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Deficits in the connectivity between brain regions have been
suggested to play a major role in the pathophysiology of
schizophrenia. A functional magnetic resonance imaging
(fMRI) analysis of schizophrenia was implemented using
independent component analysis (ICA) to identify multiple
temporally cohesive, spatially distributed regions of brain
activity that represent functionally connected networks.
We hypothesized that functional connectivity differences
would be seen in auditory networks comprised of regions
such as superior temporal gyrus as well as executive net-
works that consisted of frontal-parietal areas. Eight net-
works were found to be implicated in schizophrenia
during the auditory oddball paradigm. These included a bi-
lateral temporal network containing the superior and mid-
dle temporal gyrus; a default-mode network comprised of
the posterior cingulate, precuneus, and middle frontal gy-
rus; and multiple dorsal lateral prefrontal cortex networks
that constituted various levels of between-group differen-
ces. Highly task-related sensory networks were also found.
These results indicate that patients with schizophrenia
show functional connectivity differences in networks re-

lated to auditory processing, executive control, and base-
line functional activity. Overall, these findings support
the idea that the cognitive deficits associated with schizo-
phrenia are widespread and that a functional connectivity
approach can help elucidate the neural correlates of this
disorder.
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Introduction

Schizophrenia is a mental disorder with an unknown eti-
ology and pathophysiology. It is often associated with
a number of neurobiological deficits with one of the
most consistent markers found in event-related
potential (ERP) recordings of auditory target detection
tasks.1 For example, the amplitude of the P300 potential
elicited by decision making is reduced in patients with
schizophrenia. In the context of an auditory target detec-
tion task, the P300 is elicited by target detection of infre-
quent auditory stimuli. Intracranial recordings during the
performance of this task in neurosurgery patients indicate
multiple distributed neural generators of the P300, includ-
ing ventrolateral prefrontal, inferior temporal, perirhinal
cortices, superior temporal sulci, posterior parietal asso-
ciation cortices, and hippocampus.2,3 However, intracra-
nial recordings are not available for schizophrenia
patients; thus, attempts to spatially localize the deficits
for this population have led to functional magnetic reso-
nance imaging (fMRI) studies of similar tasks.

A common method of analyzing fMRI datasets relies
on the general linear model (GLM), which is an excellent
tool for finding regions that are engaged during a partic-
ular task assignment. However, the GLM cannot identify
brain regions that are functionally connected to one an-
other. The substantial base of neuroimaging literature
that deals with schizophrenia suggests that its cognitive
deficits are not localized to a single region of the brain
but are representative of a more widespread cognitive
dysfunction.4 Previous studies have also shown reduced
temporal-frontal connectivity in this population5,6 as well
as an overall group difference in the effective connectivity
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between predefined regions of interest (ROIs).7 The ab-
errant P300 in schizophrenia patients might also be the
result of dysfunctional connectivity between its relevant
brain regions, resulting in its significantly reduced ampli-
tude. Thus, the study of schizophrenia could benefit from
a functional connectivity approach that is not limited to
previously determined ROIs.

Independent component analysis (ICA) is one such
method because it is capable of revealing hidden factors
that underlie sets of random variables, measurements, or
signals. ICA assumes that fMRI data are linear mixtures
of independent source signals and attempts to extract
maximally independent signals and their mixing coeffi-
cients. The driving principle behind ICA is that these in-
dependent source signals represent coherent groupings of
fMRI activations, often referred to as component maps,
that imply a representation of a functionally connected
network.8 Because ICA is a data-driven approach, the
functional networks are generated without any assump-
tions about the shape of the fMRI time courses and thus
can capture coherent activity that does not track strongly
with a task.

Based on previous research, we hypothesized that the
fMRI data collected during an auditory oddball para-
digm in patients with schizophrenia would show signifi-
cant differences from control subjects in networks that
included the anterior cingulate cortex (ACC), dorsal lat-
eral prefrontal cortex (DLPFC), inferior parietal regions,
and cerebellum.9,10 A previous study utilizing a similar
oddball paradigm and ICA showed significant differen-
ces in the default-mode network (DMN)11 as well, a set of
regions hypothesized to represent a baseline state of ac-
tivity. There is also a strong consistency in the spatial pat-
terns of activation for the functional networks found
using ICA in fMRI.12,13 Between these independent net-
works, common brain regions of activation are often
found, and we were interested in the degree with which
they overlap with one another. Recent studies have
shown that networks such as the DMN might be actually
composed of multiple subsystems sharing common
regions such as the posterior cingulate.14 In this context,
the brain regions involved in auditory target detection
could consist of multiple brain networks sharing a similar
ROI. This particular region could then act as a possible
‘‘switching’’ station to relay its information to higher or-
der systems for further processing.

To pursue these hypotheses, we acquired data from
a multisite study called the functional biomedical infor-
matics research network (fBIRN) collaboration. The
multisite project consists of multiple research institu-
tions that have participated in the acquisition of
fMRI data from patients with schizophrenia.15 Across
these sites, fMRI datasets were collected from stably
medicated patients diagnosed with a chronic form of
schizophrenia (n = 66) and demographically matched
healthy controls (n = 71). Participants performed

a 2-tone auditory oddball paradigm auditory while in-
side the scanner for 4 experimental sessions. They were
instructed to listen for an oddball tone (deviants) and to
respond with a button press while ignoring standard
tones.

Methods

Participants

All sites received local Institutional Review Board ap-
proval for this study, and all participants provided writ-
ten informed consent. Male and female healthy
comparison subjects (n = 71; 43 men) and schizo-
phrenic/schizoaffective adults (n = 66; 43 men) between
the ages of 18 and 70 years were recruited. Within the pa-
tient group, 60 participants were right-handed, and 6
were left-handed. For controls, 64 participants were
right-handed, 3 were left-handed, and 4 were both. All
subjects had normal hearing (no more than a 25 db
loss in either ear) and were able to perform the task. Con-
trol subjects were excluded if they had a current or past
history of a major neurological, psychiatric, medical ill-
ness; previous head injury; substance or alcohol depen-
dence; IQ less than 75 (as measured by the North
American Adult Reading Test [NAART]); if they were
using migraine treatments; or if a first-degree family
member had a diagnosis of a psychotic illness.

Patients meeting the Structured Clinical Interview
Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-IV), criteria for schizophrenia
or schizoaffective disorder participated in the study;
schizophreniform subjects were excluded. Diagnosis for
schizoaffective disorder was determined by meeting crite-
ria A for schizophrenia in the DSM-IV, which includes all
the relevant axes and that a significant portion of their
illness includes identifiable depression or mania. More-
over, their psychotic symptoms must exist for at least
2 weeks without any notable mood abnormality fueling
their psychosis. The decision to use both schizoaffective
and schizophrenia subjects was partially due to the lack
of a distinct pathology in the literature that underlies one
versus the other. Symptom scores were determined by us-
ing the Schedule for the Assessment of Positive Symp-
toms (SAPS)16 and Negative Symptoms17 assessment
measures and are listed in table 1. Subjects were excluded
if they had a current major medical illness, previous head
injury or prolonged unconsciousness, or substance and/
or alcohol dependence. Patients were also excluded if
they currently had an IQ less than 75 as measured by
the NAART, migraine treatments, significant extrapyra-
midal symptoms, or tardive dyskinesia (measured by the
Global section of the abnormal involuntary movement
scale). Subjects were required to be clinically stable with
no significant changes in their psychotropic medications
in the previous 2 months. However, a detailed history
of their medication status was not available for this study.
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The 2 groups did not differ with regard to age (patients:
37.4 years [SD = 11.7 years], controls: 35.3 years [SD =
10.6 years], t135 = 1.65, P <.10). Significant differences
were found with regard to the number of years of educa-
tion (patients: 13.6 years [SD = 1.9 years], controls: 15.7
years [SD = 2.0 years], t127 = 6.19, P<.0001), but no sig-
nificant differences were found for paternal (patients-
fathers: 15.3 years [SD = 11.7 years], controls-fathers:
15.0 years [SD = 3.3 years], t122 = 0.26, P<.80) or mater-
nal education (patients-mothers: 14.5 years [SD = 11.9
years], controls-mothers: 14.4 years [SD = 2.6 years],
t122 = 0.04, P < .97).

Auditory Oddball Paradigm

The auditory oddball paradigm used in this study is
a 2-tone oddball task where the participant is presented
with a continuous sequence of 2 discrete simuli (‘‘devi-
ants’’ and ‘‘standards’’). Standards are physically identi-
cal auditory stimuli that appear in 95% of the trials.
Deviants, or oddball tones, are higher in pitch than
standards and occur in only 5% of the trials. The task
consists of 2 practice runs and 4 experimental runs,
each having a duration of 280 seconds (4.67 minutes).
Each run consists of multiple presentations of a standard
tone (1000 Hz) and an oddball/deviant tone (1200 Hz)
presented binaurally. Each subject adjusted the volume
of a test stimulus to the left and right ears so that it could
be heard comfortably over the noise of the scanner during
an echo-planar imaging (EPI) scan. Throughout the du-
ration of the auditory stimuli, participants are asked to
fixate on a black cross centered on a gray screen. They
are instructed to press the first button on their right
hand in response to a deviant tone and to do nothing

in response to standard tones. The task begins with a fix-
ation block that lasts for 15 seconds. This is then followed by
the presentation of thestandardtones (interstimulus interval
[ISI] = 500 milliseconds, duration = 100 milliseconds). Ev-
ery 6–15 seconds, the oddball tone is presented (ISI = 500
milliseconds, duration = 100 milliseconds). The task is con-
cluded with another 15-second block of silence.

Imaging Parameters

Pulse sequence parameters for all sites were matched as
closely as possible based on preliminary studies conducted
by the fBIRN group15,18 (orientation: anterior commis-
sure–posterior commissure line, number of slices: 27, slice
thickness = 4 mm, time to repeat = 2000 milliseconds,
time to echo = 30 milliseconds (3T)/40 milliseconds
(1.5T), field of view = 22 cm, matrix 64 3 64, flip angle
= 90�, voxel dimensions = 3.4375 3 3.4375 34 mm).
Duke University utilized a spiral echo sequence while all
other sites employed a single-shot EPI sequence (table 2).

Data Analysis: Preprocessing

Datasets were preprocessed using SPM5 (http://www.fil.
ion.ucl.ac.uk/spm/software/spm5/). Images were real-
igned using INRIalign—a motion correction algorithm
unbiased by local signal changes.19,20 A slice-timing cor-
rection was performed on the fMRI data after realign-
ment to account for possible errors related to the
temporal variability in the acquisition of the fMRI data-
sets. Data were spatially normalized21 into the standard
Montreal Neurological Institute (MNI) space using an
echo planar imaging template found in SPM5 and slightly
subsampled to 3 mm3, resulting in 53 3 63 3 46 voxels.
Finally, data were spatially smoothed with a 9 3 9 39 mm3

full width at half-maximum Gaussian kernel.

Table 1. Demographic Information, NART IQ Measurements, and Symptom Score Assessment Using SANS and SAPS for Patients With
Schizophrenia Are Listed Here

Demographics Schizophrenia (Mean/SD) Controls (Mean/SD) Statistics (t)/P Value

Sex (M/F) 43/23 43/28
Age (y) 37.4 (11.7) 35.3 (10.6) t135 = 1.65/.01
Education (y) 13.6 (1.9) 15.7 (2.0) t127 = 6.19/.0001
Maternal education 14.5 (11.9) 14.4 (2.6) t122 = 0.04/.97
Paternal education 15.3 (2.0) 15.0 (3.3) t122 = 0.26/.8
NAART
Verbal IQ 103.83 (11.04) 110.67 (8.68) t125 = 3.91/.0002
Performance IQ 107.77 (5.38) 110.89 (4.09) t125 = 3.72/.0003
Full-scale IQ 106.00 (9.68) 112.00 (7.60) t125 = 3.91/.0001
Schizophrenia symptom scores
SAPS (n = 62) Mean (SD) SANS (n = 65) Mean(SD)
Hallucinations 1.89 (1.74) Affect 1.71 (1.35)
Delusions 2.31 (1.57) Alogia 1.14 (1.21)
Bizarre behavior 0.84 (1.13) Avolition 2.29 (1.32)
Thought disorder 1.03 (1.21) Anhedonia 2.34 (1.36)

Attention 1.28 (1.19)

Note: NAART, North American Adult Reading Test; SANS, Schedule for the Assessment of Negative Symptoms; SAPS, Schedule for
the Assessment of Positive Symptoms. Significant group differences were seen for years of education and NAART IQ measures.
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Independent Component Analysis

General Overview. Following Calhoun et al,22 the ICA
was performed using the GIFT toolbox, version 1.3c
(http://icatb.sourceforge.net). Here, we describe a general
overview of the ICA analyses. For a full explanation of
the ICA algorithm and its theoretical constructs, we refer
the reader to these relevant articles.22–24 Using a modified
minimum description length (MDL) algorithm,25 the op-
timal number that ICA used to split the fMRI datasets
into a final set of spatially independent components
was determined to be 25. Because group ICA requires
that all subjects are analyzed at once, a method for
data compression using principal component analysis
(PCA) allowed the datasets to be loaded into memory
at one time.22 There are 2 PCA data reduction steps:
In the first step, data from each subject and each session
were reduced from 140 (the number of timepoints within
the experiment) to 25 dimensions. We have found that the
number of dimensions for the first data reduction step
does not significantly affect the results as long as this
number is not much smaller than the number specified
by the MDL algorithm.22,26 In the second step, the com-
pressed datasets for each subject and session are then
concatenated with one another and reduced again to
the final 25 components found from the MDL algorithm.
A group spatial ICA is then performed using the infomax
algorithm.27 It is important to note that group ICA is
performed on all the subjects at once, and significant
between-group differences are determined by a second-
level analysis of the ICA results.

The resulting output is an independent component spa-
tial map and a single associated ICA timecourse for every
component, subject, and session. Thus, for our subject
pool of 137 subjects, we produced 13,700 (137 subjects
3 4 sessions 3 25 components = 13,700) independent
component spatial maps, each associated with a single
ICA timecourse. The ICA timecourse and their spatial
maps are then calibrated using z scores.13,28 This calibra-
tion step is important because the units are not con-
strained by any specific measure and are arbitrary.
What is important is the relative change within these units

so that a large signal change within the ICA timecourse
would be represented by a strong deviation from the
mean or a high z score. Likewise, a high z score within
the spatial maps represents a stronger representation
of the ICA timecourse as well. These spatial maps and
timecourses are then subjected to a second-level analysis
to determine which components are task related and are
not representative of noise/artifacts. The second-level
analysis can be split into 2 parts, the analysis of the
ICA timecourses and the analysis of the independent spa-
tial component maps. They are discussed in more detail
below, and an overview of the entire analysis can be seen
in figure 1.

Statistical Analysis of Component Timecourses. A
regression was performed on the ICA component time-
courses with the GLM design matrix taken from SPM5.
This design matrix represents a combination of the exper-
imental onsets convolved with a canonical hemodynamic
response function. This resulted in a set of beta weights for
every experimental regressor (deviants, standards, and
temporal derivatives) associated with a particular subject
and component. The resulting beta weights from the re-
gression represent the degree to which the component
was modulated by the task relative to the fixation baseline.
In other words, the regression of the timecourses to the
design matrix is an attempt to answer the question of
how significant a component is with respect to specific
aspects of the experiment (and is directly analogous to
the GLM fit that is typically performed on each voxel
of the preprocessed fMRI data, however in this case it
is performed on the ICA timecourse). Thus, a high beta
weight can be considered to represent a large task-related
modulation of a component for a given regressor.

Beta weights associated with the deviants and deviants
minus standards condition were chosen for further statis-
tical analysis. In the context of ICA, we regressed this
condition to obtain beta weights that represent the degree
to which this condition modulated our ICA timecourse.
The key factor in determining between-group differences
in ICA lies within the analysis of these resulting beta

Table 2. Imaging Parameters and Number of Participants Varied Across Scanner Sites

Institution Scanner Tesla Sequence Patients Controls

Duke/UNC GE Nvi Lx 4.0T Spiral 9 11
Brigham and Women’s Hospital GE 3.0T EPI 4 5
Massachusetts General Hospital Siemens Trio 3.0T EPI 5 0
University of California—Los Angeles Siemens Allegra 3.0T EPI 7 10
University of California—Irvine Marconi Eclipse 1.5T EPI 6 9
University of New Mexico Siemens Trio 1.5T EPI 13 13
University of Iowa Siemens Trio 3.0T EPI 8 10
University of Minnesota Siemens Trio 3.0T EPI 14 13

Most scanners utilized an echo-planar imaging sequence for their functional magnetic resonance imaging blood–oxygen–level–dependent
sequences with the exception of Duke/UNC.
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weights. By performing a 2-sample t test on these beta
weights, a resulting P value can be generated that depicts
a statistical measure of difference between patients and
controls for that particular regressor. In essence, this pro-
cedure attempts to determine how differently the 2
groups modulate their particular ICA networks in
response to these two conditions.

Event-related averages were calculated for each com-
ponent’s timecourse for patients and controls separately
during the onset of the deviant stimuli. Timecourses were
overlaid for both groups that extended for 5 TRs or 10
seconds following stimulus onset. The event-related aver-

ages can be considered to depict the activation of the ICA
timecourse, reflecting the activation for a given compo-
nent and its associated brain regions. A stronger ampli-
tude for one group versus another suggests that this
timecourse is modulated more strongly than the other
group, and we can determine the direction of group dif-
ferences by observing these averaged timecourses. An-
other perspective is that the z scores associated with
the voxels for an independent component spatial map
are directly proportional to the amplitude of its associ-
ated ICA timecourse. Thus, one can visualize the areas
of high activation found from the spatial component

Fig. 1. A) An Overview of the Entire Independent Component Analysis (ICA) Starting From the Raw Functional Magnetic Resonance
Imaging datasets. The datasets must first be preprocessed before entering an ICA, and the steps used for our specific analysis are listed here. B)
Once the datasets are preprocessed, they are reduced using PCA. Each subject’s dataset is reduced in the time dimension to a parameter
specified during the analysis. These datasets are then concatenated together across time and reduced further to a final number of dimensions,
which is equivalent to the final number of components. C) ICA splits this reduced dataset (X) into a mixing matrix (W�1) that represents the
ICA timecourses and a set of associated spatial components (C). D) The ICA timecourses undergo a regression with the SPM design matrix to
create a set of betas that will be used to determine task relevance and group differences. E) The ICA design matrix used here performs
a 2-sample t test with covariates for site and scanner strength.
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maps as a strong representation of that component’s ICA
timecourse.

Statistical Analysis of Spatial Maps. The spatial maps
generated by ICA were averaged together across the 4
scans sessions resulting in 25 independent component
spatial maps for every subject. These spatial maps, rep-
resenting the regions of the brain that are related to the
ICA timecourse, were then calibrated using z scores.
Each voxel within a component’s spatial map retains
a z score. As stated before, regions containing higher z
scores reflect a greater contribution of that area to its as-
sociated timecourse. To determine the overall group ef-
fect of ICA for a given component, a random-effects
analysis of the raw spatial maps, across all subjects,
was performed in SPM5 for each individual component
using a false discovery rate (FDR) correction (FDR,
P < 1 3 10�12).29 The final maps generated from this sta-
tistical analysis were used to determine a component’s
relevant brain regions. It is important to note that the sta-
tistical analyses of the spatial maps do not determine
whether a given component is task related. It merely rep-
resents a statistical visualization of the relevant regions
for that component under a specified threshold (ie,
P < 1 3 10�12, FDR corrected).

QualityAssuranceandSiteDifferences. We attempted to
remove the effect of site differences by creating a regres-
sion model that included covariates accounting for each
site. We then applied this regression to the beta weights
that were originally generated from the regression of the
ICA timecourse with the GLM design matrix. As men-
tioned before, the determination of between-group differ-
ences (P values for a specific regressor) was initially
generated by performing a 2-sample t test on the resulting
beta weights. The difference here is in the modification of
these beta weights for site differences. The t tests were
then performed again on the resulting site-adjusted
beta weights and then converted into P values with an
FDR correction. Our results and discussion deal only
with the P values that were calculated using the site-
adjusted beta weights.

We also examined the site differences directly by aver-
aging the beta weights for our deviants versus standard
tone condition across all subjects by site and scanner
strength for each component. This allowed us to visualize
the differences between these factors and their contribu-
tions for a given component. We were concerned with the
directionality of the averaged beta weights and whether
certain sites were outliers in the analysis and thus plotted
these for 5 components that we found to be significant to
our analyses (figure 2).

Component Selection. We decided upon 3 phases for
finding components that were of interest for further
analysis. Our first criterion was that components that

showed a relatively high spatial correlation with white
matter and cerebral spinal fluid (CSF) were most likely
artifactual and could be discarded from the analysis.
To accomplish this, we correlated each ICA component
spatial map with prior probabilistic maps of white matter
and CSF within a standardized brain space provided by
MNI templates in SPM5. This process plays particularly
well to the strengths of ICA, which is known for its ability
to find noise-related components that represent head mo-
tion, physiological noise, eyeball movement, and other
signal artifacts. Components that scored a higher spatial
correlation value (r2 = 0.025) with CSF and (r2 = 0.01)
with white matter maps were not considered to be mean-
ingful activations and discarded in a manner similar to
a previous study by Stevens et al.23

Those that survived this first phase were then sub-
jected to our second criterion of experimental task
relevance. In other words, we were interested in compo-
nents that were highly correlated with the experimental
design, and we attempted to determine this by using
a GLM approach similar to one seen in SPM5. The dif-
ference lies in the timecourses that are being regressed.
In the standard GLM approach, every voxel within the
brain is subjected to the GLM design matrix, and a set of
betas are generated for each voxel as well. In this ICA
analysis, the ICA timecourse is regressed rather than the
voxel timecourse and the betas or coefficients generated
from this analysis represent how strongly the experi-
mental design modulates the ICA timecourse. For our
purposes, the beta weights associated with the deviants
conditions for each component underwent a 1-sample
t test (P< .05, FDR corrected) for patients and controls
separately. If this distribution was significant for either
controls or patients, it suggested that there was a mean-
ingful relationship between the experimental task
and the ICA timecourse that was generated. If a compo-
nent failed to show a significant relationship for this

Fig. 2. Site Differences by Averaged Beta Weights for 5
Components. Directionality of the beta weights suggests a similar
contribution for each site across components.
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condition, it was considered to be nontask related and
discarded.

Our third and final criterion consisted of determining
whether the distribution of these beta weights for each
group showed between-group significance. A 2-sample
t test P< .05 (FDR corrected) was used to determine sig-
nificant group differences for the deviants condition and a
contrast condition (ie, deviants minus standards). Those
that passed that final criterion were considered relevant
and kept for further analysis with the exception of 2 compo-
nents (C13, C23) that passed the first 2 criteria but not the
third. Their inclusion in our discussion was due to the fact
that C23 reflected a spatial activation pattern that was sim-
ilar to regions of the default mode while C13 engaged
primary auditory regions that are highly correlated in audi-
tory tasks. (table 3).

Results

Behavioral Findings

No significant differences between patients and healthy
controls were found in the percentage of correct
responses (patients = 91.6%, SD = 7.5%, controls =
93.6%, SD = 7.5%, t135 = 1.54, P < .13) and mean reac-
tion time to the deviants (patients = 468.2 milliseconds,
SD = 107.0 milliseconds, controls = 438.1 milliseconds,
SD = 104.3 milliseconds, t135 = 1.66, P < .10).

Between-Group Differences

Eight components were found that passed our selection
criteria, and these were components 1, 3, 6, 8, 17, 19, 22,
and 25 (C1, C3, C6, C8, C17, C19, C22, and C25, respec-
tively; figure 3). Many of the components found to be rel-
evant contained prefrontal regions of the brain, which
often overlapped with areas such as the ACC and
DLPFC. The most significant between-group difference

was seen in C6 (P < .0001, table 4) that displayed robust
activation within the ACC and DLPFC as well as areas
within the thalamus and insula. The event-related aver-
age for this component showed that controls exhibited
a much stronger positive modulation of this network
than patients, which most likely accounted for the signif-
icant group difference. Another component that showed
prefrontal activation was C17, which activated left
DLPFC along with large areas of the inferior and supe-
rior parietal lobules. Similar to the event-related average
for C6, this component showed a stronger positive acti-
vation for controls than patients but with a slightly earlier
positive modulation of this signal for patients. The com-
ponent that depicted bilateral DLPFC activation was
C19 along with regions within the superior parietal
and paracentral lobules. The event-related average for
this component shows a similar shape to the event-related
average for C6 but with a smaller difference in the mag-
nitude of the positive signal change between patients and
controls. Overall, these 3 components seem to occupy
and overlap to various degrees within the prefrontal
regions of the brain, with C6 heavily represented within
that area and C17 distinguished more strongly by its
activity within parietal areas.

A component that seems to delineate the visual sensory
system was seen in C25. This component contained
regions with the medial occipital lobe and was considered
to represent activation within the primary visual regions
of the brain. The event-related average for this compo-
nent shows a stronger positive modulation of this signal
for controls than patients, suggesting an interesting pat-
tern of hypoactivity for patients in response to a deviant
auditory stimulus. A component was also found that
implicated regions mainly within the cerebellum in C1,
overlapping to a small degree with C25 in areas such
as the middle occipital gyrus. For this component’s
event-related average, controls again showed a stronger

Table 3. Components That Show Significant Between-Group Differences and Their RelevantPValues When Regressed With the Deviants
Condition

Deviants Deviants (1-Sample t test) Deviants Vs Standards Deviants Vs Standards (1-Sample t test)

Components 2-Sample t Test Controls Patients 2-Sample t Test Controls Patients

1 0.0018 0.0000 0.0000 0.0033 0.0000 0.0000
3 0.0356 0.0000 0.0116 0.0377 0.0008 0.1234
6 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000
8 0.0104 0.0001 0.1759 0.0091 0.0002 0.2279
13 0.7624 0.0000 0.0000 0.6531 0.0000 0.0000
17 0.0019 0.0000 0.0000 0.0025 0.0000 0.0000
19 0.0035 0.0000 0.0000 0.0035 0.0000 0.0000
22 0.0018 0.0033 0.1388 0.0007 0.0000 0.6903
23 0.9465 0.0058 0.0020 0.8123 0.0924 0.0256
25 0.0406 0.0000 0.0000 0.0339 0.0000 0.0000

Components that showed 1-sample significance with the task for either controls or patients were allowed to undergo a 2-sample t test.
Those components that passed a false discovery rate–corrected P < .05 were pursued for further analysis.
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positive modulation than patients, but unlike other com-
ponents its peak activation was seen 5 seconds after the
onset for both groups versus the usual 3–4 seconds for
almost every other component.

We hypothesized that at least one component would
show differences in regions within the auditory cortex
based on previous schizophrenia research and due to
the auditory nature of the task.9,30 The components
with significant group differences that engaged auditory
regions within the brain were C3 and C8, which showed
activation within bilateral middle and superior temporal

gyri. Another component, C13, exhibited similar regions
that were highly task correlated but was not found to
show significant between-group differences. Considering
that auditory processing could significantly differ for
patients with schizophrenia, we were interested in the
overlap of these components and the relationship be-
tween their respective ICA timecourses. To accomplish
this, their respective spatial maps were overlaid together
on a separate figure (figure 4). Regions colored in red rep-
resented an overlap between networks. The majority of
the overlap between these 3 components seems to reside

Fig.3.An Overlay of 5 components (C1, C6,C17, C19, andC25) Thresholded at False Discovery RateP<1.0310�10. Component mapswere
generated using a 1-sample random-effects analysis via the SPM5 toolbox. Event-related averages for each component are plotted on the right
with separate timecoures for patients (red) and controls (blue dots). Other significant components (C3, C8, and C22) are shown in more detail
in later figures.
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Table 4. The Top 5 Brain Regions Within Each Component That Show the Highest Significance Based Off of a Random-Effects 1-Sample t
Test Analysis in SPM are shown here

Component 1—Talairach Regions Brodmann Areas R/L (cm3) Maximum t Values (R/L)

Culmen 12.3/12.1 28.5 (–30, –53, –18)/31.7 (12, –67, –9)
Declive 7.9/8.0 27.7 (–27, –56, –17)/30.9 (18, –62, –12)
Declive of vermis 0.3/0.4 27.5 (0, –74, –14)/30.1 (3, –73, –11)
Fusiform gyrus 19, 37, 20 4.8/3.6 24.1 (–21, –59, –10)/29.4 (21, –62, –10)
Lingual gyrus 18, 19 8.5/8.3 27.6 (–6, –73, –6)/29.3 (6, –73, –6)

Component 3
Middle temporal gyrus 21, 22, 39, 19, 37 20.0/21.2 32.6 (–56, –29, –6)/27.3(59, –46, 5)
Superior temporal gyrus 22 39, 21, 13, 42, 41, 38 19.5/18.7 25.5 (–53, –46, 13)/28.6 (59, –43, 8)
Subgyral 20, 21 7.4/6.9 27.9 (–48, –27, –9)/20.7 (48, –41, 5)
Supramarginal gyrus 40 6.1/4.2 23.2 (–56, –46, 22)/26.4(59, –54, 22)
Inferior temporal gyrus 21 20 1.2/0.1 21.5 (–56, –12, –15)/9.9 (56, –15, –17)

Component 6
Medial frontal gyrus 32 6, 8, 9 13.2/13.4 32.3 (0, 11, 44)/32.7 (3, 8, 44)
Cingulate gyrus 32 24, 31, 23 19.8/16.5 30.3 (–3, 17, 41)/32.1(3, 11, 41)
Anterior cingulate 24 32, 33 5.3/5.7 29.4 (–6, 24, 24)/28.1(6, 30, 21)
Superior frontal gyrus 6 8, 9, 10 17.7/13.1 28.4 (–3, 8, 49)/26.5(3, 8, 49)
Middle frontal gyrus 10, 9, 6, 8, 46 27.7/15.8 23.8 (–33, 36, 29)/21.0 (30, 36, 29)

Component 8
Superior temporal gyrus 38, 13, 22, 21 10.3/9.3 31.6 (–45, 8, –16)/33.6(42, 5, –15)
Subgyral 21, 20 5.8/6.8 28.0 (–45, 5, –18)/32.1 (45, 2, –15)
Middle temporal gyrus 21, 38 4.5/4.0 27.5 (–48, 5, –15)/28.8(48, 5, –15)
Extranuclear 13 1.6/3.2 20.6 (–39, 2, –10)/27.8 (42, 5, –10)
Inferior frontal gyrus 47, 13, 11 6.7/5.5 26.1 (–42, 23, –14)/27.4 (42, 17, –13)

Component 13
Superior temporal gyrus 22, 13, 41, 42, 21, 38 20.7/20.2 40.3 (–50, –14, 9)/35.5 (48, –20, 9)
Insula 13, 40, 41, 47 15.9/17.3 36.4 (–4, –14, 9)/34.8 (45, –14, 6)
Transverse temporal gyrus 41, 42 1.6/2.1 34.9 (–50, –17,12)/32.0 (50, –20, 12)
Precentral gyrus 6, 13, 44, 43, 3, 9 13.2/ 11.7 34.8 (–48, –8, 6)/34.1 (48, –11, 6)
Postcentral gyrus 43, 40, 3, 1, 2 9.6/9.9 29.6 (–48, –17, 15)/28.4 (53, –20, 15)

Component 17
Inferior parietal lobule 40, 7, 39 15.8/15.7 35.3 (–45, –41, 49)/36.6 (42, –44, 49)
Subgyral 40, 6, 7, 37, 10 5.6/12.6 22.8 (–36, –39, 43)/31.9 (36, –41, 46)
Postcentral gyrus 40, 5, 2, 3, 7, 1 6.5/14.0 26.9 (–48, –33, 49)/29.5 (48, –33, 49)
Superior parietal lobule 7, 5 6.7/6.8 27.5 (–36, –56, 50)/28.7 (36, –53, 52)
Precuneus 7, 19, 39 7.3/12.0 26.0 (–36, –65, 42)/24.4 (27, –56, 50)

Component 19
Inferior parietal lobule 40 5.5/5.6 18.8 (–62, –31, 26)/18.6 (56, –34, 27)
Postcentral gyrus 7, 5, 40, 2, 1, 3, 43 5.4/3.5 24.0 (–6, –49, 63)/26.6 (6, –49, 63)
Superior temporal gyrus 22, 38, 42, 13, 39 5.0/5.2 23.2 (–53, 11, –6)/23.2 (45, 11, –6)
Insula 13, 47 4.8/5.5 23.9 (–42, 11, –3)/22.6 (45, 9, –3)
Paracentral lobule 5, 3, 7, 4, 31, 6 4.8/3.1 27.2 (–3, –44, 55)/27.0 (3, –44, 55)

Component 22
Precuneus 31, 7, 39, 19, 23 27.3/25.3 46.9 (–6, –57, 30)/41.0 (3, –48, 33)
Cingulate gyrus 31, 24, 23 14.6/12.6 44.8 (–6, –45, 33)/42.8 (3, –45, 35)
Posterior cingulate 23, 31, 30, 29 3.7/4.4 40.2 (–6, –48, 25)/37.3 (6, –54, 25)
Cuneus 7, 19, 18 3.0/2.9 40.1 (–3, –65, 31)/36.9 (3, –65, 31)
Subgyral 6.1/4.4 30.3 (–12, –51, 25)/21.2 (15, –54, 25)

Component 23
Posterior cingulate 30, 23, 29, 31, 18 6.5/9.1 37.7 (–6, –55, 17)/45.8 (6, –55, 11)
Precuneus 23, 31, 7, 19, 39 7.7/8.2 37.3 (–6, –60, 20)/41.0 (9, –60, 20)
Parahippocampal gyrus,
hippocampus, amygdala

30, 36, 19, 37, 35, 27, 28, 34, 20 10.7/9.9 35.6 (–12, –49, 5)/32.5 (9, –46, 5)

Cuneus 30, 18, 7, 23, 17 2.8/4.2 25.7 (–9, –58, 6)/32.4 (9, –61, 9)
Culmen 4.1/4.5 28.3 (–9, –49, 2)/32.0 (9, –49, 2)

Component 25
Posterior cingulate 30, 31, 23, 18, 29 5 1/4.5 41.3 (–6, –69, 12)/34.5 (12, –66, 12)
Cuneus 30, 23, 18, 17, 19, 7 21.3/ 21.4 39.8 (–6, –67, 9)/41.2 (3, –72, 9)
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in between bilateral anterior and posterior middle tempo-
ral gyri. Common regions of activation for C8 and C13
show a stronger overlap in the middle temporal gyrus,
while the overlap for C3 and C13 can be found in supe-
rior temporal regions. Regions unique to each compo-

nent were seen in prefrontal areas and posterior
temporal gyri for C3, inferior frontal and parahippo-
campal gyrus for C8, and cerebellar and anterior tempo-
ral gyris for C13. We found that C13 exhibited the
strongest positive activation across all components

Fig. 4.An Overlay of 3 Components That Represent Possibly Auditory Networks (C3, C8, and C13) Thresholded at False Discovery RateP<
1.03 10�10. Areas in red represent an overlap between 2 components where each row represents a distinctive pair of networks. Event-related
averages for each component are also shown below with separate timecourses for patients and controls.

Table 4. Continued

Component 1—Talairach Regions Brodmann Areas R/L (cm3) Maximum t Values (R/L)

Lingual gyrus 18, 17, 19 13.4/12.9 37.4 (–6, –73, 4)/38.6 (6, –70, 3)
Precuneus 31, 7, 19, 23 9.6/6.4 33.4 (–6, –69, 20)/27.5 (3, –74, 29)
Subgyral 6.5/2.0 27.7 (–18, –69, 23)/17.2 (24, –67, –2)

Note: A Talairach labeling system was used to determine regions of significance at a threshold of (P < 1.0 3 10�10, false discovery rate).
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and found activation in regions such as the superior and
transverse temporal gyri, which suggests that this com-
ponent might be strongly linked to primary auditory
regions. Similar to previous patterns of hypoactivity
in patients, these 3 components showed a stronger pos-
itive modulation of the ICA timecourse in controls dur-
ing the onset of the deviant stimulus.

We also found a component that represented the DMN
in C22 and C23, where both networks shared activation in
the posterior cingulate along with regions within the pre-
cuneus/cuneus. Only C22 was shown to exhibit significant
between-group differences, but considering the similari-
ties between their respective spatial maps we were again
interested in comparing these 2 networks (figure 5).
Concerning brain regions of activation, these 2 networks
differed in that C23 showed activation in the parahippo-
campus, middle frontal gyrus, and cerebellum, while C22
uniquely showed activation in the thalamus while display-
ing more robust activation in the regions surrounding the
posterior cingulate and precuneus. Significant overlap of
activation was seen in the posterior cingulate and precu-
neus/cuneus regions along with a small area of the medial
frontal gyrus. The event-related averages for C22 show
a similar level of deactivation for controls and patients

but with a significant delay for patients. Interestingly,
the positive modulation of this timecourse differs drasti-
cally for controls and patients, where controls begin to
return to baseline when t = 3, while this does not occur
until t = 5 for patients.

Discussion

Using ICA, we identified multiple functionally connected
networks involved in auditory target detection. Further-
more, we showed significant differences in schizophrenia
patients in many of the networks that include regions
commonly implicated in the illness, such as the bilateral
temporal lobes, default-mode regions, and DLPFC. No-
ticeable decreases in the positive modulation of the ICA
timecourses in patients suggest decreased brain activity
relative to controls during auditory target detection,
which might be further linked to the aberrant activity
we found in the DMN. Abnormalities in multiple net-
works in schizophrenia suggest that the level of cognitive
dysfunction is diffuse and widespread. This provides fur-
ther support of theories suggesting that aberrant brain
connectivity is a significant biological marker of the path-
ophysiology of schizophrenia.11,24,31–33

Fig. 5. A Detailed Overlay of Default-Mode Networks (C22 and C23) Thresholded at False Discovery Rate P < 1.0 3 10�10. Red areas
represent overlapping regions of activation for both components. Event-related averages below for each component show a negatively
modulated ICA timecourse.
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Consistent with our hypothesis, we found deficits in au-
ditory networks in patients with schizophrenia, similar to
those seen by others,9,34 including bilateral temporal
lobes, anterior cingulate, and cerebellum. From our
results, C3 and C8 characterized a bilateral temporal net-
work containing regions such as the superior temporal and
middle temporal gyri while also revealing significant be-
tween-group differences between patients and controls.
However, we also considered C13 to be a component of
interest because it uniquely depicted activation within
the transverse temporal gyrus, a region synonymous
with the primary auditory cortex, which suggested that
this component was possibly engaged in the first-level pro-
cessing of the auditory task stimulus.35 Although ICA
does not allow us to directly address this, a hierarchical
relationship could exist where C13 represents a network
that modulates the activation of C3 and C8. A recent study
using diffusion tensor imaging (DTI) and Granger causal-
ity mapping (GCM) found structural and effective con-
nectivity interactions between posterior and anterior
STG during a simple sentence comprehension.36 The over-
lapping regions for C3 and C8 also follow a similar rela-
tionship, where C3 shows a stronger posterior STG
overlap and C8 exhibiting a more anterior STG localiza-
tion. These common areas of activation suggest that one of
the possible deficits in schizophrenia might occur during
the transition from these primary regions to higher level
associative regions. Deficits in the maintenance of selec-
tive attention during ERP recordings of a similar para-
digm support this idea and suggest a possible aberrant
connectivity between these frontal-temporal regions.37

A large number of studies have recently focused on the
DMN and its relation to other regions within the brain.
This network is a hypothesized conglomeration of
regions that are recruited during a baseline state of activ-
ity when the participant is not engaged in any goal-
directed behavior.38 A recent study by Garrity et al,11 us-
ing ICA on a similar auditory oddball paradigm, showed
that patients with schizophrenia exhibit aberrant connec-
tivity within this particular network, which consists of
regions such as the posterior cingulate, precuneus, cingu-
late gyrus, and cuneus. Using the same analysis methods
on a slightly modified oddball paradigm, we found that
our results from C22 replicate that previous study. The
event-related average for this component shows that
patients tend to remain longer than controls in a nega-
tively modulated state followed by a significantly weaker
positive modulation. This might suggest that schizophre-
nia patients have difficulty shifting away from their base-
line activity and modulating other networks accordingly
to the task at hand. Our overlay of this component with
C23 is an attempt at further exploring the interesting sim-
ilarities and dynamics seen in both networks through
ICA and to suggest that the regions normally associated
with the DMN could be represented as multiple net-
works, also stated by Buckner et al.14 In a similar vein

to the auditory networks mentioned above, the stronger
modulation of C22 could represent a primary baseline
network that is further dissociated into other DMN
regions as a secondary system. The strong overlap be-
tween the posterior cingulate, precuneus/cuneus, and an-
terior cingulate regions for both components and their
negative modulated timecourses suggest a possible func-
tional relationship between them, which our current anal-
ysis cannot confirm. However, there are established
methods that determine temporal correlations24 and
causal relationships39 between these independent compo-
nents and future studies that probe this relationship could
further strengthen this hypothesis.

There were multiple networks involving prefrontal
regions such as C6, C17, and C19, including DLPFC, a re-
gion known to be involved in working memory.40 This
regions is also found to be consistently dysfunctional
in schizophrenia41,42 and their unaffected first-degree rel-
atives, suggesting a genetic basis for DLPFC dysfunc-
tion.43 The event-related averages for these 3 networks
show that patients are exhibiting a level of hypofrontality
supported by previous fMRI studies of schizophre-
nia.44–46 As for C17, there seems to be a large difference
not only in the amplitude of the timecourse but also in its
shape where patients show an almost absent modulation
of the timecourse. A similar component was seen in a pre-
vious resting-state analysis of fMRI subjects using ICA
and was initially proposed as representative of a dorsal
visual stream network.12 If so, this would provide further
support to studies that have shown sensory deficits in
schizophrenia affecting dorsal visual pathways within
the brain.47,48

Involvement of these anatomical areas in target detec-
tion tasks, as well as their reductions in schizophrenia, is
consistent with the large P300 literature showing P300
amplitude reductions in the illness.49,50 Like the activa-
tions associated with target detections, P300 is generated
in widespread cortical areas of the lateral prefrontal cor-
tex, temporoparietal junction, and parietal lobes.51 The
similarity of these findings across different modalities
(fMRI and ERP) suggest that these areas might represent
a consistent biological marker in the characterization of
schizophrenia.

It is important to stress that the independent cognitive
systems found using ICA are not necessarily unique for
every analysis. For our purposes, C1, C6, C17, and C25
can be considered components that have been represented
in a previous resting-state connectivity study using
ICA.12,13,52 C1 exhibited strong robust activation within
the cerebellum and has been found in previous ICA anal-
yses of auditory oddball experiments and resting-state
analyses.53 Differences within this network also support
previousstudies that show dysfunction incerebellar regions
for schizophrenia as well as providing some support to the
cortico-cerebellar-thalamic-circuitry dysruption theorized
by Andreasen et al.54 In C6, the activation of superior
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and middle frontal gyri along with the anterior cingulate
have suggested that this network might represent an exec-
utive control system that engages in overriding other
regions of the brain to implement cognitive control.55

For C25, activation in the medial visual cortical areas sug-
gests that this network might engage primary visual areas
that are further linked to the thalamus for further visual
processing.56 A recent study by Calhoun et al53 using ICA
showed a similar component in both an auditory oddball
task and a resting-state task along with group differences
between schizophrenia patients and controls. This high-
lights one of the advantages of using a method such as
ICA, which can extract signals that represent possible
functional networks, which could then turn out to be
highly task related. Examination of how these systems
are modulated might yield the greatest insight into the bi-
ologically consistent features of schizophrenia and the
cognitive deficits that often accompany them.

Although the availability of a larger subject sample size
for fMRI analysis (assuming the task is well controlled
and the subjects carefully chosen) leads to a more power-
ful test of a given hypothesis, the cognitive heterogeneity
of schizophrenia suggests that biomarkers relevant to this
disorder might be obscured due to group averaging.57The
fact that this analysis was a conglomeration of multiple
datasets across different sites adds to the concern of het-
erogeneity, and we attempted to account for this effect by
including site as a covariate in our regression models.
There are also certain limitations to ICA that must be
considered. Though it gains certain advantages from be-
ing a data-driven algorithm, it is limited by the constraint
that these functional networks are considered a linear
mixture of independent signals. In this regard, nonlinear
approaches to ICA might find very different networks
that are indicative of meaningful brain activity. Also,
functional connectivity differences in a general ICA anal-
yses are limited to the differences found in the modula-
tion of the ICA timecourse, and thus, the exact nature of
this difference, (ie, whether a specific region within the
network is responsible for these differences) cannot be de-
termined unless higher order analyses such as effective
connectivity measures are performed.7,58–60

The medication history of patients with schizophrenia
was not accounted for during the fBIRN study. Patients
were considered to be evaluated with chronic schizophre-
nia and stabilized with medication by a medically licensed
physician. However, a detailed history of medications
would provide the possibility for interesting correlational
analyses with the results from ICA as well as accounting
for possible confounds caused by these medications. It
would also allow us to determine if particular psycho-
tropics used by certain patients had a significant affect
on the results of our ICA analysis. The effects of psycho-
tropics on cognitive activity are often hard to assess, but
they all have in common the ability to block D2 receptors.
However, these medications differ in the potency of this

blockade and vary in the types of receptors that are af-
fected. Thus, a medication that is highly muscarinic may
have some cognitive slowing and could present a potential
confound in our analysis. Another possible limitation of
our study can be in our decision to group schizoaffective
patients with schizophrenia patients. If there are strong
neurobiological differences in the pathology of one ver-
sus the other, it could then represent a potential confound
in our analysis.

The elucidation of cognitive deficits in schizophrenia
has been an important step toward parsing the neurocog-
nitive pathology of this highly complex disorder. The
analysis of these deficits in neuroimaging studies can ben-
efit from the application of various signal-processing
techniques. Using ICA, we were able to identify function-
ally independent networks that coincide with regions pre-
viously associated with the auditory oddball paradigm.
We identified multiple networks that are implicated in
schizophrenia that might play a significant role in the
characterization of this disorder. We found a strong con-
centration of networks that lie within the DLPFC regions
along with bilateral temporal lobes. Our results also
showed that the DMN was implicated in schizophrenia,
confirming previous studies that have found similar
results using ICA. Future studies could benefit from a fo-
cus on the interaction of these networks and their distinc-
tion from one another, which could further elucidate
important cognitive characteristics associated with schizo-
phrenia. The benefits of our approach are in the large-scale
analysis of multiple subjects using an approach that is able
to identify deficits in functionally connected networks that
are not contingent on a predefined hemodynamic re-
sponse. Our findings support and extend the numerous
studies that have identified similar regions associated
with cognitive deficits in patients with schizophrenia.
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