT images of
breasts were reasonably consistent with the corresponding tomosynthesis images. The
contours of the chest-wall muscle, fibroglandular and fatty tissue regions in the optical
images generally agree with the X-ray structural information. An ROI analysis has
demonstrated significant differences in HbT between these tissue types. Particularly, the
average contrast between the fibroglandular and adipose tissue is 1.4:1. For breasts with
very small and very large glandular regions, we observed a slight decrease in the central part
of the HbT images. We hypothesized that this is due to the nonuniformity of the applied
mammography compression and the induced hemoglobin redistribution. A mechanical
simulation of breast compression qualitatively strengthened this hypothesis.

Despite the fact that the optical images have low spatial resolution, interpreting the features
in the images is fairly straightforward with the guidance of co-registered X-ray scans. As
one can see, the combined optical/X-ray breast imaging system presents additional
diagnostic information in an incremental and co-registered manner. This could possibly lead
to a lower barrier for acceptance by radiologists.

The blood-pressure coupling effect revealed in this paper and some previous work [25]
opens a new horizon for breast cancer detection. On the one hand, the precisely controlled
external compression provide a simple exogenous contrast mechanism for hemoglobin
concentration, where both the tissue mechanical and vascular characteristics were encoded
and can be detected by optical measurement. It may be possible to fine-tune the system so
that tumor abnormalities in both the mechanical map [59] and the hemoglobin map enhance
each other, resulting in a more efficient detection. On the other hand, the tissue metabolism
and the visco-elasticity [56] add a new dimension, spatial-temporal dynamics, to cancer
identification where dynamic compression and real-time optical measurements are
simultaneously available. To study the temporal signature of the tissue under compression is
also a possible path to improve the imaging specificity.

Our next goal is to study the system's performance for breasts with lesions, as this is
obviously critical for proving the system's clinical significance. As we concluded from the
healthy subject study, mammographic compression affects the image contrast in some cases.
It is natural to ask whether the compression will affect tumor detection. To answer this
question, we will reconstruct images for tumor-bearing breasts. Using the ROIs derived
from X-ray images, we can calculate the optical contrast and the statistical significance
between the tumor and healthy tissues, and then compare with the published optical contrast
from DOT systems without compression [61]. Tumor segmentation information will be used
in the reconstruction as a spatial prior [62] to reduce the underestimation for small targets as
shown in our phantom reconstruction. In the meantime, our breast compression study
revealed interesting tissue dynamics such as pressure relaxation, oxygenation and flow
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changes associated with breast compression [25]. Our TOBI measurements using various
protocols (Section II-B) also indicated an up to 5% monotonic signal change during the
experiment (the variations in Protocol 1 are slightly greater than those in Protocol 2).
Although these variations are not large enough to alter the results of the static image
reconstruction, incorporating dynamic models into the analysis [26] will give us
opportunities to study the temporal signature of the tissue dynamics and provide new
dimension for differentiating cancers from healthy tissue in the early stage.
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Fig. 1.
Block diagram of TOBI breast imaging system. The physical distributions of source and
detector fiber positions can be found in Fig. 5.
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Fig. 2.
Picture of the combined TOBI/DBT system in clinical environment. The TOBI system
include both RF and CW source/detector modules and the fiber optics interface attaching to
the tomosynthesis system on the right.
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Fig. 3.
Close-up view of the optical probes.
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Fig. 4.
Data analysis flow chart.
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Fig. 5.
Illustrations of sources/detector configurations: (a) sources and (b) detectors for phantom
measurements; (c) sources and (d) detectors for patient measurements.
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Fig. 6.
Balloon phantom experiment illustration: (a) top-view photo of the compressed balloon, (b)
forward FEM mesh, and (c) inclusion.

Fang et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Reconstructed image slices for a balloon phantom filled with intralipid solution: (a)μa

(cm-1) image and (b)  image. Both images were extracted at the horizontal plane 3
cm from the bottom of the phantom. Maximum perturbations for the absorption is ±2.1%
and that for the scattering image is ±1.9%.
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Fig. 8.
Reconstructed μa (cm-1 images of a balloon with a 2.5 cm diameter spherical inclusion: (a)
configuration 1 and (b) configuration 2. Image slices were extracted from a horizontal plane
1.5 cm above the bottom plane. Contour of the inclusion is overlayed on the images.
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Fig. 9.
Reconstructed HbT and DBT images for various subjects. The images in the first row [(a)-
(c)] are examples of fatty breast reconstructions; the images (d)-(f) scattered density breasts;
images (g)-(i), heterogeneously dense breasts; and (j)-(l), extremely dense cases. All images
are slices extracted along a horizontal plane from the reconstructed 3-D HbT maps. The
thick dashed line denotes the edge of optical source/detector coverage. The region between
the dashed line and the nipple has virtually no sensitivity to the measurements. The white
dashed line on the DBT slice and the black solid thick line on the HbT images denote the
boundaries of the chest-wall muscle regions which do not show up for all the patients. In all
figures, the color scales were set between 80%-120% of the respective bulk HbT value,
except for (g) where 70%-130% was used.
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Fig. 10.

Image slices for (a)  at 830 nm, (b) oxygen-saturation (SO2) corresponding to

case (i) in Fig. 10, and (c)  at 830 nm, (d) SO2 corresponding to case (d) in Fig. 10.
The markings on the images are defined similarly as in Fig. 9.
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Fig. 11.
Breast compression simulation and von Mise's stress crosscuts: (a) breast model, (b) (x, y)
cross section, (c) (y, z) cross section. The darker the color scale, the higher the stress.
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