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Abstract
A cyclic imine conjugated to a fluorescent dansyl group was synthesized and used for covalent
labeling of proteins. The covalent attachment to proteins was confirmed by gel electrophoresis and
mass analysis.

Covalent labeling reactions of proteins are required for preparation of protein conjugates that
are useful in research and medicine. For example, antibody-drug conjugates are more efficient
therapeutics than antibody alone or drug alone.1 When conjugated to protein, small molecule
drugs can be selectively delivered to targets, reducing side effects and extending the half-life
of the drugs.1,2 Fluorescently labeled proteins can be traced by detection of the fluorescence.
3 Currently available labeling methods include labeling at lysine with succinimidyl ester
derivatives, labeling at cysteine with maleimide derivatives, and labeling of an unnatural amino
acid residue incorporated in protein sequence during its expression.1c,d,4,5 Small peptide tag-
based strategies for labeling of proteins have also been developed.6 Most of the methods have
advantages and disadvantages.

In order to provide labeling reactions complementary to the existing reactions, we have recently
developed cyclic imines that covalently react with phenols, including tyrosine residues, in
aqueous solutions7 (Scheme 1). The reactions of the imines with phenols proceeded over a
wide pH range without the need of additional catalysts.7 The imines were relatively stable and
were resistant to hydrolysis in aqueous solutions but efficiently reacted with phenols.7

Tyrosine residues are observed less often on the surface of folded proteins than lysines or
carboxylic acid-containing residues,8 which are commonly used as labeling sites. Thus,
accessible tyrosine is an attractive covalent labeling site.7,8,9 For proteins and peptides that
do not have an accessible tyrosine, a tyrosine residue can be added by usual site-directed
mutagenesis or by usual peptide synthesis. Although imines prepared from formaldehyde and
aniline derivatives in situ have been used for labeling of proteins at tyrosine,8 the optimal pH
range for this reaction is 5.5–6.5 and the reaction does not proceed above pH 8.8a In addition,
formaldehyde cannot be used in many cases; for example, use of formaldehyde is not suitable
for labeling of proteins at tyrosine inside living cells or in the presence of living cells. Reactions
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at tyrosine using reagents other than imines typically require additional catalysts or multistep
conversions after the first reaction step on the phenol moiety of tyrosine.9a–d Use of the imine
shown in Scheme 1 may bypass the limitations and disadvantages of the existing labeling
methods.

To demonstrate the use of the cyclic imines shown in Scheme 1 for covalent attachment of
non-native molecules to proteins and peptides, here, we have synthesized a conjugate of the
imine with a fluorescent dansyl group and examined the reactions of the dansyl-conjugated
imine with proteins and peptides.

The imine derivative linked to a fluorescent dansyl group was synthesized as shown in Scheme
2.10 Diazidation of 1 afforded a mixture of stereoisomers of 2; the major isomer was expected
to have trans-diazide groups due to the procedures used.11 Hydrolysis of the ester with LiOH
afforded 3, which was converted to succinimidyl ester 4. Reaction of 4 with amine 5, prepared
from the corresponding diamine and dansyl chloride, afforded compound 6. Diamine 7 was
obtained by reduction of the azide groups by hydrogenation with Pd-C under H2 in EtOAc-
MeOH (3:1). The solvents for this reduction were critical; reduction of 6 with Pd-C under
H2 but in MeOH mainly afforded monoamine, which might have been generated via
elimination of HN3. Diamine 7 was then transformed to imine 8 as a mixture of regioisomers
(8a + 8b). To confirm the imine functionality of 8, reaction of 8 with p-cresol was performed
in the presence of TFA (Scheme 3).12 Formation of addition product 9 confirmed the presence
of the imine functionality in compound 8.

Imine 8 was used for modification of proteins and peptides. Reaction of peptide was performed
using GlyTyr or AlaTyrAla (90 mM) with 8 (20 mM) in 10% DMSO/100 mM sodium
phosphate, pH 6.0 for 48 h at 37 °C. Imine 8 was completely consumed as judged by TLC
analysis of the reaction mixture. Formation of the addition products were confirmed by mass
analysis.13

To test reaction of 8 with proteins, lysozyme from chicken egg white, α-chymotrypsinogen A
type II from bovine pancreas, myoglobin from equine skeletal muscle, carbonic anhydrase
isozyme II from bovine erythrocytes, and cytochrome C from horse heart were used. Reactions
of proteins (475 μM) were performed in the presence of 8 (5 mM) in 5% DMSO/100 mM
sodium phosphate, pH 6.0 for 4 days at 37 °C and were analyzed by gel electrophoresis (Figure
1). Gel bands corresponding to modified proteins were fluorescent under a UV lamp (312 nm).
Unmodified proteins were not fluorescent on a gel under the UV lamp (data not shown). Gel
analysis showed that lysozyme was most easily modified among proteins tested (lane b). Mass
analysis of the reaction mixture of lysozyme with 8 showed the formation of the mono-addition
product.14 We previously demonstrated that the imine derivative shown in Scheme 1, prepared
from trans-diaminocyclohexane, selectively reacted at tyrosine and did not react with other
natural amino acid residues except cysteine thiol.7 Thus, reaction of 8 with lysozyme probably
occurred at tyrosine. Cytochrome C was not labeled with 8 under the conditions used (lane f).
Myoglobin and carbonic anhydrase were slightly modified (lanes d and e).15
Chymotrypsinogen was hydrolyzed into small fragments by autolysis and by catalysis of
generated chymotrypsin under the conditions used (lane c). Due to this hydrolysis, we were
unable to evaluate labeling of chymotrypsinogen with 8. These results indicated that 8 did not
inhibit the serine protease activity under the conditions used; this implies that the nucleophilic
serine in the active site of chymotrypsin did not efficiently react with imine 8.

Mass analysis of the reaction of 8 with lysozyme at 48 h suggested that the reaction of 8 was
slower than that of the imine synthesized from trans-cyclohexanediamine shown in Scheme
1. We previously observed that reaction of the trans-isomer of the imine shown in Scheme 1
was faster than the corresponding cis-isomer.7 Relative stereochemistries of the two nitrogen
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functionalities and the amide carbonyl group on the cyclohexane ring of 8 may affect the
reactivity of the imine moiety. In order to increase the reaction rate, stereoselective synthesis
of 8 may be required. Alternatively, introduction of moieties that provide noncovalent
interactions with the target protein may be used to enhance the reaction rate of the imine with
the target.9e

In these reactions, excess of compound 8 was used compared to protein (5 mM versus 475
μM). After protein was separated by gel filtration or C18 column, compound 8 was recovered
by extraction with organic solvent (such as CH2Cl2). This recoverable feature of the imine
should be beneficial when a toxic drug or an expensive molecule is covalently attached to
protein.

In summary, we have synthesized a fluorescent conjugate of cyclic imines that we have recently
developed for covalent reactions with phenols, including accessible tyrosine. We have
demonstrated that the imine derivative can be used to fluorescently label proteins, although the
reaction of the imine was relatively slow. The imine derivative was stable in aqueous solutions
and recoverable after reactions. Reactions of the imine derivative proceeded without the need
of additional catalysts. This system does not require formaldehyde or multistep conversions
after the first reaction step on tyrosine and thus is an improvement over previously reported
labeling systems. Further studies and improvements on the imine derivatives described here
are under investigation.
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C25H36N9O5S (MH+) 574.2555, found 574.2561. Compound 7. A mixture of 6 (322 mg, 0.56 mmol)
and 10% Pd/C (32 mg) in MeOH (5 mL)-EtOAc (15 mL) was stirred under H2 for 24 h at room
temperature. The reaction mixture was filtered through celite and concentrated in vacuo to afford 7
(290 mg, quant). 1H NMR (400 MHz, CD3OD):δ 8.52 (d, J = 8.8 Hz, 1H), 8.31 (d, J = 8.8 Hz, 1H),
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CDCl3):δ 174.6, 151.8, 135.1, 130.3, 130.2, 129.8, 129.6, 129.1, 128.18, 128.15, 128.12, 128.0,
123.1, 118.9, 115.16, 115.14, 70.23, 70.20, 70.2, 70.1, 70.0, 69.4, 56.1, 53.4, 45.3, 42.8, 39.5, 39.2,
26.1. HRMS: calcd for C25H40N5O5S (MH+) 522.2745, found 522.2745. Compound 8 (8a + 8b).
To a solution of 7 (406 mg, 0.78 mmol) in CF3CH2OH (15 mL), a solution of ethyl glyoxylate
polymer form (45–50% in toluene, 218 μL, 0.78 mmol) in CF3CH2OH (15 mL) was added dropwise
over 24 h at room temperature. The mixture was further stirred for 6 days. After solvents were
removed in vacuo, the residue was purified by silica gel flash column chromatography (CH2Cl2/
EtOH = 20:1) to afford 8 (259 mg, 60%). 1H NMR (400 MHz, CDCl3):δ 8.56–8.53 (m, 1H), 8.31–
8.29 (m, 1H), 8.25–8.22 (m, 1H), 7.72–7.68 (m, 1H), 7.56–7.50 (m, 2H), 7.19–7.17 (m, 1H), 6.80–
6.39 (m, 1H), 6.30 (m, 1H), 6.28–6.25 (m, 1H), 3.72–3.40 (m, 12H), 3.13–3.07 (m, 2H), 2.89 (s, 6H),
2.75–1.30 (m, 7H). 13C NMR (100 MHz, CDCl3):δ 174.5, 173.8, 157.8, 157.5, 156.49, 156.47,
151.97, 151.93, 134.8, 134.4, 130.5, 130.4, 129.8, 129.58, 129.55, 129.4, 129.3, 128.16, 128.13,
123.1, 118.8, 118.7, 115.2, 115.1, 70.4, 70.3, 70.2, 70.1, 69.3, 69.2, 62.8, 59.2, 54.0, 50.4, 45.3, 42.9,
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42.8, 39.4, 39.2, 39.1, 38.1, 33.0, 32.2, 28.0, 27.5, 27.4, 25.5. HRMS: calcd for C27H38N5O6S
(MH+) 560.2537, found 560.2543.

11. Snider BB, Lin H. Synth Commun 1998;28:1913.
12. Compound 9. A mixture of compound 8 (136 mg, 0.24 mmol) and 4-methylphenol (39.4 mg, 0.36

mmol) in CF3COOH (1 mL)-CH2Cl2 (1 mL) was stirred for 24 h at room temperature. After solvents
were removed in vacuo, residue was dissolved in CH2Cl2 and was washed with saturated
NaHCO3. The aqueous layer was extracted with CH2Cl2. Usual workup and purification by silica
gel flash column chromatography (CH2Cl2/MeOH = 30:1) afforded 9 (88 mg, 54%). 1H NMR (400
MHz, CDCl3):δ 8.54 (d, J = 8.8 Hz, 1H), 8.30–8.27 (m, 1H), 8.24–8.20 (m, 1H), 7.55–7.49 (m, 2H),
7.17 (d, J = 7.2 Hz, 1H), 7.06 (s, 1H), 6.99–6.93 (m, 1H), 6.78–6.75 (m, 1H + 1H × 1/2), 6.65 (m,
1H × 1/2), 6.45 (s, 1H), 6.36 (brs, 1H × 1/2), 6.20 (brs, 1H × 1/2), 4.96 (s, 1H × 1/2), 4.91 (s, 1H ×
1/2), 3.62–3.42 (m, 12H), 3.09–3.04 (m, 3H), 2.88 (s, 6H), 2.70–1.30 (m, 8H), 2.26 (s, 3H × 1/2),
2.23 (s, 3H × 1/2). HRMS: calcd for C34H46N5O7S (MH+) 668.3112, found 668.3115.

13. GlyTyr labeled with 8. HRMS: calcd for C38H51N7O10S (MH+) 798.3491, found 798.3495.
AlaTyrAla labeled with 8. HRMS: calcd for C42H58N8O11S (MH+) 883.4018, found 883.4015.

14. Lysozyme labeled with 8. ESI-MS: 14865 (mono-addition product); unmodified 14306.
15. Myoglobin labeled with 8. ESI-MS: 17512 (mono-addition product); unmodified 16953. Modification

of myoglobin, which lacks surface-accessible tyrosine,8,9b may have occurred when the protein was
denatured during the 4-day reaction time. We previously showed that myoglobin was not modified
with the cyclic imine derivative shown in Scheme 1 in aqueous buffer, pH 7.0 at 37°C for 48 h.7
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Figure 1.
Analysis of proteins modified with 8 after separation by gel electrophoresis. Lane a, protein
standard marker; b, lysozyme; c, chymotrypsinogen (see text); d, myoglobin; e, carbonic
anhydrase; f, cytochrome C. (A) Analysis of fluorescence of dansyl group attached to proteins
under UV 312 nm. (B) Analysis of proteins by Coomassie staining.
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Scheme 1.
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Scheme 2.
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Scheme 3.
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