
The elasticity and failure of fluid-filled cellular solids:
Theory and experiment
M. Warner*, B. L. Thiel, and A. M. Donald

Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, United Kingdom

Communicated by Sam Edwards, University of Cambridge, Cambridge, United Kingdom, November 17, 1999 (received for review September 1, 1999)

We extend and apply theories of filled foam elasticity and failure
to recently available data on foods. The predictions of elastic
modulus and failure mode dependence on internal pressure and on
wall integrity are borne out by photographic evidence of distortion
and failure under compressive loading and under the localized
stress applied by a knife blade, and by mechanical data on vege-
tables differing only in their turgor pressure. We calculate the dry
modulus of plate-like cellular solids and the cross over between
dry-like and fully fluid-filled elastic response. The bulk elastic
properties of limp and aging cellular solids are calculated for model
systems and compared with our mechanical data, which also show
two regimes of response. The mechanics of an aged, limp beam is
calculated, thus offering a practical procedure for comparing ex-
periment and theory. This investigation also thereby offers expla-
nations of the connection between turgor pressure and crispness
and limpness of cellular materials.

Cellular solids (solid foams) are the subject of wide study [see,
for instance, the book by Gibson and Ashby (1)] because of

(i) their superior mechanical properties (for example wood), (ii)
their use in sophisticated applications in which weight and
strength are important (e.g., helicopter blades), and (iii) their
widespread use as energy absorbers and insulators (against both
sound and heat). They occur widely in nature: for instance, in all
parts of plants, in bones, feathers, tissues, etc. Most foodstuffs
are foams, either geometrically open, such as bread and cake, or
closed. We shall be concerned with geometrically closed cell,
f luid-filled, solid foams, most particularly fruits and vegetables.
The structure of solid foams formed from a liquid phase is
determined by surface tension, which often serves to concentrate
material into the edges of cells. Other cellular materials without
a liquid state genesis also often have material concentrated into
the edges rather than on the surfaces dividing neighboring cells.

Even when the cells remain geometrically closed, the removal
of material from the faces to the edges makes the foam function
elastically as if it were a skeleton of interconnecting rods—
effectively an extremely open structure. In cellular structures
from nature, there is a partial concentration of material to the
common edges (rather than faces) of meeting cells: for instance,
in iris leaves (1). A carrot too has this feature, to a more limited
extent (see Fig. 1.) Henceforth, ‘‘open’’ and ‘‘closed’’ refer to the
elastic rather than geometrical character of the solid foam.

We shall review dry and then wet foam properties and then
model the elasticity of foams: in particular, how it is modified by
filling with liquid (2). In fact, above a critical strain of the solid,
the filling liquid while it is trapped in a cell of a cellular solid
forces the walls to stretch rather than to bend as they do when
typical dry cellular solids are deformed. The internal pressure in
cells then rises and determines the elasticity and failure modes.
The constitutive relation between stress and strain for a partially
filled cellular solid is derived. It is compared with experiments
on vegetables with differing internal (turgor) pressures that
confirm the two regimes of response predicted. We illustrate the
use of the complex elasticity in an applied macroscopic problem
by solving the elastic problem of how a limp beam bends when
clamped at one end and deflection force is applied at the other
end. It shows how, with such a constitutive relation, there can be

a sharp change in response that presumably governs the percep-
tion of crispness in aging vegetables.

Dry Foams
The elasticity and failure of dry foams are governed by a number
of remarkably universal scaling laws. We discuss these because
they underpin the understanding of filled foams. In Extension of
Theory and Application to Cellular Food Materials, we extend the
Gibson and Ashby model (1) to the case in which there is not
concentration of material into edges, but in which the wall
strength is that attributable to plates rather than beams. How-
ever, we shall focus on filled foams, and it will turn out that the
precise extent of this elastic predominance of the edges is not
essential. Discriminating between the concentration of material
into edges or faces is only vital in dry foams, where it determines
the most characteristic elasticity. The critical advance of Gibson
and Ashby (1) was to represent a dry foam by a structure of
connected rods (see Fig. 2), the rods representing the elastically
active parts of the previous figures. The regularity of the
representation is not critical, as the accuracy of the resulting
scaling laws over six orders of magnitude testifies. All that is
important is that rods characteristically bend as beams. For
elastic purposes, we ignore all of the other regions of the cell.

If the thickness of the cell members is to and the cell lineal
dimension is a, then the relative density, r, for elastically open
cells is r ; (toya)2. Gibson and Ashby (1) give structures and the
evidence for the elastically open and closed classification. The
relative density for solid foams that deform by bending lies in the
range 0.01–0.3.

The elasticity of foams is dominated by the fact that a given
strain can be more easily obtained by applied stresses causing
elastic members to deflect, rather than to stretch or compress.
Gibson and Ashby (1) use scaling arguments, relying on exper-
iment to determine a single constant of proportionality. We
continue in this spirit here when calculating the modulus of filled
foams, and the coupling between elasticity and flow.

The deflection, d, of a beam with a force F applied transversely
is

d , C1Fa3y~Eto
4!, [1]

where E is the Young’s modulus of the wall material and to is the
beam thickness. The constant of proportionality is order unity
and depends on the precise beam geometry.

In Fig. 2, F is applied along DB to ABC, causing the
deflection. For the foam as a whole, the strain, g, is dya, and
from the force per unit area, the stress, s, is ;Fya2, whence the
modulus Ef is

Ef , syg < ~toya!4E 5 C1r2E. [2]
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The modulus, if strains in a member were purely compres-
sional or extensional, would be much higher because then the
forces, F9 say, give stresses along the beam of F9yto

2 ; (dya)E,
whence the modulus of the foam would be Ea,

Ea < ~F9ya2!y~dya! < ~toya!2E < C2rE. [3]

The modulus Ea is now (ayto)Ef, that is, Ea .. Ef, and scales
with the area fraction (toya)2 of the foam that is elastically active.
This will be relevant for filled foams. Note that, in Fig. 2, it is the
component F that is perpendicular to ABC that is important. For
more realistic foams, not all of the force is directed perpendic-
ularly to beams, and there will be some averaged geometrical

factor absorbed into the constant C2. One can neglect longitu-
dinal components until they approach the Euler value for the
buckling instability of an end-loaded column. Gibson and Ashby
(1) examine this question of the elastic (buckling) failure of
foams. Elastic buckling failure is perhaps most important in
foods, such as when extreme deformations are applied to breads
and sponge cakes (3). It will not be important for filled foams.
There exist many non-elastic failure modes such as plastic yield,
tensile fracture, and brittle fracture. It will turn out below that
tensile fracture is most important for the failure of filled foams,
so we review the parallel result (1) for dry foams.

When a beam of length a and sectional dimension to is
deflected, the maximum stress developed is near the surface and
has the value ssurf ; (dya)(toya)E. When this stress is equal to
the fracture stress sf for the wall material, there is failure in the
foam because then the elastic members fail under the applied
moments. When the strain is dya, the macroscopic stress, using
the analysis leading to Eq. 2, is smac ; (dya)(toya)4E, whence
the macroscopic failure stress is

smac
f , sf~toya!3 , sfr

3y2. [4]

It is much less than the material failure stress because of the
concentrating effect of conducting stress through elastic mem-
bers of the open structure.

A Model for the Elasticity of Filled Foams
If a filled, closed foam is stressed, the resultant strains set up
must be such that the incompressibility of a normal liquid is
respected. The liquid incompressibility is relative to the com-
parative ease of stretching wall material. In the event the fluid
volume is accommodated by the wall deforming, the elastic
scaling laws above are modified. We review the analysis of
Warner and Edwards (2) of this problem of elasticity and failure.

Elasticity: it is clear from Fig. 2 that, in bending, a cell is
reduced in volume by roughly a2d. The cell volume is then
preserved (see the filled cell) by stretching the cell wall elements
such as AB and BC by w, where w ; d 1 O(d2). Now the fluid
compels a higher energy process (stretch) to occur, and the foam
modulus is increased. The force in AB, f, is fyto

2 ; (wya)E. This
force in members such as AB is spread over a face of a cell of
area a2, and the pressure in the cell accordingly rises by an
amount p ; fya2 ; (wya)(toya)2E. Members DF remain
straight, unless they are on the boundary of the foam, because

Fig. 1. (a) A micrograph, taken in an environmental scanning electron microscope under conditions of saturated vapor pressure, of the cellular structure of a
fresh carrot. (For further details, see Experimental section). The structure has a relatively low volume fraction of solid, in the manner of a classical foam. The
concentration of material into edges rather than faces is not very pronounced. (b) The same region under 60% nominal compression. Cells are not distorted
uniformly, as the weakest ones burst first and collapse. The partial pressure of water vapor in the specimen chamber was lowered slightly to drive off the excess
fluid released from bursting cells, as this would obscure the image.

Fig. 2. The skeletal structure of a z–x section of a three-dimensional cellular
solid. The cell size is a, and the thickness of elastic members is to. A force F is
transmitted along elements such as DB, causing deflection of AB and BC by an
amount, the strained configurations being shown in heavier lines. The stretch,
w, is required in a distorted filled cell in order to preserve volume.
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the pressure rise in neighboring cells is the same. Taking a slab
of foam with external stresses applied on the two large flat faces,
the total stress st applied to a cell is st ; p 1 Fya2. The modulus,
on identifying w with d before flow takes place and thus
identifying wya as the strain g, is

E9f , ~toya!2~1 1 ~toya!2!E < Ea, [5]

the first contribution being the stretch, the second being the
bend found in dry foams. The prime on E9f indicates the modulus
is modified by filling. The incompressibility of the fluid causes
the modulus of the foam to rise to order Ea, the value found in
Eq. 3 appropriate to all of the wall material being elastically
active. Changes in volume attributable to F compressing mem-
bers such as BD is minimal because F is much smaller than the
stretching force f.

Failure in filled foams will be amended by the incompress-
ibility of the filling fluid for the same reasons that the modulus
was changed. The analysis leading to Eq. 5 and the formula for
the maximum stress, ssurf, resulting from bending show that the
wall stresses associated with stretch and bend are (dya)E and
(dya)(toya)E, respectively (for both elastically open and elasti-
cally closed foams). Because toya is very small, we ignore the
latter, bend-induced wall stresses when considering rupture. In
a filled foam, the macroscopic stress is ;(dya)(toya)2E. Setting
(dya)E 5 sf, the rupture stress characteristic of the wall
material, we obtain for the filled foam failure stress:

smac < sf~toya!2 , sfr. [6]

This replaces the empty foam mechanism and failure stress (Eq.
4) for failure.

Extension of Theory and Application to Cellular Food Materials
We modify the dry elasticity of foams to the case in which
material is not concentrated into beams but only into plates. We
then discuss the elasticity and failure in vegetables and fruits.

Elasticity. The dry modulus, that attributable to the framework
without the intervention of the filling fluid, would appear to be
of little practical significance to vegetables. We check here that
it is indeed small. It will play a role in determining the consti-
tutive relation for aging food. If the cell walls are elastically plates
of thickness to and area a2, rather than being beams, then they
will form a much weaker system than rods at the same volume
fraction r. This is because the stiffness against bending scales as
the cube of the thickness, and, in a plate structure, material is
spread more thinly. The plate equivalent of Fig. 2 gives deflec-
tions d } Fa3yto

3a, whereupon the stress s 5 Fya2 and strain g 5
dya are related as

s 5 E 0fg } ~toya!3E. [7]

The foam modulus is then E 0f 5 C3r3E because the solid
volume fraction in a system of plates scales as r ; toya. The
double prime on E0 denotes a modulus caused by plate bending.
One must be careful with this result. If plates are curved and
constrained (the curved ‘‘plates’’ of an eggshell are a classic
example), then the elasticity of their deflections can be subtle for
geometrical reasons and they can assume a rigidity greater than
that suggested by the above bending analysis. We are assuming
that a significant number of plates in our structure are not thus
geometrically constrained. In fact, Gibson and Ashby (1) discuss
cellular solids composed of plate-like members. They analyze the
case in which walls bending cause associated walls to stretch as
plates (even in the absence of a filling fluid) and hence to
dominate the elasticity to give a modulus E } r. We are assuming
here that cell walls in deflated cells are floppy and only bend,
unless after some deformation they are ultimately constrained by

the incompressibility of the filling fluid, whereupon only then do
they begin to stretch.

The weakness, manifested by the even higher power, r3, than
in the Gibson and Ashby case (1), is perhaps a matter of everyday
experience—when vegetables lose their internal pressure, they
are limp because they presumably derive negligible strength from
their own cellular structure. That is, they exhibit a weak, dry-like
response because the filling fluid is no longer sufficient to make
their walls taut. This is the first stage of elasticity, up to a strain
say of go. We shall speculate that this picture survives until the
strain changes the volume sufficiently that the walls again
become taut and modulus rises. Then the filled foam analysis of
A Model for the Elasticity of Filled Foams is applicable, cell wall
stretching giving an enhancement of the modulus from r2 or r3

to r. This is the second regime of elasticity.
If a cell requires a strain go before the walls have to stretch to

accommodate the fluid volume, the stress–strain relation at any
given point for such a material must be

s 5 C3r3Eg 1 C2rEQ@g 2 go#~g 2 go!

; E 0fg 1 E9fQ@g 2 go#~g 2 go!, [8]

where, until g 5 go, we have the very weak first stage elasticity
of the plate assembly (the E 0f term) and, for g $ go, we have, in
addition to the bending elasticity, the more dominant r elasticity
(the second stage, E9f term), where all of the cell material is
participating in the stretch. The step function†, Q, implements
the onset of the latter contribution. The threshold strain is a
measure of how slack the cell walls are. In the ‘‘Modulus’’ section
we compare this relation to simple strain experiment. We used
the idea of stretching in the failure analysis (Eq. 6), and this is
followed up in the experimental analysis of failure in the
‘‘Failure’’ section.

The Mechanics of a Limp Beam. Limp solids are seldom deformed
in a simple strain geometry that would expose the constitutive
relation (Eq. 8) directly as the uniaxial compression experiments
in the ‘‘Modulus’’ section do. Rather, the perception of limpness
will depend on how a macroscopic object responds to a complex
deformation. Nonhomogeneous strains will dictate that different
regions of the solid will deform with different moduli, either E 0f
or E9f. As strains proceed, the balance of the two regions will
change, leading to a most unusual macroscopic response. One
might imagine, for instance, that a limp carrot being bent will
suffer this mixed and changing elasticity. Perception of its state
will depend on the balance of the responses. We wish to model
this situation.

One can now pose and solve the problem of how a beam,
composed of the material with the constitutive relation (Eq. 8),
deforms. Take a beam of length L, width a, and thickness T, as
in Fig. 3. Near the clamp, y 5 0, is where the curvature is
greatest, R smallest, and is thus where the crossover to r-elas-
ticity starts first. At the deflection end, the torques are smallest
and therefore 1yR the least. Thus, the r term is absent at this end.
For very small deflections, the whole beam deforms weakly
with r3.

We give an analysis for moderate deflections (the full problem
reduces to elliptic integrals). In any section, a distance y from the
clamped end of the beam, there are extensions and compressions
above or below the neutral line that give forces and hence
torques balancing that arising from the deflection force F:

†The step function has Q(x) 5 0 for x , 0 and Q(x) 5 1 for x $ 0.
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F~L 2 y! 5 2 E
0

Ty2

xas~x, y!dx. [9]

Locally, the strain is g(x, y) 5 xyR(y), where 1yR(y) is the
curvature of the beam at y along its length, that is d2Dydy2 5
1yR(y), with D the deflection. We assume for simplicity in Eq.
9 that the material responds similarly in compression and
extension.

The shape of the limp beam is now given by the solution R(y)
of the equation:

~L 2 y!F 5
aT3

12R SE 0f 1
24R3

T3 E9fQS T
2R

2 goD
z H1

6
go

3 1
1
3 S T

2RD
3

2
1
2

goS T
2RD

2JD . [10]

Although apparently complicated by the step function Q, the
equation is straightforward to analyze. The strains in a given
cross section of a beam are maximal at the surfaces, x 5 6Ty2.
The beam crosses over from a purely r3 behavior to a mixture of
r3 and r1 within one cross section when the curvature at this cross
section is such that Ty2R 5 go. Along a beam, this crossover at
the surface first occurs at a critical position, yo, given by

yc 5 L 2
1
6

goE 0f aT
F

T. [11]

(Note that the combination goE 0f is a characteristic stress that,
when multiplied by the cross section aT, yields a characteristic
force against which applied forces F are compared. The surviv-
ing length in Eq. 11 is T, which sets the scale for crossovers.) At
small forces F , 1y6 aTgoE 0f TyL such that the crossover is
nowhere achieved, the whole beam is classical, being described
with the dry, plate-bending foam modulus E 0f:

1yR 5 12F~L 2 y!y~aT3E 0f!. [12]

For larger F, the beam profile is described by two equations, the
solutions of which are matched at y 5 yc; that is, by Eq. 12 for
y . yc and by

~L 2 y!F

5
aT3

12R SE 0f 1
24R3

T3 E9fH1
6

go
3 1

1
3 S T

2RD
3

2
1
2

goS T
2RD

2JD
[13]

for y , yc. This is a straightforward cubic for R(F). The
deflection D(y) can be simply derived by integration because
D(y) 5 *0

y dy9 *0
y9 dy0(1yR(y0)).

In applying these predictions of bulk response, one must be
careful to consider the possibility of gradients in turgor pressure
in limp vegetables, here manifesting themselves as a spatially
dependent go.

Force-Deflection Characteristics of Partially Filled Cellular Solids. The
above analysis, although giving the complete shape of a clamped,
limp beam suffering a deflection force while obeying the con-
stitutive relation (Eq. 8), is not explicit enough to offer a
practical means of comparison with mechanical experiments on
vegetables. We develop an explicit method of proceeding in
practice. First, reduce the lengths L, D, and R by the thickness
T and reduce the maximum strain in a cross section, Ty2R, by
the transition strain go to give a reduced strain G 5 Ty(2R)ygo.
Extract a factor of the hard modulus E9f from the brackets in Eq.
13 and call the reduced modulus E 0fyE9f 5 E. Reduce the force
to the dimensionless F̃ 5 6Fy(aTE9fgo); that is, the force is
reduced by 1y6 of the force in a hard beam (E9f) of sectional area
aT strained to go. The moment equation (Eq. 13) for the strain
takes the universal form (with L and y now reduced lengths):

~L 2 y!F̃ 5 GSE 1 1 1
1

2G3 2
3

2G
D for G . 1

~L 2 y!F̃ 5 GE for G , 1, [14]

from the solutions of which any system is described because
particular systems are recovered by a reversal of the reduction
procedure above. Instead of solving the cubic and being faced
with numerical integrals of the complicated resulting solutions,
one can attack the deflection of the end, D(y 5 L), indirectly.

The reduced form of the deflection is D 5 2go *0
L dy *0

y

dy9G(y9). We can change independent variable from y to G:

D 5 2go E
Gm

0

dG~dyydG! E
Gm

G

dG9~dy9ydG9!G9. [15]

The strain Gm is the maximal occurring for the beam as a whole:
that is, at the surface of the section of the beam at the clamp y 5
0, where the curvature is the greatest. The Jacobeans of the
transformation depend on whether one is below or above the
crossover strain, G 5 1:

dyydG 5 2~E 1 1 2 1yG3!yF̃ for G . 1

dyydG 5 2EyF̃ for G , 1, [16]

whereupon the intervals of integration must be broken down to
accommodate the differing forms (physically where the elasticity
is either r3 or r).

When the force is sufficiently small that the maximum strain
in the beam, Gm, is less than the crossover G 5 1, then the beam
is simple, with a reduced deflection D 5 2goL3F̃y3E [giving the
classical result in unreduced variables of D 5 4L3F̃y(E 0f aT3)].

When the force is sufficiently large that the maximum strain
in the beam, Gm, is greater than the crossover G 5 1, one must
substitute Eq. 16 into Eq. 15 with some care. One obtains

Fig. 3. Bending of a beam. The deflection is D, the thickness T, the width a,
and the length of the beam L. The transverse deflecting force, F, is applied to
one end of the beam. The position, y, is measured from the other, clamped
end. For any cross section at a given y, the strain will vary with position x away
from the neutral line, being zero on the line itself. Further away from the line,
the strain may exceed go, and the response will be hard. The sections closer to
the clamp, at small y, are more distorted, and the crossover go will be closer to
the neutral axis. It is this variation of elastic response across the beam, on
going down the beam, that makes the problem of the overall response
nontrivial.
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D

2go
5

E

F̃ E
0

1

dGHE
G

1

dG9G9
E

F̃
1 E

1

Gm

dG9
G9

F̃ SE 1 1 2
1

G93DJ
1E

1

Gm d G

F̃ SE 1 1 2
1
G3DHE

1

Gm

dG9
G9

F̃ SE 1 1 2
1

G93DJ ,

[17]

which is simply integrated to give:

D 5
2go

F̃2 H ~1 1 E!2
Gm

3

3
1 ES 1

12
2

3
4

Gm
2 2

1
2

ln~Gm!D
1

7
4

2
3
4

Gm
2 2

1
2

ln~Gm! 2
3

2Gm
1

1
6Gm

3 J . [18]

When the strain Gm is large, the dominant term in D is Gm
3 ,

which is again of the classical form, this time for a beam
uniformly of modulus E9f—the weak response has been taken out
and the hard response that starts in the beam’s skin (which is in
any case elastically dominant) dictates the response.

The deflection (Eq. 18) D(Gm), and the relation for F̃(Gm)
from (Eq. 14) at y 5 0:

LF̃ 5 GmSE 1 1 1
1

2Gm
3 2

3
2Gm

D [19]

need not be solved for D(F̃), which is a complicated procedure.
Rather, one can simply plot D(Gm) 2 F̃(Gm) by using Gm . 1 as
a parametric variable. An example is shown in Fig. 4, where go 5
0.05, E 5 0.05, and L 5 10. This is a straightforward procedure,
which could be used to compare with experimental examinations
of vegetable ‘‘beams.’’ The figure exposes the essential physics of
limp beam bending. Until the crossover occurs from all strains
in the beam being less than go to some being greater than go, that
is, at Gm 5 1, the beam has F̃ } D with a slope reflecting E 0f.
When parts of the beam have strains sufficient to make these
parts respond with E9f, the force required to give deflection rises
with D faster than linearly because more and more material is
responding with E9f. This starts at D 5 2goL2y3 (510y3 for the
parameters in Fig. 4). The dotted line is an extrapolation of the
weak beam response to illustrate the departure that occurs when
go is exceeded for the first time. After most of the material is
reacting with E9f, the limiting strong beam response is attained,
and the curve is again linear, but with a much higher slope.

Experimental
All imaging and mechanical testing was performed in an Elec-
troscan Environmental Scanning Electron Microscope, Model
2010. Images were taken with a 15-kV accelerating voltage. An
Oxford Instruments custom built tensile stage, capable of cool-
ing the specimen to 3°C, was used for in situ mechanical tests.
The specimen chamber was held at 5 torr (1 torr 5 133 Pa) of
water vapor, thus ensuring that the carrots remained hydrated
throughout the experiments. All carrot specimens (Daucus
carota) were nominally 6-mm cubes of parenchymal material.

Fig. 4. Reduced force plotted against deflection for a partially filled foam
with reduced modulus E 5 0.05, transition strain go 5 0.05, and reduced
length L 5 10. Note the classical linear dependence of deflection force on
deflection before the crossover (at D 5 10y3 for these parameters) and for
deflections well beyond where the strain crossover is achieved.

Fig. 5. Compression stress–strain curves collected during in situ straining of
carrot specimens. The cooked carrot specimen was prepared by immersing the
6-mm cube in boiling water for 60 seconds. Note that, at larger extensions,
where presumably cell walls are stretching in both cooked and uncooked
carrots, the modulus is the same.

Fig. 6. The sample of Fig. 1 is subjected to compressive stress along the
vertical axis. Near the center, a vertical crack can be seen to be forming.
[Reprinted with permission from ref. 4 (Copyright 1998, Annals of Botany
Company).]

Fig. 7. Cellular-level close up of Fig. 6. Overstretched horizontal members are
seen to have failed. [Reprinted with permission from ref. 4 (Copyright 1998,
Annals of Botany Company).]
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Further details on how the mechanical tests were performed can
be found in ref. 4.

Modulus. We present in Fig. 5 stress–strain data for raw carrot
and for carrot cooked for 1 minute. The uniform uniaxial
compressive strains applied correspond to the situation of the
constitutive relation (Eq. 5). At very small strains, both raw and
cooked carrot are soft. Raw carrot quickly hardens (a steeper
slope to the stress–strain relation) whereas cooked carrot re-
mains softer to larger strains, eventually crossing over to a hard
response. It is most noticeable that finally the cooked and raw
carrot have the same modulus (equal slopes). This is entirely
consistent with the idea that cell walls initially bend and then
tighten when the fixed volume of the cell filling causes the cell
walls to stretch. The effect of cooking is evidently to reduce the
internal filling pressure and, initially at least, leave the walls
elastically intact. When stretching dominates and is responsible
for the (higher) modulus of the cellular material, the two
materials with differing internal pressure (filling) can then take
on the same strength (modulus), provided the wall material has
not deteriorated. For vegetables cooked longer, or for greater
degrees of aging that involve, for instance, degrading the cell
walls, this equivalence of the larger strain amplitude moduli is
not observed. We believe that Fig. 5 is a qualitative confirmation
of our proposed constitutive relation (Eq. 8) for fluid-filled
foams. The strains in Fig. 5 are completely reversible. We see
from the cyclic compression data of Fig. 8 of ref. 4 that strains
of the order of those explored in our Fig. 5 are entirely
recoverable.

Failure. The predictions (2) of A Model for the Elasticity of Filled
Foams are that, under a compressive load, cell walls in directions
perpendicular to the compression axis are in effect subjected to
extensional strains induced by the incompressibility constraints.
The accompanying stresses lead to failures in walls in this direction.
This is clearly seen in carrots. The unstrained sample of Fig. 1 is
subjected to compression in the vertical direction. Figs. 6 and 7 show
the development of a crack in the vertical direction. The crack is
caused by the failure attributable to the overextension of horizontal
members; the close up shows the failure of horizontal walls leading
to a crack propagating vertically.

Further examples of large but localized strains leading to

fracture are shown in Fig. 8, micrographs of slicing carrots that
are fresh, 1 week old, and 3 weeks old. The behavior is very
different according to the internal pressure. In Fig. 8a, cells
rupture in the high strain areas closest to the blade tip. Where
the internal pressure is lower and the cells are capable of large,
easy distortions (with E 0f) before stretching of the cell walls
occurs, rupture is delayed. Large sections extending far from the
blade are seen to distort. This is reported in more detail by Thiel
and Donald (4).

We should note that not all failure in stressed vegetables and
fruit is caused by overstretching of cell walls. It can be observed
in aged apples and pears that failure is attributable to the
adhesion between neighboring cell walls failing; that is, the
failure mechanism is extracellular. The current work does not
address this question.

Conclusions
We have presented a range of deformation mechanisms of
closed-cell cellular solids, filled and unfilled, to model elasticity
and failure in foods. Bending, up to a deformation where the
filling fluid’s volume is felt, is proposed as a dry foam-like
deformation leading to a low modulus. At higher deformations,
walls then must stretch, and the modulus rises. A two-part
constitutive relation is derived that has a cross-over strain
dependent on fluid filling (turgor pressure in plants). Experi-
ments in a matching simple strain geometry confirm two-step
response, a cross-over varying as turgor pressure is changed.
Remarkable microscopic investigations can now test these ideas,
perhaps leading the way for further analysis. We have suggested
a way of modeling limpness in vegetables. This takes the form of
a model calculation of a limp beam’s response. The underlying
constitutive relation manifests itself at the macroscopic level in
the sharp cross-over from limpness to crispness as the region of
‘‘hard’’ response spreads in the beam. The method can be
straightforwardly extended to large amplitude deformations and
failure.
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Fig. 8. The strong deformation near the tip of a knife slicing a carrot. (a) Fresh carrot. (b) One-week-old carrot. (c) Three-week-old carrot. The extreme
deformations in b and c are only possible after fluid has been lost (see ref. 4 for the original analysis). [Reprinted with permission from ref. 4 (Copyright 1998,
Annals of Botany Company).]
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