
Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 15518–15521, December 1996
Economic Sciences

Nonatomic games on Loeb spaces

M. ALI KHAN† AND YENENG SUN‡§
†Department of Economics, The Johns Hopkins University, Baltimore, MD 21218; ‡Department of Mathematics, National University of Singapore, Singapore
119260; and §Cowles Foundation, Yale University, New Haven, CT 06520

Communicated by Lionel W. McKenzie, University of Rochester, Rochester, NY, October 7, 1996 (received for review April 19, 1996)

ABSTRACT In the setting of noncooperative game theory,
strategic negligibility of individual agents, or diffuseness of
information, has been modeled as a nonatomic measure space,
typically the unit interval endowed with Lebesgue measure.
However, recent work has shown that with uncountable action
sets, for example the unit interval, there do not exist pure-
strategy Nash equilibria in such nonatomic games. In this
brief announcement, we show that there is a perfectly satis-
factory existence theory for nonatomic games provided this
nonatomicity is formulated on the basis of a particular class
of measure spaces, hyperfinite Loeb spaces. We also empha-
size other desirable properties of games on hyperfinite Loeb
spaces, and present a synthetic treatment, embracing both
large games as well as those with incomplete information.

Noncooperative game theory rests fundamentally on the no-
tion of a Nash equilibrium introduced in economic science in
ref. 1 and given a definitive formulation in refs. 2 and 3. In this
paper, we outline a theory of existence of pure-strategy Nash
equilibria based on a class of probability spaces with especially
desirable properties. Our work is intended as a contribution to
the mathematical theory of games, and, in particular, to the
analysis of social science phenomena in which ‘‘negligibility’’ of
agents andyor ‘‘diffuseness’’ of information is an essential and
substantive issue. In noncooperative game theory, canonical
illustrations of ideas based on a nonatomic continuum are
given in refs. 4–8, but they also arise naturally in many other
contexts, including modern macroeconomics (9, 10). The
connection between existence issues in noncooperative game
theory and competitive analysis is explicitly laid out in refs.
11–13.
Recent work has presented examples of games without

pure-strategy Nash equilibria. These examples all involve the
Lebesgue unit interval, and our interpretation of the difficul-
ties revolves around Lusin’s theorem. If agents in a ‘‘large’’
society are influenced by aggregate societal responses formal-
ized as a distribution or as an average over a common action
set, one cannot proceed without a measurability hypothesis on
the function cataloguing the individual responses. The prob-
lem then is that in the presence of a topological structure on
the space of players’ names, as in the Lebesgue unit interval,
Lusin’s theorem renders measurability as being tantamount to
near continuity and thus translates the demand for an equi-
librium into a simultaneous demand that the agents behave
almost continuously; or alternatively, for almost all players, the
response of one player must be related to that of those nearby.
This exogenous, but implicit, requirement that the agents
should cooperate and act almost continuously goes against the
very spirit of the behavioral notion underlying noncooperative
game theory; and even though obscured in situations with
finite action sets, it is a point of substantive, rather than merely
technical, significance. A similar argument underlies nonex-
istence difficulties in games where incomplete information is
modeled on the Lebesgue unit interval. One needs a class of

nonatomic probability spaces in which stringent ‘‘nearness’’
properties for names andyor information points are not auto-
matically invoked. It is the contention of this note that
hyperfinite nonatomic Loeb spaces (14) furnish just such a
class of probability spaces.
An alternative characterization of the work reported here is

oriented to researchers uneasy with idealized limit models if
they cannot be asymptotically implemented in a large but finite
setting. The counterexamples that we report leave open only
two logical possibilities: either the very nature of the phenom-
enon is such that there are no exact results even in the idealized
limit setting; or the idealized limit setting is not sharp enough
to capture some large finite phenomenon being modeled,
necessitating an alternative, more hospitable, limit setting. We
present what we consider to be compelling evidence for the
viability of such a limit setting, one that yields approximate
equilibria not only for the idealization (corollary to theorem 3
in ref. 6; ref. 15), but more importantly, for situations with a
large but finite number of players or information samples. The
potential of such a limit setting is well-understood in general
equilibrium theory (16–18), and we complement this investi-
gation in the direction of noncooperative game theory by a
systematic application of the analytical machinery developed
in refs. 19 and 20.
Finally, it needs to be made clear that the results that we

report are a testimony to the power of probabilistic and
measure-theoretic methods as envisaged originally in ref. 21
(p. 14)—we simply work with a class of standard measure
spaces with additional properties not shared by general ab-
stract measure spaces. The introduction of Radon measures
(22) or the restriction to perfect measures (23) to resolve
outstanding difficulties in probability theory represent obvious
analogues to our approach in other fields of inquiry.¶

Results

Our results are based on nonatomicmeasure spaces introduced
in ref. 14 and now commonly referred to as hyperfinite Loeb
measure spaces (see also refs. 18 and 24 and the comprehen-
sive treatment in ref. 16). Throughout this paper, (T, 7, n) will
denote a hyperfinite internal probability space and (T, L(7),
n̄) will denote its standardization—the Loeb space. We shall
assume that this Loeb space is atomless.
For our principal result, we shall work with an ,-fold

partition {Ti}i51, , where , is a positive integer and n̄i is a
probability measure on Ti given by n̄i(B) 5 n̄(B)yn̄(Ti) for any
measurable set B # Ti. The action sets are chosen from a
Banach space (25), and we use both the weak and the weak*
topologies, the second being motivated by sets of probability
measures on a compact metric space (26, 27). For the first
setting, for each i5 1, . . . , ,, letAi be a weakly compact subset
of a separable Banach space, con(Ai) their closed convex hull,
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and 8i
w the space of weakly continuous real-valued functions

on (Ai 3 Pj51
, con(Aj)) endowed with the sup-norm topology

and the corresponding Borel s-algebra. For the second setting,
we assume the Banach space to be the dual of a separable
Banach space, and obtain 8i

w* by phrasing the compactness
hypotheses on action sets and continuity hypotheses on the
payoffs in terms of weak* topology. We shall work with
Bochner integration in the first situation, and with Gel9fand
integration in the second (see refs. 19 and 25).

THEOREM 1. If & 5 (&1, z z z , &,), &i a measurable map from
Ti to 8i

w, there exists g 5 (g1, z z z , g,), where gi is a measurable
function from Ti to Ai , such that for all t [ Ti , and for all a [
Ai ,

&i~t!Sgi(t),E
s[T1

g1(s)dn̄1, · · · ,E
s[T,

g,(s)dn̄,D
$ &i(t)Sa,E

s[T1

g1(s)dn̄1, · · · ,E
s[T,

g,(s)dn̄,D .
This statement is valid with the space8i

w* substituted for8i
w, and

Gel9fand integrals for Bochner integrals.

The interpretation of the theorem is clear. T is the set of
players’ names with the atomless Loeb measure n̄ formalizing
the fact that each player is strategically negligible. Society is
classified into , institutions, with the payoff function of a
particular agent depending on the player’s action as well as on
a statistical measure summarizing the behavior of players in
each institution. A nonatomic game & simply associates in a
measurable way a payoff function to each player name, and the
function g represents the Nash equilibrium of the game. Such
an equilibrium asserts the existence of actions, one action for
each player, individually optimal under a particular conception
of societal responses, and which engender the particular
conception on which their optimality is based.
Both statements in Theorem 1 are false if the Lebesgue

interval is substituted for the Loeb space of players’ names. For
the second statement, assume , 5 1, and work with an action
set constituted by all point measures on the interval [21, 1],
and with the payoff function of t [ [0, 1] given by ut(da, r) 5
h(a, r) 2 ut 2 uai, where da denotes the Dirac measure at a,
h a real-valued continuous mapping on A3 }([21, 1]) taking
zero values at the uniform distribution r*, and }([21, 1]) the
space of all probability measures on [21, 1] endowed with the
weak* topology. This game, henceforth &1, has an equicon-
tinuous set of payoffs, and no Nash equilibrium in pure
strategies. Since the induced distribution of a random variable
is the Gel9fand integral of the random variable ‘‘lifted up’’ to
the space of distributions, and since there is no measurable
selection from the correspondence t3 {t,2t} that induces r*,
the latter cannot be the Gel9fand integral of a Nash equilib-
rium. Under a further specification of h, we can ensure that for
any distribution r Þ r*, the best response function induces a
distribution r9 such that d(r9, r*) , d(r, r*), d the Prohorov
metric generating the weak* topology (27). Nonexistence of
equilibrium results from the absence of closure in the relevant
space of Gel9fand integrals. The construction of a counterex-
ample for the first assertion of Theorem 1 is more technical on
account of Bochner integration and the strong measurability
requirement that underlies it. However, the punch line regard-
ing the absence of closure remains the same.\
Next, we turn to situations where a player’s payoff function

depends on the distribution, rather than the mean, of the

random variable summarizing societal responses. Towards this
end, for each i 5 1, z z z , ,, let Ai be a compact metric space,
the unit interval if the reader wishes, and }(Ai) the compact
set of probability measures on A endowed with the weak*
topology. Let 8i

D be the space of real-valued continuous
functions on (Ai 3 Pi51

, }(Ai)), endowed with its sup-norm
product topology and corresponding Borel s-algebra. We can
now present the following.

COROLLARY 1. If & 5 (&1, z z z , &,), &i a measurable map from
Ti to 8i

D, there exists (g1, z z z , g,), where gi is a measurable
function from Ti to Ai, n̄igi21 its distribution on Ai, such that for
all t [ Ti,

&i(t)(gi(t),n̄1g121, z z z ,n̄,g,
21)

$ &i(t)(a,n̄1g121, z z z ,n̄,g,
21) for all a [ Ai.

The interpretation of the corollary is along the same lines as
that of Theorem 1; externalities or player dependences now
involve the entire distribution of societal responses rather than
its mean. Corollary 1 is false if the Lebesgue interval is
substituted for the Loeb space of players’ names. By ‘‘pushing
down’’ the action set in &1 to the original interval [21, 1], one
can obtain a game &2, which is a straightforward modification
of &1 and furnishes the counterexample. Finally, Corollary 1,
along with Theorem 1, bears comparison with theorem 2 of ref.
4.
Next, we turn to finite games with incomplete information.

A game with incomplete information consists of (i) a finite set
of , players, each of whom is endowed with a compact metric
action space Ai, the unit interval if the reader wishes; (ii) an
information space constituted by , hyperfinite internal mea-
surable spaces (Zi, ]i), together with (Z0, ]0), Z0 finite, and
m, an internal probability measure on the product measurable
space (Z, ]) [ (Pj50, Zj, Pj50

, ]j) with (Z, L(]), L(m)) its
Loeb standardization; and (iii) a payoff function ui : Z0 3 Zi
3 Pj51

, Aj 3 IR, L(]0 R ]i)-measurable and continuous on
Pj51

, Aj. For any g 5 (g1, z z z , g,), gi a measurable function
from Zi to Ai, we shall denote the expected payoff to the ith
player by:

Ui~g! 5 E
z[Z

ui@z0, g1~z1!!, · · · , g,~z,!)]dL~m!~z!.

Let L(m)i denote the marginal of L(m) on (Zi, L(]i)), and
(L(m)iuz0) its conditional probability with respect to events in
Z0. The vector (g; fi) has the usual meaning (2).

COROLLARY 2. If, for all z0 [ Z0, the information of all the
players is independent conditional on z0—i.e., (L(m)uz0) 5 Pj51

,

(L(m)juz0)—and is diffuse—i.e., L(m)i is atomless for all i—there
exists g 5 (g1, z z z , g,), gi a measurable function from Zi to Ai,
such that for all players i, Ui(g) $ Ui(g; fi), for all measurable
functions fi from Zi to Ai.

Corollary 2 shows the extent to which (ref. 5; theorem 4 in ref.
6) can be generalized if one is willing to model information
with Loeb measure spaces. A variant of Corollary 2 can be
fashioned along the lines of theorem 3 in ref. 29. For a
summary of the economic models underlying Corollary 2 or its
variant, see refs. 5 and 6 and the textbook (chapter 6 of ref. 30).
Finally, we remind the reader that Corollary 2 is false for a
two-player game** with an identical action set given by [21, 1],
and the Lebesgue unit square substituted for the space of
independent information.

\For details concerning &1, see example 3 of ref. 28. The second
counterexample involves an uncountable action set in the Hilbert
space ,2, and the details will be presented elsewhere.

**Details to be presented elsewhere. The possibility of an example has
also been indicated in footnote 18 of ref. 6.
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Next, we turn to the translation of these results for a large
but finite setting of players (Theorem 1 and Corollary 1) and of
information samples (Corollary 2). The fact that this can be
done for hyperfinite models goes back to the pioneering work
in ref. 31 (see refs. 16 and 18 for details). The concern with
asymptotic implementability arises on two counts: an insis-
tence that an ideal model ought to capture the asymptotic
nature of the large finite phenomenon being modeled and that
assumptions on the idealized limit case ought to be translated
into assumptions on the primitives of the finite case. We
illustrate these points by presenting an asymptotic version only
of Corollary 1. We draw on a conventional notion for putting
some control on the extent to which the characteristics of the
players in the class of finite games are allowed to vary. A
sequence of measurable mappings from a measure space to a
topological space is tight if for any « . 0, there exists a compact
set containing more than (1 2 «) of the mass of the measure
induced by each mapping. The tightness hypothesis guarantees
that the standard part map (14, 16–18, 24) is well-defined and
Loeb measurable, thereby furnishing the measurability hy-
pothesis in Corollary 1. We can now present, in the notation of
Corollary 1, our next result.

COROLLARY 3. For each n $ 1, let Tn be a finite set, and let
Gn 5 (G1n, z z z , G,

n), Gin a mapping from Tin into 8i
D, {T1n, z z z ,

T,
n} a partition of Tn, be a finite game. Assume that the sequence
of finite games is tight and that there is a positive number c such
that for all 1 # i # ,, and sufficiently large n, uTinuyn . c. Then
for any « . 0, there exists a positive integerN such that for all n$
N, there exists gin : Tin 3 Ai such that for all t [ Tin, for all a [
Ai,

Gi
n(t)Sgin(t), 1uT1nu O

s[T1
n
dg1
n(s), · · · ,

1

uT,
nu

O
s[T,

n
dg,
n(s)D

$ Gin(g)Sa, 1uT1nu O
s[T1

n
dg1
n(s), z z z ,

1

uT,
nu

O
s[T,

n
dg,
n(s)D2«.

We emphasize thatCorollary 3 furnishes «-equilibria for a large
finite game rather than for an idealized limit game; see
corollary to theorem 3 in ref. 6 for this distinction.
It is noted in ref. 32 that Lebesgue spaces are not homoge-

neous in the sense that two identically distributed random
variables on the Lebesgue unit interval are not necessarily
connected by an automorphism. In our context, this translates
to the statement that the equilibrium profile is not necessarily
insensitive to a permutation of the players’ names. Consider a
game &3 manufactured from &2 by a transformation which can
be informally described as ‘‘expanding and shrinking’’ of the
set of players’ names such that the distribution of their
characteristics remains the same. Formally, let the payoff
function vt: A 3 }([21, 1]) 3 IR of any player t [ [0, 1] be
given by:

vt~z, z ! 5 Hu2t~z, z!,u222t~z, z!,
if 0 # t # ~1y2!
if ~1y2! , t # 1,

where ut is the payoff function of player t in &2. The point is
that even though the two games are identical in some essential
macroscopic sense, &2 has no Nash equilibria and &3 does!
Simply check that one such Nash equilibrium is given by g : [0,
1] 3 [21, 1], where:

g~t! 5 H2t ,2t 2 2,
if 0 # t # ~1y2!
if ~1y2! , t # 1.

Our final result responds to this rather anomalous state of
affairs. When we work with a subclass of atomless Loeb spaces,
hyperfinite Loeb counting spaces, we are always guaranteed of

the existence of a suitable isomorphism between two random
variables with the same distribution (33); the specific mi-
crospecification of two situations is of no consequence if they
are ‘‘identical’’ from the macroscopic game-theoretic point of
view. We can use this observation to prove the following
illustrative result related to Corollary 1.

PROPOSITION 1. Let & 5 (&1, z z z , &,) and ^ 5 (^1, z z z , ^,),
&i and ^i, measurable mappings from Ti to 8i

D such that for all
i, n̄i&i21 5 n̄i^i

21. Then for each i, there exists automorphisms fi
: (Ti, n̄i)3 (Ti, n̄i) such that &i(t) 5 ^i(fi(t)) for almost all t [
Ti. Let f 5 (f1, z z z , f,), fi : Ti3 Ai be a Nash equilibrium of the
atomless game ^, and define gi : Ti 3 Ai such that gi(t) 5
fi(fi(t)) for all t [ Ti. Then g is a Nash equilibrium of the
atomless game & and every Nash equilibrium of & is obtained in
this way.

Ideas of Proof

The proof of Theorem 1 is based on the theory of Bochner and
Gel9fand integration of a correspondence on an atomless Loeb
space; see ref. 19 for results and also for counterexamples
based on Lebesgue unit intervals. The theory is analogous to
that developed in ref. 34 for correspondences with values in an
Euclidean space. The proof of Theorem 1 simply appeals to the
Fan-Glicksberg fixed point theorem (35, 36) along the lines of
ref. 37. Corollary 1 follows from Theorem 1, because of the
connection, already observed earlier, between the Gel9fand
integral and the induced distribution of a random variable.
Corollary 2 follows from Corollary 1, because the setting of the
incomplete information game is one where the expected payoff
of a player depends only on his type and on the distribution of
the opponents’ actions. Corollary 3 follows from Corollary 1 as
a routine consequence of the transfer property of the non-
standard extension (see refs. 16, 18, and 31).
Since Corollaries 1 and 2 involve distributions rather than

integrals, we can also furnish direct proofs based on the notion
of a distribution of a correspondence. This is simply the
collection of the distributions of all random variables selected
from the correspondence and is a well-behaved object when
the domain space is an atomless Loeb space; see ref. 20 for the
results, as well as for counterexamples based on Lebesgue
intervals.
In passing, we can ask what is the special structure of Loeb

spaces that delivers existence, even though existence fails in
models based on the unit interval? We simply note that Loeb
spaces, as used here, can be constructed from sequences and
as such are particularly amenable to capturing phenomena
valid for a large but finite asymptotic setting. On the other
hand, by requiring ‘‘almost’’ continuity on the primitive data of
the hyperfinite game, one can reduce it to a game on the
Lebesgue interval, but one may not be able to reduce any of
its equilibria, guaranteed by Theorem 1 above, in a similar way.
The results in refs. 19 and 20 can be used to prove existence
theorems for the ideal case along conventional measure-
theoretic lines. These results are essential. We cannot restrict
results that are valid for an abstract measure space to a Loeb
setting (the counterexamples show that there are no such
results!); or transfer asymptotic results to a nonstandard uni-
verse and then push down to a Loeb setting (our asymptotic
results are new). Of course, once the asymptotic results have
been stated and proved, future work may furnish direct proofs
without any of the special measure-theoretic tools utilized here
(see section 6 of ref. 16). For earlier work along one or both
of these coordinates, see refs. 16, 18, 31, and 38.

Concluding Remarks

First, the counterexamples constituting the negative aspect of
this research are robust in that they do not hinge on any
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measure-theoretic intricacies. Indeed, the mappings associat-
ing payoff functions to the space of players’ names or of
information are even equicontinuous, and the action sets can
be reset in a variety of ways formally described in ref. 28.
Second, Loeb measure spaces are standard measure spaces

in the sense that any result valid for an abstract measure space
applies to them. They can be used without familiarity with the
nonstandard construction but simply as probability spaces with
additional properties, much as Lebesgue measure spaces are
used without regard to their particular construction or to the
Dedekind set-theoretic basis of the set of real numbers. As
such, the models reported here can be applied by researchers
interested in questions involving negligibility and diffuseness.

The authors are happy to acknowledge constructive criticism of
three anonymous referees as well as stimulating conversations with
Duncan Foley, Joseph Harrington and Lloyd Shapley.

1. Cournot, A. A. (1838) Recherches sur les Principles Mathéma-
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