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The Escherichia coli DNA damage-inducible protein DinG, a
member of the superfamily 2 DNA helicases, has been impli-
cated in the nucleotide excision repair and recombinational
DNA repair pathways. Combining UV-visible absorption, EPR,
and enzyme activity measurements, we demonstrate here that
E. coliDinG contains a redox-active [4Fe-4S] cluster with amid-
point redox potential (Em) of �390 � 23 mV (pH 8.0) and that
reduction of the [4Fe-4S] cluster reversibly switches off the
DinG helicase activity. Unlike the [4Fe-4S] cluster in E. coli
dihydroxyacid dehydratase, the DinG [4Fe-4S] cluster is stable,
and the enzyme remains fully active after exposure to 100-fold
excess of hydrogen peroxide, indicating that DinG could be
functional under oxidative stress conditions. However, the
DinG [4Fe-4S] cluster can be efficiently modified by nitric
oxide (NO), forming the DinG-bound dinitrosyl iron complex
with the concomitant inactivation of helicase activity in vitro
and in vivo. Reassembly of the [4Fe-4S] cluster in NO-modified
DinG restores helicase activity, indicating that the iron-sulfur
cluster in DinG is the primary target of NO cytotoxicity. The
results led us to propose that the iron-sulfur cluster inDinGmay
act as a sensor of intracellular redox potential to modulate its
helicase activity and that modification of the iron-sulfur cluster
in DinG and likely in other DNA repair enzymes by NO may
contribute to NO-mediated genomic instability.

TheDNAdamage-inducible protein DinGwas initially iden-
tified from genetic screening in response to DNA-damaging
agents in Escherichia coli (1–3). The sequence analysis pre-
dicted that E. coli DinG is a member of the superfamily 2 DNA
helicases (4). The DNA helicase activity of E. coli DinG has
since been demonstrated (5). Recent studies further showed
that DinG can also unwind DNA-RNA duplexes, D-loops and
R-loops, suggesting that DinG may have an important role in
recombinationalDNA repair and resumption of replication fol-
lowing DNA damage (6). Nevertheless, deletion of the gene
dinG has only amild effect onE. coli cell viability and sensitivity
to UV radiation (5), likely because of redundant helicase activ-
ities in cells.

E. coli DinG is closely related to two human DNA helicases,
XPD and BACH1 (7–12). XPD is a member of both the tran-
scription initiation complex TFIIH of RNA polymerase II and
the nucleotide excision repair pathway (7, 12). Inherited muta-
tions in XPD have been linked to at least three human diseases:
xeroderma pigmentosum, Cockayne syndrome, and tricho-
thiodystrophy (7). BACH1 has been shown to physically inter-
act with the BRCT motifs of BRCA1 (breast cancer 1 protein)
(13). Inherited mutations in BACH1 have been implicated in
deficiency of the cross-link repair pathway in Fanconi anemia
patients (14). Surprisingly, recent studies have revealed that
XPD homologs from Sulfolobus acidocaldarius (15) and Ferro-
plasmaacidarmanus (16) contain an iron-sulfur cluster located
between the Walker A and B motifs in the N terminus of the
protein and that the iron-sulfur cluster is essential for helicase
activity (15, 16). Mutations that affect iron-sulfur cluster bind-
ing or stability in XPD abolish helicase activity (15). X-ray crys-
tallographic studies further revealed that the [4Fe-4S] cluster is
located in the vicinity of the DNA-binding site of XPD (9–11).
Although iron-sulfur clusters have been discovered in a large
number of proteins that have interactions with DNA or RNA
(17–29), the specific functions of the iron-sulfur clusters in
these proteins mostly remain elusive.
E. coli DinG has �48% identity with human XPD in the

regions of the helicase motif (5). Although DinG does not pos-
sess the corresponding conserved cysteine residues (Cys-92,
Cys-113, Cys-128, and Cys-164, Thermoplasma acidophilum
numbering) in XPD that host the [4Fe-4S] cluster (9–11),
sequence analysis of a subset of the DinG homologs from
diverse bacterial species revealed four conserved cysteine resi-
dues (Cys-120, Cys-194, Cys-199, and Cys-205, E. coli number-
ing) that may provide ligands for a putative iron-sulfur cluster
(6, 15). In this study, we report that purified E. coli DinG con-
tains a redox-active [4Fe-4S] cluster with a midpoint redox
potential (Em) of �390 � 23 mV (pH 8.0) and that reduction of
the [4Fe-4S] cluster in DinG reversibly switches off helicase
activity. Importantly, unlike the E. coli dihydroxyacid dehy-
dratase [4Fe-4S] cluster (30), the DinG [4Fe-4S] cluster is sta-
ble, and the enzyme remains fully active after exposure to 100-
fold excess of hydrogen peroxide, indicating thatDinG could be
functional under oxidative stress conditions. In contrast, nitric
oxide (NO), a physiological free radical produced in activated
macrophages and other mammalian cells (31–34), can effi-
ciently modify the DinG [4Fe-4S] cluster, forming the DinG-
bound dinitrosyl iron complex (DNIC)2 with the concomitant
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inactivation of helicase activity in vitro and in vivo. Combined
with the previous results that NO can modify the DNA repair
enzyme endonuclease III [4Fe-4S] cluster and inactivate the
enzyme activity (35), we propose that modification of the iron-
sulfur clusters in XPD/DinG, endonuclease III, and possibly
other DNA repair enzymes by NO may contribute to the NO-
mediated initiation of the carcinogenic process and genomic
instability in mammalian cells (36, 37).

EXPERIMENTAL PROCEDURES

Protein Preparation—TheDNA fragment encoding theDNA
damage-inducible protein DinG was amplified from E. coli
genomic DNA using PCR. Two primers, DinG-1 (5�-GGTTT-
TCCCATGGCATTAACCGCC-3�) and DinG-2 (5�-CAT-
CATTAAAGCTTCCGACGGCGT-3�), were used for PCR
amplification. The PCR product was digested with HindIII and
NcoI and ligated into expression vector pET28b� to produce
pTDinG. The cloned DNA fragment was confirmed by direct
sequencing using the T7 primer (Genomic Facility, Louisiana
State University). Recombinant DinG was overproduced in
E. coli BL21 strain in Terrific broth and purified using a nickel-
agarose column, followed by a HiTrap desalting column. The
purity of purifiedDinGwas�95% judging from the SDS-PAGE
analysis followed by Coomassie blue staining. The precise
molecular weight of recombinant DinG was confirmed using
electrospray ionization-mass spectrometry (ChemistryDepart-
ment, Louisiana State University). The protein concentration
of purifiedDinGwasmeasured from the absorption peak at 280
nm using an extinction coefficient of 79.0 mM�1 cm�1. The
total iron content in protein samples was determined using an
iron indicator, FerroZine (38). The total sulfide content in pro-
tein samples was determined according to themethod of Siegel
(39) as described previously (40). Site-directedmutagenesiswas
carried out using the QuikChange kit from Stratagene. Muta-
tions in the gene dinG were confirmed by direct sequencing
(Genomic Facility, Louisiana State University). The DinG
mutant proteins were expressed and purified following the
same purification procedures as described for wild-type DinG.
Recombinant dihydroxyacid dehydratase (IlvD) (30) from
E. coli was prepared as described (41). The specific enzyme
activity of dihydroxyacid dehydratase was measured using the
substrate DL-2,3-dihydroxyisovalerate, and the reaction prod-
uct (keto acids) was monitored at 240 nm using an extinction
coefficient of 0.19 mM�1 cm�1 (30). DL-2,3-dihydroxyisovaler-
atewas synthesized according to themethod of Cioffi et al. (42).
Helicase Activity Assay—The helicase activity of DinG was

measured following the procedure described by Voloshin et
al. (5) with slight modifications. Briefly, an oligonucleotide
(5�-CCGTAACACTGAGTTTCGTCACCAGTACAAACTA-
CAACGCCTGTAGCATTCCACA-3�) was labeled with
[�-32P]ATP using polynucleotide kinase (New England Bio-
labs). The 32P-labeled oligonucleotide (5 �M) was annealed to
M13mp18 single-stranded DNA (New England Biolabs) in
annealing buffer containing Tris (50 mM, pH 7.5), NaCl (50
mM), and MgCl2 (10 mM). The DNA solution was heated at
85 °C for 5 min and cooled to room temperature over 3 h. The
annealed DNA duplex was purified using a gel filtration spin
column (CHROMASPIN-400, Clontech) pre-equilibratedwith

annealing buffer. The annealed substrate (at a final concentra-
tion of 2 nM) was incubated with DinG in 20 �l of reaction
solution containing Tris (50 mM, pH 8.0), NaCl (100 mM),
MgCl2 (5 mM), dithiothreitol (2 mM), glycerol (5%), and ATP (2
mM) at 30 °C for 10 min. For each experiment, two controls in
which the substratewas either denatured by heating at 85 °C for
5 min or incubated at 30 °C for 10 min without any enzymes
were included. The reactions were terminated by adding 4�l of
stop solution (containing 6% SDS, 60 mM EDTA, and 0.3%
bromphenol blue). The reaction products (single-stranded
DNA) were separated on 1% Tris acetate/EDTA-agarose gel,
transferred to Nytran transfer membranes (0.45 �m; What-
man), and exposed to x-ray films overnight for quantification.
Redox Titration of the DinG Iron-Sulfur Cluster—A specially

designed anaerobic cuvette was used for redox titrations as
described by Dutton (43). Before titration, solution containing
DinG (20 �M) and safranin O (1 �M) was equilibrated with
ultrapure argon gas for 50 min at room temperature. During
titration, argon flowwasmaintainedwith gentle stirring using a
small magnet on the bottom of the cuvette. The redox potential
of the solutionwas adjusted by adding a small amount of freshly
prepared sodium dithionite using a 10-�l gas-tight microsy-
ringe (Hamilton, Reno, NV). The redox potential was moni-
tored directly with a redox microelectrode (Microelectrodes
Inc., Bedford, NH). Freshly prepared ZoBell solution contain-
ing potassium ferricyanide (5 mM) and potassium ferricyanide
(5 mM) dissolved in Tris buffer (20 mM, pH 8.0) and NaCl (500
mM)was used as a standard (Eh � 238mV) for calibration of the
redox microelectrode.
NO Exposure of DinG and Reassembly of the Iron-Sulfur

Cluster in the Protein—Purified DinG (30 �M) was incubated
with the NO-releasing reagent diethylamine NONOate (0–0.5
mM; Cayman Chemicals) in buffer containing Tris (20 mM, pH
7.5) and NaCl (200 mM) anaerobically at room temperature.
Diethylamine NONOate releases 1.5 eq of NO/mol of parent
compound with a half-life time of 16 min at room temperature
and pH 7.5. After a 20-min incubation, the protein was repuri-
fied by passage through a HiTrap desalting column to remove
residual diethylamine NONOate. For in vivo NO exposure,
E. coli cells containing recombinantDinGwere subjected to the
Silastic tubing NO delivery system (44) as described previously
(41). The length of the Silastic tubing (0.025 (inner diameter)�
0.047 (outer diameter) inches) immersed in the cell culture was
adjusted to such that �100 nM NO/s was released to the cell
culture in a sealed flask under anaerobic conditions. The cho-
senNO release rate was comparable with reportedNOproduc-
tion in activated polymorphonuclear leukocytes (34) or in
RAW 264.7 macrophages co-cultured with arginase-deficient
Helicobacter pylori (32). After the E. coli cells were subjected to
NO exposure for 0, 1, 2, 4, and 10 min anaerobically, recombi-
nant DinG was purified from cells following the procedures
described above.
For reassembly of iron-sulfur clusters,NO-exposedDinG (10

�M) was incubated with freshly prepared Fe(NH4)2(SO4)2 (80
�M), L-cysteine (0.5 mM), and cysteine desulfurase IscS (1 �M)
(45) in the presence of dithiothreitol (2 mM) anaerobically at
37 °C for 20min as described (45), followed by repurification of
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DinG from the incubation solution. Repurified DinG was then
subjected to EPR and helicase activity measurements.
EPR Measurements—The EPR spectra were recorded at

X-band on a Bruker ESR-300 spectrometer using an Oxford
Instruments ESR-9 flow cryostat. The routine EPR conditions
were as follows: microwave frequency, 9.45 GHz; microwave
power, 10 milliwatts; modulation frequency, 100 kHz; modula-
tion amplitude, 2.0 milliteslas; sample temperature, 20 K; and
receive gain, 1.0 � 105.

RESULTS

E. coli DinG Contains an Iron-Sulfur Cluster Essential for
Protein Stability and Helicase Activity—Fig. 1A shows the UV-
visible absorption spectrum of purified E. coliDinG. Themajor
peak at �403 nm represents a typical absorption of iron-sulfur
clusters in proteins. The overall spectrum of purified DinGwas
similar to that of the purified XPD homolog [4Fe-4S] cluster
from S. acidocaldarius (15) and the endonuclease III [4Fe-4S]
cluster from E. coli (35). The total iron and sulfur content anal-
yses of purified DinG showed that each DinG monomer con-
tained �3.1 � 0.5 iron and 2.8 � 0.8 sulfide (n � 3), indicating
that DinG contains one [4Fe-4S] cluster permonomer. Purified
DinG was further analyzed for its DNA helicase activity. Fol-
lowing the procedures described by Voloshin et al. (5), we dem-
onstrated that as-purified DinG was able to unwind double-
stranded DNA in an ATP-dependent reaction (Fig. 1B).

E. coliDinG has 11 cysteine residues; four of them (Cys-120,
Cys-194, Cys-199, and Cys-205) are conserved among a subset
of DinG proteins from diverse bacteria (6, 15). To test whether
the conserved cysteine residues are required for iron-sulfur
cluster binding, we substituted each of these four cysteine res-
idues in DinG with serine using site-directed mutagenesis as
described under “Experimental Procedures.” All four mutant
proteins (C120S, C194S, C199S, and C205S), purified using the
same procedure as wild-type DinG, had no absorption peak at
403 nm (Fig. 2A). The SDS-PAGE analyses revealed that unlike
wild-type DinG, the DinG mutants expressed in E. coli cells
were largely degraded (Fig. 2B) and had no detectable helicase

activity (Fig. 2C). Thus, these conserved cysteine residues
appear to be essential for the iron-sulfur cluster binding in
DinG and protein stability.
Redox State of the Iron-Sulfur Cluster in DinG Controls Heli-

case Activity—Although the iron-sulfur cluster in wild-type
DinG was stable under aerobic conditions, addition of sodium
dithionite quickly bleached the absorption peak at 403 nm (Fig.
3A). Nevertheless, when reducedDinGwas reoxidized by expo-
sure to air or by the oxidant potassium ferricyanide, the absorp-
tion peak at 403 nm of DinG reappeared (Fig. 3A), suggesting
that the iron-sulfur cluster inDinGcanbe reversibly reduced by
sodium dithionite.
The absorption peak at 403 nm was then used to determine

the Em of the DinG iron-sulfur cluster. Purified DinG was dis-
solved in buffer containing the redox mediator safranin O
under anaerobic conditions. The redox potential of the solution
was adjusted by adding freshly prepared sodium dithionite and
directlymonitored using amicroelectrode as described byDut-
ton (43). The UV-visible absorption spectra were taken at dif-
ferent redox potentials, and the absorption peak at 403 nm of
the DinG [4Fe-4S] cluster was plotted as a function of the
poised redox potentials (Fig. 3B). The data from three experi-
ments were fitted to a Nernst equation (n � 1) with a midpoint
redox potential of �390 � 23 mV, a value close to that of the
intracellular redox potential in E. coli (17).

FIGURE 1. Purified E. coli DinG contains an iron-sulfur cluster. A, UV-visible
absorption spectrum of purified E. coli DinG. The protein concentration was
�10 �M. B, the helicase activity of purified E. coli DinG. Purified DinG (at a final
concentration of 0 –200 nM) was incubated with the 32P-radioactively labeled
substrate in the presence of ATP (2 mM) at 30 °C for 10 min. The reaction
product (single-stranded DNA) was separated by agarose gel (1%) electro-
phoresis as described under “Experimental Procedures.” In lane H, the sample
was heated at 85 °C for 5 min. The concentration of DinG in the reaction
solution is indicated at the top of each lane.

FIGURE 2. The conserved cysteine residues in DinG are required for iron-
sulfur cluster binding, protein stability, and helicase activity. The DinG
mutants (C120S, C194S, C199S, and C205S) were constructed and purified as
described under “Experimental Procedures.” A, UV-visible absorption spectra
of purified DinG mutants. The protein concentrations were �3 �M. B, SDS-
PAGE analysis of purified wild-type DinG and DinG mutants. The same
amount of cells containing either wild-type DinG or the DinG mutants was
used for protein purification. Equal amounts of purified proteins were ana-
lyzed on the SDS-polyacrylamide gel. Lanes 1–5, wild-type DinG and mutants
C120S, C194S, C199S, and C205S, respectively. C, the helicase activity of puri-
fied wild-type DinG and the DinG mutants. Purified proteins (200 nM) were
incubated with the 32P-radioactively labeled substrate in the presence of ATP
(2 mM) at 30 °C for 10 min. The reaction product (single-stranded DNA) was
separated by agarose gel (1%) electrophoresis as described under “Experi-
mental Procedures.” Lane H, sample heated at 85 °C for 5 min; lane 0, no
enzyme added; lanes 1–5, wild-type DinG and mutants C120S, C194S, C199S,
and C205S, respectively.
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EPR spectroscopywas further used to explore the redox state
of the DinG iron-sulfur cluster. As shown in Fig. 3C, purified
DinG had no EPR signal at around the g � 2.0 region under the
experimental conditions (spectrum 1). However, when freshly
prepared sodium dithionite was added to purified DinG, a
rhombic EPR signal with gx � 1.918, gy � 1.944, and gz � 2.005,
indicative of a reduced [4Fe-4S] cluster, appeared (spectrum 2).
Spin quantification revealed that there was �0.8–0.9 spin per
each iron-sulfur cluster in the dithionite-reduced DinG. The
observed g-values were comparable with those of the reduced
[4Fe-4S]� cluster observed in other proteins (46). The relatively
small 	g could reflect the unique property of the [4Fe-4S] clus-
ter in DinG. The rhombic EPR signal was completely elimi-
nated when dithionite-reduced DinG was reoxidized by ex-
posure to air or by potassium ferricyanide (spectrum 3),
confirming that the DinG [4Fe-4S] cluster can be reversibly

reduced by sodium dithionite. It is
worth mentioning that no EPR sig-
nal at g� 2.018 of the [3Fe-4S] clus-
ter (47) was observed when purified
DinG was treated with potassium
ferricyanide (data not shown), sug-
gesting that the DinG [4Fe-4S] clus-
ter is resistant to oxidation.
Because the [4Fe-4S] cluster in

the archaeal XPD homologs is
located in the vicinity of the DNA-
binding site of the enzyme (9–11),
we speculated that the redox state of
the iron-sulfur cluster in DinG may
modulate helicase activity. To test
this idea, we compared the helicase
activity of DinGwhen its iron-sulfur
cluster was either reduced or oxi-
dized. Fig. 3D shows that the heli-
case activity of DinG was greatly
diminished when the iron-sulfur
cluster was reduced with dithionite
and largely restored once the
reduced iron-sulfur cluster was
reoxidized, demonstrating that the
reduction of the iron-sulfur cluster
in DinG can reversibly switch off
helicase activity at least in vitro.
Iron-Sulfur Cluster in DinG Is

Resistant to Hydrogen Peroxide—As
a DNA damage-inducible protein, it
is somewhat surprising that DinG
contains a [4Fe-4S] cluster that is
presumably susceptible to reactive
oxygen species (30). To determine
the sensitivity of the DinG [4Fe-4S]
cluster to reactive oxygen species,
we incubated purified DinG with
100-fold excess of H2O2 at 25 °C for
30 min and found that the absorp-
tion peak at 403 nm of the DinG
[4Fe-4S] cluster (Fig. 4A) and heli-

case activity (Fig. 4C) remained essentially unchanged before
and after incubation. In contrast, when the purified E. coli dihy-
droxyacid dehydratase [4Fe-4S] cluster (30) was incubatedwith
50-fold excess ofH2O2 at 25 °C, both the absorption peak at 415
nm of the dihydroxyacid dehydratase [4Fe-4S] cluster (Fig. 4B)
and its enzyme activity (Fig. 4D) were abolished as reported
previously (30). Thus, unlike the dihydroxyacid dehydratase
[4Fe-4S] cluster, the DinG [4Fe-4S] cluster is stable, and its
helicase activity remains fully active after exposure to 100-fold
excess of hydrogen peroxide.
Iron-Sulfur Cluster in DinG Can Be Efficiently Modified by

NO—NO is a physiological free radical that acts as a signal
molecule (31) as well as a powerful weapon to kill pathogenic
bacteria and tumor cells (32–34). Chronic exposure to NO has
also been attributed to the initiation of the carcinogenic process
and genomic instability (36, 37). Among cellular components,
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reoxidized with potassium ferricyanide (2 mM).
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iron-sulfur proteins are considered the primary targets of NO
cytotoxicity (41, 48). In vitro and in vivo studies have shown that
NO can readily modify iron-sulfur clusters in proteins, forming
the protein-bound DNIC (35, 41, 47, 49–52). To test whether
the DinG [4Fe-4S] cluster can also be modified by NO, purified
DinG was exposed to NO using the NO-releasing reagent
diethylamine NONOate under anaerobic conditions. Fig. 5A
shows that when purified DinG was incubated with an increas-
ing amount of diethylamine NONOate (0–500 �M), the DinG
[4Fe-4S] cluster was gradually modified by NO, forming the
DinG-bound DNIC with a typical EPR signal at g � 2.04 as
previously reported for other iron-sulfur proteins (35, 47,
49–52). Parallel helicase activity measurements showed that
DinG was progressively inactivated by NO exposure (Fig. 5B).
Thus, NO can effectively modify the DinG [4Fe-4S] cluster and
inactivate helicase activity in vitro.
To further explore the sensitivity of the DinG [4Fe-4S] clus-

ter to NO in vivo, we exposed E. coli cells containing recombi-
nant DinG to pureNO gas using the Silastic tubingNOdelivery
system (44) as described previously (41). A releasing rate of 100
nM NO/s was chosen to emulate NO production in activated
polymorphonuclear leukocytes (34) or macrophages (32).
Recombinant DinG was then purified from E. coli cells after
exposure with different amounts of NO. EPR measurements of
purified DinG showed that the DinG-bound DNIC was gradually
increased with the concomitant inactivation of helicase activity
when the E. coli cells were exposed to increasing amounts of NO
(data not shown). About 4 min of NO exposure at a rate of 100
nM NO/s was sufficient to completely modify the recombinant
DinG [4Fe-4S] cluster and inactivate helicase activity in E. coli
cells. These results suggested that the DinG [4Fe-4S] cluster
can be efficientlymodifiedwith the concomitant inactivation of
its helicase activity in E. coli cells by NO.
We then attempted to reassemble the iron-sulfur cluster in

NO-modified DinG using the iron-sulfur cluster repair system
(L-cysteine, cysteine desulfurase IscS, ferrous iron, and dithio-

threitol) in vitro as described previ-
ously (35). After incubationwith the
repair system at 37 °C for 30 min,
the iron-sulfur cluster was reassem-
bled in NO-modified DinG (Fig.
6A), the DinG-bound DNIC was
decomposed (Fig. 6B), and the heli-
case activity was largely restored
(Fig. 6C). Thus, the iron-sulfur clus-
ter in DinG, like other iron-sulfur
proteins (41), could be the primary
target of NO cytotoxicity.

DISCUSSION

In this study, we have reported
that the E. coliDNA damage-induc-
ible protein DinG helicase contains
a redox-active [4Fe-4S] cluster with
Em of approximately�390� 23mV
(pH 8.0) and that reduction of
the iron-sulfur cluster reversibly
switches off the helicase activity of

0

0.2

0.4

0.6

0.8

1.0

300 400 500 600 700

0min
5min
10min
15min
20min
25min
30min

Wavelength (nm)

300 400 500 600 700

0min
5min
10min
15min
20min
25min
30min

Wavelength (nm)

O
.D
.

415 nm403 nm

0

0.2

0.4

0.6

0.8

1.0

0

20

40

60

80

100

0 5 10 15 20 25 30

R
el
at
iv
e
Ilv
D
ac
tiv
ity
(%
)H 0 1 2 3 4 5

*

*

O
.D
.

FIGURE 4. The iron-sulfur cluster in DinG is resistant to hydrogen per-
oxide. A, effect of H2O2 on the DinG [4Fe-4S] cluster. Purified DinG (10 �M)
was incubated with H2O2 (1 mM) at 25 °C. UV-visible spectra were taken
every 5 min after addition of H2O2 for 30 min. B, effect of H2O2 on the
dihydroxyacid dehydratase [4Fe-4S] cluster. Purified E. coli dihydroxyacid
dehydratase (20 �M) was incubated with hydrogen peroxide (1 mM) at
25 °C. UV-visible spectra were taken every 5 min after addition of H2O2 for
30 min. C, effect of H2O2 on the DinG helicase activity. After incubation
with H2O2 for the indicated time, DinG (at a final concentration of 100 nM)
was used for the helicase activity assay. Lane H, sample heated at 85 °C for
5 min; lane 0, no enzyme added; lanes 1–5, purified DinG after incubation
with H2O2 for 0, 5, 10, 20, and 30 min, respectively. The reaction product
(single-stranded DNA) was separated by agarose gel (1%) electrophoresis
as described under “Experimental Procedures.” D, effect of H2O2 on the
enzyme activity of dihydroxyacid dehydratase. The relative enzyme activ-
ity of dihydroxyacid dehydratase after incubation with H2O2 (1 mM) was
measured as described under “Experimental Procedures” and plotted as a
function of incubation time with H2O2.
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FIGURE 5. The DinG iron-sulfur cluster is sensitive to NO. A, modification of the DinG [4Fe-4S] cluster by
NO. Purified DinG (30 �M) was incubated with different amounts of diethylamine NONOate in buffer
containing Tris (20 mM, pH 7.5) and NaCl (200 mM) at room temperature under anaerobic conditions. After
a 20-min incubation, protein was repurified by passage through a HiTrap desalting column. Spectra 1–5,
purified DinG incubated with 0, 50, 100, 200, and 500 �M NONOate under anaerobic conditions. The
protein concentrations of repurified DinG were �4 �M. mT, milliteslas. B, inactivation of DinG helicase
activity by NO. After incubation with different amounts of NONOate, repurified DinG (at a final concen-
tration of 100 nM) was used for the helicase activity assay. Lane H, sample heated at 85 °C for 5 min; lane 0,
no enzyme added; lanes 1–5, repurified DinG after incubation with 0, 50, 100, 200, and 500 �M NONOate.
The reaction product (single-stranded DNA) was separated by agarose gel (1%) electrophoresis as
described under “Experimental Procedures.”
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DinG. Although the iron-sulfur cluster in DinG is stable in the
presence of oxygen or hydrogen peroxide, it can be efficiently
modified by NO, forming the DinG-boundDNICwith the con-
comitant inactivation of helicase activity in vitro and in vivo.
The results led us to propose that DinG helicase activity can be
modulated by intracellular redox potential and by NO via its
iron-sulfur cluster.
In the past decade, a large number of iron-sulfur proteins

that have specific interactions with DNA or RNA have been
reported. According to their functions, these iron-sulfur pro-
teins may be divided into two groups. The first group includes
the transcription or translation regulators that directly bind to
DNA or RNA. Some well characterized examples are the redox
transcription factor SoxR [2Fe-2S] cluster (17, 18), the anaero-
bic growth factor FNR (Fumarate and nitrate reductase regula-
tor) [4Fe-4S] cluster (19), the repressor IscR [2Fe-2S] cluster
that regulates iron-sulfur cluster biosynthesis (20), and the
IRP-1 (iron regulatory protein-1) [4Fe-4S] cluster that controls
the post-translational control of intracellular iron contents in
mammalian cells (21). In this group of proteins, iron-sulfur
clusters generally act as sensors of specific signals andmodulate
the subtle interactions between the protein and DNA or RNA.
The second group includes the iron-sulfur enzymes that chem-

ically modify RNA or DNA mole-
cules. The ribosomal RNA methyl-
transferase (the RumA [4Fe-4S]
cluster) (22) and the bifunctional
radical S-adenosylmethionine en-
zyme MiaB [4Fe-4S] cluster (23)
are two examples of RNA-modify-
ing enzymes.More recently, the p58
subunit of humanDNAprimase has
been shown to contain a [4Fe-4S]
cluster (28, 29). The iron-sulfur
enzymes that chemically modify
DNA are mostly the DNA repair
enzymes such as the endonuclease
III [4Fe-4S] cluster (24, 25), the
MutY [4Fe-4S] cluster (26), the fam-
ily 4 uracil-DNA glycosylase [4Fe-
4S] cluster (27), the DNA helicase
XPD [4Fe-4S] clusters (9–11), and
the E. coli DinG helicase [4Fe-4S]
cluster (Refs. 5 and 6 and this study).
Evidently, the function of iron-sul-
fur clusters in these diverse DNA/
RNA-modifying enzymes could not
be readily generalized. Here, we
have shown that the [4Fe-4S] cluster
in DinG is stable in the presence of
oxygen and hydrogen peroxide (Fig.
4), a feature that could be important
for helicase activity in repairing
DNAdamage under oxidative stress
conditions. More importantly, we
have demonstrated that the [4Fe-
4S] cluster in DinG is redox-active
with a midpoint redox potential of

�390 � 23 mV (pH 8.0) and that reduction of the [4Fe-4S]
cluster in DinG reversibly switches off helicase activity (Fig. 3).
We postulate that reduction of the [4Fe-4S] cluster in DinG,
like that of the redox transcription factor SoxR [2Fe-2S] cluster
(17), may modulate the overall structure of the catalytic center
and thus inactivate helicase activity. It should be pointed out
that DinG homologs in some other bacteria do not have the
conserved cysteine residues and therefore no iron-sulfur clus-
ters (9). Whether there are other means to regulate the activity
of these DinG helicases remains to be investigated.
The observed Em of the DinG [4Fe-4S] cluster (�390 � 23

mV at pH 8.0) (Fig. 3) is close to that of the intracellular redox
potential in E. coli (17). Several attempts were made to observe
the redox state of the recombinant DinG [4Fe-4S] cluster in
E. coli cells. Unfortunately, no EPR signal of the reduced DinG
[4Fe-4S] cluster was observed in vivo (data not shown), likely
because of insufficient amounts of recombinant DinG
expressed inE. coli cells. It has been reported thatDNAbinding
shifts the Em of the endonuclease III [4Fe-4S] cluster toward
oxidation, converting the redox-inactive endonuclease III [4Fe-
4S] cluster to a typical high-potential [4Fe-4S] protein (25).
Here, we have found that unlike the endonuclease III [4Fe-4S]
cluster, the DinG [4Fe-4S] cluster is redox-active even without

FIGURE 6. Reactivation of NO-modified DinG by reassembly of iron-sulfur clusters. Purified DinG (30 �M)
was exposed to NO (0.5 mM NONOate) under anaerobic conditions, followed by repair using the iron-sulfur
cluster repair system as described under “Experimental Procedures.” A, UV-visible absorption spectra of DinG.
Spectrum 1, purified DinG before NO exposure (DinG); spectrum 2, purified DinG after NO exposure (DinG-NO);
spectrum 3, NO-exposed DinG repaired with the iron-sulfur cluster repair system (DinG-NO repaired). The pro-
tein concentrations of DinG were �5 �M. B, EPR spectra of DinG. Spectrum 1, purified DinG before NO exposure;
spectrum 2, purified DinG after NO exposure; spectrum 3, NO-exposed DinG repaired with the iron-sulfur cluster
assembly system. The protein concentrations of DinG were �5 �M. mT, milliteslas. C, reversible inactivation of
DinG by NO. Two concentrations of DinG (50 and 100 nM) were used for the helicase activity assay. In lane H, the
sample was heated at 85 °C for 5 min. In lane 0, no enzyme was added. The reaction product (single-stranded
DNA) was separated by agarose gel (1%) electrophoresis as described under “Experimental Procedures.”
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any DNA binding (Fig. 3). Whether DNA binding will change
the redox property of the DinG [4Fe-4S] cluster remains to be
investigated. Nevertheless, on the basis of the results presented
in this study, we propose that the DinG [4Fe-4S] cluster may
be partially oxidized in E. coli cells under normal growth
conditions. When cells are subjected to oxidative stresses,
the reduced [4Fe-4S] cluster is oxidized, and DinG becomes
fully active to repair the inflicted DNA damage and resume
DNA replication.
NO is a physiological free radical involved in signal transduc-

tion in neuronal and cardiovascular systems (31). Excessive
production of NO in activated macrophages and other mam-
malian cells can also act as a powerful weapon to kill pathogenic
bacteria and tumor cells (32, 33). In some studies, chronic NO
exposure has been linked to the carcinogenic process and
genomic instability (36, 37). Nevertheless, the etiology of NO
cytotoxicity has not been fully understood. Here, we have
reported that the DinG [4Fe-4S] cluster can bemodified by NO
forming the DinG-bound DNIC with the concomitant inacti-
vation of helicase activity in vitro and in vivo. Because genetic
defects in the human XPD gene (ERCC2) have been associated
with the increase of cancer incidence and aging phenotypes (7,
9, 10, 15), it is plausible that chronic NO exposure may inacti-
vate the iron-sulfur cluster-containing DNA repair enzymes
such as DinG/XPD and contribute to the initiation of the car-
cinogenic process and genomic instability (36, 37).
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