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Abstract

Thin polydimethylsiloxane (PDMS) films are frequently used in ‘‘lab on a chip’’ devices as flexible membranes. The common
solvent used to dilute the PDMS for thin films is hexane, but hexane can swell the underlying PDMS substrate. A better
solvent would be one that dissolves uncured PDMS but doesn’t swell the underlying substrate. Here, we present protocols
and spin curves for two alternatives to hexane dilution: longer spin times and dilution in tert-butyl alcohol. The thickness of
the PDMS membranes under different spin speeds, spin times, and PDMS concentrations was measured using an optical
profilometer. The use of tert-butyl alcohol to spin thin PDMS films does not swell the underlying PDMS substrate, and we
have used these films to construct multilayer PDMS devices.
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Introduction

Polydimethylsiloxane (PDMS), an elastomer widely used in

microdevice fabrication [1], is frequently spun into membranes for

use as a flexible component of valves [2,3], actuators [4], and

microlenses [5]. The membrane is normally integrated into the

device in one of two ways: (i) PDMS is spin-coated onto a glass or

silicon wafer and then lifted off the wafer by peeling it up with

another piece of PDMS, or (ii) PDMS is spin-coated directly onto

the final PDMS, glass, or silicon substrate.

Uncured PDMS is often diluted in solvent in order to spin thin

(,5 mm) films. Hexane is often used as a solvent for uncured

PDMS [4,6], but hexane swells cured PDMS. If the substrate layer

is a PDMS membrane, the membrane can warp. In our case, we

required a thin layer of PDMS to cover microfabricated

ferromagnetic elements in a multilayer PDMS device [7]. When

we used hexane to dilute the PDMS, the magnets were warped

and unusable (Figure 1). The ideal solvent for uncured PDMS is

one that dilutes the uncured PDMS, but does not swell cured

PDMS membranes.

Here we propose two alternatives to hexane dilution. The first

alternative, longer spin times (.5 min), is an obvious solution, but

PDMS film thickness data for long spin times is not widely

available. The second alternative is the use of tert-butyl alcohol

(TBA) as a solvent for uncured PDMS. TBA dilutes uncured

PDMS, but does not swell cured PDMS membranes. We present

thickness data for various concentrations of PDMS in TBA for

various spin speeds.

Figure 1. PDMS membrane that was warped when hexane-diluted PDMS was spun onto it. The triangular elements are metal that was
plated on the underlying PDMS membrane.
doi:10.1371/journal.pone.0004572.g001
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Results

We tested 12 different solvents for their ability to: (1) dissolve

uncured PDMS, and (2) not visibly warp a cured PDMS

membrane when poured directly onto the membrane. Tert-butyl

alcohol (TBA) was the only solvent that met both requirements.

We also measured the swelling in the thickness of cured PDMS

soaked in water, TBA, and hexane to dry PDMS (Table 1). The

slight amount of swelling (1.05) in TBA was acceptable in our

device construction.

Figure 2 shows the PDMS film thickness for different

concentrations of PDMS in TBA as a function of spin speed.

Each line in Figure 2 is a fit of the data to the generally accepted

relationship between angular velocity, v, and thickness, h [8,9]:

h~kva ð1Þ

where a and k are the experimentally derived constants shown in

Table 2.

The thickness of the PDMS film for longer spin times is shown

in Figure 3. The PDMS was not diluted in TBA for these

measurements. Each line in Figure 3 is a plot of the following

relationship, theoretically derived by Emslie et al.[10], between

Table 1. Swelling in the thickness of cured PDMS after
soaking in 3 different solvents for 2 hours.

Solvent
Ratio of thickness after soak
to thickness before soak

Water (23uC) 1.00

Tert-butyl alcohol (45uC) 1.05

Hexane (23uC) 1.31

Standard deviation divided by mean in all 3 cases was less than 1%.
doi:10.1371/journal.pone.0004572.t001

Figure 2. Thickness of the PDMS film under various concentrations (by weight) of PDMS in tert-butyl alcohol (TBA) as a function of
spin speed. Each data point is the average of the mean thickness of three slides. Each slide was spun for 5 min. The error bar is the 95% confidence
interval. The line is the least-squares fit of the data. The density of TBA is 0.775 g/mL at 25uC.
doi:10.1371/journal.pone.0004572.g002
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spin time, t, angular velocity, v, and thickness, h:

h~
h0

1zcv2h0
2t

� �0:5
ð2Þ

where h0 and c have been experimentally derived here to be

h0 = 180 mm and c = 2.86610210 RPM22 mm22 s21.

The PDMS film spun onto on a PDMS substrate was found to

be thicker than the PDMS film spun onto a glass substrate. Table 3

shows the comparison for three different concentrations of PDMS

in TBA.

Figure 4 shows the profile of the membrane for different

concentrations of PDMS at 1000 RPM and 6000 RPM. A strong

edge bead was present in all cases.

Biocompatibility of the film was verified when single yeast cells

were grown in yeast growth media on 10 different TBA-diluted

films for 8 hours under a microscope. Each time, a normal

,90 minute budding cycle was achieved within 3 hours of placing

the cells on the film.

Figure 3. Thickness of the 100% PDMS film under two different spin speeds as a function of spin time. Each data point is the average of
the mean thickness of three slides. The error bar is the 95% confidence interval. Each curve is a plot of Equation (2) for the given speed.
doi:10.1371/journal.pone.0004572.g003

Table 2. Constants in the mathematical relationship between
spin speed and PDMS film thickness.

Concentration of PDMS in TBA by weight a k

100% 20.98 22,000

50% 20.60 760

33% 20.35 69

25% 20.281 26.3

17% 20.138 4.97

The parameters a and k are derived from the least-squares fit of the data
summarized in Figure 2 using Equation 1 where angular velocity is in RPM and
thickness is in mm.
doi:10.1371/journal.pone.0004572.t002
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Discussion

We have presented two alternatives to hexane dilution of

PDMS: long spin times and dilution in tert-butyl alcohol (TBA).

We have found that TBA is an excellent solvent for PDMS

because it does not swell the underlying PDMS layer, and it

dissolves uncured PDMS when it is mixed at 45uC. We have used

dilution in TBA extensively in our lab to construct multilayer

PDMS devices. For example, TBA-dissolved PDMS has served as

a protective layer for single-cell magnetic trapping elements [7]

and as a variable-resistance layer in fabricating thin-film

thermocouples [11].

Materials and Methods

To measure swelling ratios, PDMS part A and part B (Sylgard

184, Dow Corning Corp., Midland, MI) were mixed in a 10:1

(weight:weight) ratio and cured for three hours at 55uC in a

85 mm6125 mm67 mm rectangular mold. 12 identical pieces

were cut from the mold. The thickness (,7 mm) of each piece

was measured in three locations with a micrometer. Four pieces

were placed into each solvent: deionized water at room

temperature, TBA (Sigma-Aldrich, St. Louis, MO) at 45uC,

and hexane (Sigma-Aldrich) at room temperature, and allowed

to soak for two hours. The pieces were removed from the

Table 3. Thickness of PDMS films spun on glass substrates vs. PDMS substrates.

Percent PDMS
Mean thickness
on glass (mm)

Mean thickness
on PDMS (mm)

Increase in thickness
from glass to PDMS (mm)

Percent increase in mean
thickness from glass to PDMS

100% 12.8–13.1 14.3–14.6 1.3–1.6 11.3%

50% 7.8–8.0 8.7–9.2 0.9–1.3 14%

17% 1.48–1.74 1.68–1.92 0.07–0.30 11.6%

All spins were done for 5 min at 2000 RPM at the given concentration. The values are given as 95% confidence intervals for a sample of three slides.
doi:10.1371/journal.pone.0004572.t003

Figure 4. Profiles of five PDMS membranes spun for 5 min on glass. Each profile is a single sample, ending in the edge bead. The profiles in
Figure 4 were measured from the center point of the slide to the edge along the long axis as indicated by the ‘‘Profile line’’ in Figure 5.
doi:10.1371/journal.pone.0004572.g004
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solvent, dried, and immediately measured with a micrometer as

before.

All spin coat tests were performed on one of two substrates: a

20630 glass slide, or a 20630 glass slide coated with PDMS. The

bare glass was rinsed in ethanol and deionized (DI) water. The

PDMS membrane was rinsed in DI water only. The substrate was

blown dry using nitrogen, and then dried on a 60 C hotplate for

30 minutes. It was then allowed to cool to room temperature and

placed on the spinner (WS-400B-6NPP-Lite, Laurell Technologies

Corp., North Wales, PA). PDMS part A and part B (Sylgard 184,

Dow Corning Corp., Midland, MI) were then mixed in a 10:1

(weight:weight) ratio in a 25 ml polystyrene beaker using a glass

stirring rod for 2 minutes. The PDMS was placed in a vacuum

desiccator until bubbles were no longer visible (10–13 minutes).

The PDMS was then mixed with 45uC TBA in the appropriate

concentration until fully dissolved (30–45 s). The TBA needs to be

warmed to 45uC for better mixing with the PDMS; TBA is a solid

at room temperature. The mixture was then poured onto the glass

slide. The total time between combining PDMS parts and starting

the spin was exactly 15 min for each sample. The spinner was then

started and then run for the desired time. Finally, the PDMS was

placed on a 60 C hotplate until fully cured (1–2 hours).

To measure the thickness of the membrane, the area of the

PDMS to be profiled was scraped away with a clean razor blade.

Both the PDMS and the glass in the area of the removed PDMS

were then briefly electrolessly plated in silver per manufacturer’s

instructions (LI Silver, Nanoprobes Inc., Yaphank, NY) [12] so

that the surfaces would be visible to the optical profilometer. The

height of the silver plating was measured with AFM (Dimension

3100 Scanning Probe Microscope, Veeco, Woodbury, NY) to be

less than 50 nm on both glass and PDMS (data not shown). The

plated area was then profiled using an optical profilometer (Wyco

NT3300, Veeco Instruments Inc., Woodbury, NY) to find the

difference in height between the PDMS film and the substrate.

Measurements less than 4.5 mm were made to the nearest 0.01 mm

and measurements greater than 4.5 mm were made to the nearest

0.1 mm. Four locations were measured along the diagonal of each

slide as shown in Figure 5. These four locations were averaged to

generate a mean thickness per slide. The thickness of the

membrane spun onto a PDMS substrate was measured by first

measuring the thickness of the membrane on glass only and then

measuring the mirror of points A–D (Figure 5) for the total

membrane thickness. The mean thickness of PDMS-only mem-

brane was calculated by subtracting the mean thickness of glass-

only membrane from the mean thickness of combined membrane.

Each 95% confidence interval in Figure 2 and Table 3 was

calculated using a one or two sample (as appropriate) t-test of 3

samples, where each sample was the mean thickness per slide. The

profiles in Figure 4 were measured from the center point of the

slide to the edge along the long axis as shown in Figure 5.

Data analysis was performed using the R programming

language. Estimates of the parameters in Equations (1) and (2)

were found using the non-linear least squares (nls) function.
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