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Cells have evolved biomolecular networks that process and re-
spond to changing chemical environments. Understanding how
complex protein interactions give rise to emergent network prop-
erties requires time-resolved analysis of cellular response under a
large number of genetic perturbations and chemical environments.
To date, the lack of technologies for scalable cell analysis under
well-controlled and time-varying conditions has made such global
studies either impossible or impractical. To address this need, we
have developed a high-throughput microfluidic imaging platform
for single-cell studies of network response under hundreds of
combined genetic perturbations and time-varying stimulant se-
quences. Our platform combines programmable on-chip mixing
and perfusion with high-throughput image acquisition and pro-
cessing to perform 256 simultaneous time-lapse live-cell imaging
experiments. Nonadherent cells are captured in an array of 2,048
microfluidic cell traps to allow for the imaging of eight different
genotypes over 12 h and in response to 32 unique sequences of
stimulation, generating a total of 49,000 images per run. Using 12
devices, we carried out >3,000 live-cell imaging experiments to
investigate the mating pheromone response in Saccharomyces
cerevisiae under combined genetic perturbations and changing
environmental conditions. Comprehensive analysis of 11 deletion
mutants reveals both distinct thresholds for morphological switch-
ing and new dynamic phenotypes that are not observed in static
conditions. For example, kss1A, fus3A, msg5A, and ptp2A mutants
exhibit distinctive stimulus-frequency-dependent signaling pheno-
types, implicating their role in filtering and network memory. The
combination of parallel microfluidic control with high-throughput
imaging provides a powerful tool for systems-level studies of
single-cell decision making.

yeast | systems biology | microscopy | live-cell imaging

C ellular processes are governed by complex protein signaling
networks that function as robust and dynamic control sys-
tems, ensuring appropriate responses to sustained and transient
stimuli. These networks feature emergent properties, including
bistability, adaptation, and memory that make their behavior
inherently dependent on previous stimulation and current cell
states. As examples, system bistability provides a selective ad-
vantage by allowing populations of cells to test the responses of
alternative states to a given condition (1, 2); network adaptation
to a sustained change in stimulant concentration limits the
metabolic cost of a sustained response (3, 4); and network
memory allows more rapid accommodation of recurrent stimu-
lations (5, 6). Because of experimental tractability, these emer-
gent properties were first studied in model systems and have
recently been uncovered in key mammalian regulatory networks,
including those dysregulated in disease (7).

Because of the facility of genetic manipulations and availabil-
ity of reporters, yeast has emerged as the prototypical model of
cell signaling. In particular, the pheromone response pathway in
Saccharomyces cerevisiae is arguably the best-characterized mi-
togen-activated protein kinase (MAPK) signaling network and

3758-3763 | PNAS | March 10,2009 | vol. 106 | no. 10

has been a particularly fruitful model of eukaryotic signaling.
MAPK signaling is of central importance to a wide range of
cellular decision-making processes, responding to a staggering
range of stimuli, including growth factors, cytokines, hormones,
cellular adhesion, stress, and nutrient conditions (8). Regulated
signaling governs cellular growth and differentiation whereas
deviations from normal MAPK regulation are implicated in the
onset of disease, including cancer (9).

The yeast pheromone response is initiated by the binding of a
mating peptide, either a-factor or a-factor, to a membrane-
localized G protein-coupled receptor, either Ste2 or Ste3 on
MATa or MATa cells, respectively. Pheromone signaling is
communicated through a MAPK signaling cascade that ulti-
mately results in the phosphorylation of key substrates, including
the cyclin-dependent kinase inhibitor Farl, which initiates
growth arrest, and the transcription factor Stel2, which activates
a program of gene expression involving >200 genes (8, 10-13).
Despite the wealth of detailed information gleaned from 30 years
of biochemical and genetic studies, the vast majority of these
data are qualitative and derived from measurements of cellular
response under conditions of constant a-factor levels. More
recently, genome-wide analysis of transcription, protein expres-
sion, and protein interactions has been applied to systems-level
studies of the pheromone response, delineating the tapestry of
protein—protein interactions that mediate signaling (14, 15).
However, these studies are limited by poor temporal and spatial
resolution, making it difficult to probe the dynamics of network
function. Perhaps most importantly, these methods require the
study of large populations of cells and are completely blind to cell
differences that arise from a combination of desynchronization,
bistability, and stochastic variation in gene expression.

The combination of fluorescent reporters and quantitative
microscopy has recently been used to address cell-cell variability
in the yeast mating response under constant environmental
conditions (2, 16). Such techniques are scalable to high-
throughput formats in multiwell plates but provide only crude
control over the microenvironment and are poorly suited to the
study of response dynamics or history effects. Indeed, little is
known regarding cellular regulation in dynamically changing
environments. This dearth of understanding is largely because of
the technological challenges involved in precisely controlling
time-varying conditions and limitations in throughput. Achiev-
ing a quantitative understanding of protein network function
requires new tools for high-throughput studies under a large
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number of genetic perturbations and changing chemical envi-
ronments and with single-cell resolution (17).

In particular, microfluidics offers the combined advantages of
precision fluid control necessary for exchange of media condi-
tions around cells and scalability for parallel analysis of multiple
conditions on a single device. In yeast, the precise microfluidic
control of conditions has been applied to investigations of
modest number of genotypes or chemical conditions under both
constant (2, 18) or changing (19-21) media conditions. More
scalable devices have been applied to the culture and analysis of
mammalian cells on-chip (22, 23) although these have to date be
focused primarily on adherent cell types (22, 24, 25). In partic-
ular, microfluidic large-scale integration (26, 27) of devices
having hundreds to thousands of valves has proven a powerful
technique for simultaneously realizing the advantages of tem-
poral control over media conditions and scalability of culture.
Here, we further extend the throughput and functionality of this
approach in the development of a microfluidic high-throughput
single-cell analysis platform optimized for live-cell imaging
studies of yeast. This system features a throughput of 256
simultaneous perfusion experiments with nonadherent yeast,
integrated on-chip mixing, and control software for program-
mable control of media conditions and image-processing algo-
rithms and computational infrastructure for large-scale data
analysis.

We use our platform to investigate the role of signaling genes
in network memory and the filtering of transient stimulation.
Recent studies have demonstrated the capacity for memory in
cellular circuits, including the pheromone pathway (28), but were
limited to long-time scales (5) or in very few conditions (6, 28).
Using our microfluidic platform we examined cellular memory
by performing >3,000 experiments investigating the combined
effect of gene deletions and changing stimulant conditions on the
mating response. These studies show that the mating system
depends strongly on the frequency of stimulation and identifies
genes that play a dominant role in regulating memory.

Results

High-Throughput Microfluidic Live-Cell Imaging Platform. To test the
combined effect of genetic perturbations and chemical se-
quences on mating response we developed a microfluidic live-
cell imaging matrix in which eight yeast strains are tested against
a total of 32 stimulant-concentration sequences for a total of 256
simultaneous experiments (Fig. 14). Unique genetic and chem-
ical conditions are created along the matrix columns and rows,
respectively. During cell loading, all columns are isolated by
actuation of row-valves (top to bottom) (Fig. 1B Top), confining
each yeast strain to a unique column without cross-
contamination. At each vertex of the matrix, the loaded cells
were trapped in a perfusion chamber formed by a series of cell
traps designed to immobilize yeast while allowing for the rapid
and complete exchange of surrounding media (Fig. 1 B Bottom
and C). Each cell trap consists of a partially closed valve that,
when actuated, creates a cell filter to allow media exchange while
retaining the cells [supporting information (SI) Fig. S1]. Cells
are loaded through each column unimpeded and then trapped
stochastically upon hydraulic actuation of the trap valves at ~120
kPa of pressure. At each of the 256 perfusion chambers, five sieve
valves are actuated over a doubled flow line to create eight cell
traps (2,048 per device). The size of these chambers is easily
adjusted and in the current experiments was designed to accom-
modate ~600 cells before reaching confluence.

Perfusion of immobilized yeast allows for studies under well-
defined and time-varying chemical conditions. Our device fea-
tures fluidic elements for the periodic programmable mixing and
delivery of chemical formulations to each row of the matrix to
generate arbitrary chemical sequences of nutrient and stimulant
concentrations in time. On-chip generation of programmable
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Fig. 1. Schematic of the microfluidic device. (A) Layout of microfluidic
live-cell imaging matrix. Device features two layers of channels including a
flow structure (blue), in which cells and reagents are introduced, and a control
structure (red) for pneumatic valves. Regions of the device are indicated
including (1) cell-loading ports, (2) experiment matrix, (3) chemical inputs and
control, (4) peristaltic pump, (5) fluidic multiplexer, and (6) waste outlet. Each
column of imaging matrix corresponds to a single yeast genotype. Each row
corresponds to a single experimental condition. (B) Control architecture for
cell loading and perfusion. Dark red and orange or transparent red and
orange lines indicate actuated and nonactuated control lines, respectively.
(Top) Valve actuation isolated columns to direct flow through matrix during
cell loading. (Middle and Bottom) During perfusion (Middle) rows are iso-
lated, and flow is directed horizontally across the matrix perfusion chambers
(Bottom) formed by arrays of pneumatically actuated cell traps (dark orange).
(C) Differential interference contrast image of cell yeast cells in perfusion
chambers. (D) Stimulation conditions. (1) Step function. The cells are stimu-
lated with constant a-factor solutions, with different pulse heights (Ah)
(a-factor concentrations). (2) Pulse function. The cells are stimulated with a
transient a-factor solution, with different pulse heights (Ah) and pulse widths
(Aw) (duration of stimulus) analyzed. (3) Short repeated pulses. The cells are
stimulated with short repeated pulses of a-factor with different pulse heights
(Ah) and different delays between pulses (Ad). (E) Pheromone pathway. Gray
nodes indicate genes deleted in this work. Only selected interactions are
displayed for clarity. Arrowheads represent activating interactions; blunted
lines represent repressive interactions.

chemical conditions is accomplished by a peristaltic pump that
precisely meters varying proportions of eight stock reagents to
enable accurate and continuous control of stimulant concentra-
tion. Sequences of varying numbers of 120-pL aliquots of the
input reagents are mixed in line by Taylor dispersion as they are
transported from the mixing element to the array (Fig. 2E). A
single mixing element controls all rows of the matrix by using a
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Fig.2. Matingresponse to persistent a-factor stimulation. (A and B) WT time
course data showing mean and variation of response to constant stimulation
with 20 nM o-factor. Stimulated with a-factor at t = 0 is indicated by shading.
(A) Measured GFP concentration, reporting mating-specific gene expression,
of each cell, with mean of population indicated in red. (B) Number of cells in
the chamber as a function of time showing arrest under «-factor stimulation.
(C) Time course and dose response of mean GFP concentration in WT cells for
all a-factor concentrations. (D) Strain comparison of signaling under constant
stimulation. Initial dGFP/dt for all strains at the given concentrations relative
to WT is shown (see S/ Text). Initial dGFP/dt is calculated as the slope of a line
fitted to the population averaged GFP concentrations between 30 and 180
min. (E) Performance of on-chip chemical formulation. Fluorescent measure-
ments of 32 concentrations generated on-chip as detailed in S/ Text and Table
S1 are shown.

time-division multiplexing strategy in which each row is sequen-
tially addressed by using a fluidic multiplexer (26). Between
sequential perfusions the entire fluidic path connecting the
mixer and matrix is purged through wash channels located
between every row, thereby eliminating cross-contamination.
Experiments using a fluorescent tracer show that contamination
between rows is <1 part in 10,000, which was the detection limit
of our detector. Automated perfusion of each row is performed
periodically during experiments at ~100-s intervals to maintain
nutrient levels, remove metabolites, and change conditions,
thereby enabling long-term study of response under constant
(chemostatic) or changing (chemodynamic) conditions. The
measured generation time for yeast grown in SCD medium at
room temperature was 220 min and was found to be independent
of seeding density <200 cells per chamber, resulting in an ~10X
increase in cell number over a 12-h experiment. This growth
rate is consistent with off-chip measurements in bulk culture
(=240 min).

Throughout each experiment, the cells are confined in the
vertical direction by 3.5-um height of the perfusion chambers,
restricting them to a monolayer of cells in a single focal plane and
allowing for long-term imaging over multiple generations (Fig.
S2). In each experiment, high-resolution brightfield (Nomarski)
and fluorescence images of all 256 chambers were taken with
15-min time resolution over the entire length of each experiment
(12.5 h). Two fields of view are required for complete imaging
of each chamber so that a single experimental run generates
>50,000 images capturing millions of single-cell measurements.
To handle the volume of raw image data, we developed an image
analysis pipeline to record single-cell data, including cell num-
ber, cell size, cell morphology, and concentration of a fluores-
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cent gene expression reporter molecule [green fluorescent pro-
tein (GFP)] (Fig. S3).

Imaging Studies of Pheromone Response Pathway. Microfluidic
parallelization allows for the simultaneous collection of unified
datasets in a single experiment, thereby allowing for sensitive
comparisons of wild-type (WT) with multiple mutant responses
under a wide array of changing chemical conditions. We inves-
tigated the signaling response of WT cells and a panel of 11
mutants having deletions of mating signaling genes (DIG2,
RGAI, RGA2, SLT2, MSGS5, PTP2, FUS3, KSS1, STE50, FARI,
and BEM3) that are reported to have subtle or complex mutant
phenotypes under constant a-factor stimulation (10, 13, 29-32).
Mutant response was screened against a wide range of static and
time-varying (Fig. 1D) conditions, including (i) constant stimu-
lation under finely varied concentrations to measure dose—
response of pathway activation and morphological variability; (i7)
transient pulses of varying concentration and duration to mea-
sure pathway deactivation and adaptation; and (iif) repeated
short pulses of varying concentration and frequency to measure
cellular memory of transient stimulation (Fig. S4). Mating-
specific gene expression was reported by using an enhanced GFP
gene under the control of a minimal promoter including the
tandem pheromone-response elements of the PRM1 promoter
(33). The BARI gene, encoding a secreted a-factor protease, was
deleted from all strains to focus on the roles of intracellular
elements. Details of strain construction are included in the
online SI Text.

Response Under Chemostatic Conditions. Frequent medium ex-
change allows for precise control of chemical conditions over
long times to perform highly resolved studies of the dose—
response of signaling output (Fig. S5). Using this control, we
validated our platform in the high-throughput analysis of all 12
genotypes under static conditions of finely varied oa-factor
concentrations. Using five identical devices, we tested 8 strains
per device with at least three replicates for each of the 12 strains.
This analysis rapidly and faithfully reproduced a broad range of
observations collated from previous studies (2, 16) and further
extended these results in terms of the number of chemical
conditions, range of genetic perturbations, and temporal reso-
lution. The signaling response of all strains was measured across
32 exponentially distributed a-factor concentrations, ranging
from 1 to 100 nM. Gene expression was detectable over the full
range of concentrations and showed a 15-fold increase at satu-
rating concentrations of 30-100 nM a-factor (16). A represen-
tative dataset for one of the 256 experiments, showing the
distribution of single-cell GFP expression and growth rate for
WT cells <20 nM a-factor stimulation, is shown in Fig. 2.4 and
B. The signaling response was mapped for each mutant as
high-resolution GFP expression surfaces, showing the interplay
among stimulation strength, time, and GFP concentration (Fig.
2C for WT). The simultaneous testing of identical stimulation
conditions in multiple strains allows for precise comparative
analysis by normalization of expression to WT response (Fig.
2D). Under constant stimulation, we identified hyperresponders
(kss1A, msg5A, and ptp2A), WT-like responders (fus3A, slt2A,
dig2A, rgalA, rga2A, and bem3), and hyporesponders (farlA and
ste50A) (Fig. 2D). Generally, the degree of differential expres-
sion was found to be concentration-dependent, with hyper- and
hyporesponding phenotypes exhibited most strongly at low non-
saturating a-factor concentrations, highlighting the context-
specific effect of nonessential genetic perturbations to network
output (2, 16).

High-throughput imaging allows for the direct comparison of
morphological transitions across varying genetic backgrounds as
a function of a-factor dose. Gene expression, cell cycle arrest,
and cell morphology changes are tightly coupled in the mating
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Fig. 3. Morphological and transient stimulation responses. (A-C) Morpho-

logical response of WT (A), msg5A (B), ste50A (C) across all a-factor concen-
trations under constant stimulation. Color code for morphology shows rep-
resentative images of yeast form cells (YF) at 3.2 nM (red); hyperelongated
cells (HE) at 17 nM (blue), and shmoo cells (S) at 90 nM (green). The figures
presents the mean GFP concentration, reporting mating-specific gene expres-
sion as a function of a-factor concentration for each classification, with dot
opacity indicating the fraction of cells with that morphology. Error bars
represent SD of measured GFP expression for cells of each morphology.
Measurements were taken 360 min after exposure to pheromone. (D and E)
WT time course response to a 180-min duration 50 nM a-factor pulse. Cells are
stimulated with a-factor at t = 0; shading indicates the presence of a-factor.
(D) GFP concentration, reporting mating-specific gene expression per cell with
mean of population indicated in red with nearest-neighbor time point aver-
aging used to smooth the mean curve. (E) Total number of cells vs. time
showing transient growth arrest during a-factor pulse. Each blue diamond is
the total number of cells in the microchamber array at a given time. (F)
Representative data of population mean GFP concentration in response to
transient a-factor pulse of varying duration. Data are shown for 20 nM
a-factor condition.

response. However, in contrast to mating pathway-dependent
gene expression, which increased continuously with increasing
a-factor concentration, cell cycle arrest and morphological tran-
sitions were found to exhibit defined thresholds. Analysis of
single-cell morphology after 6 h under varying a-factor concen-
trations reveals three distinct cell types: proliferating ovoid cells
at very low concentrations (<4 nM), highly elongated cells at
intermediate concentrations (4-20 nM), and cells with shmoos
(mating projections) at high concentrations (>20 nM). At
intermediate a-factor concentrations (4-20 nM), we find the
coexistence of all three morphological types (2, 34-37) with
characteristic levels of transcriptional output, a phenomenon
that has been attributed to network bistability (2). Fig. 34 depicts
average WT gene expression in each morphological cluster after
6 h. Interestingly, some mutant strains were found to undergo
morphological transitions at different thresholds of a-factor
concentration and to support the coexistence of phenotypes over
differing concentration ranges (Fig. S6). For example, the mor-
phological switch in msg5A mutants is more sensitive, exhibiting
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elongated morphologies at lower a-factor concentrations than
WT (Fig. 3B). In contrast, ste50A presents no elongated mor-
phology at any concentrations tested at 6 h (Fig. 3C). Interest-
ingly, fus3A displayed a delayed morphological response, with no
observable elongation or shmooing until 10 h.

Pathway Response Under Dynamic Stimulation. Single-pulse experi-
ments. Microfluidics offers unique opportunities for measuring
cellular response to precisely controlled time-varying stimula-
tion and with high temporal resolution (19, 20, 38). We used this
temporal control to investigate differences in network memory
between mutants. In particular, the propagation of signal
through the MAPK network results in changes in the dynamic
state of the system, including alterations in protein expression,
phosphorylation, localization, and complex assembly. These
changes modulate the ability of the network to transmit signals
(network capacity), giving rise to memory effects in which the
cellular response is history-dependent (5).

We first measured cellular response to transient a-factor and
tested whether cellular recovery depends on duration of stimu-
lation. We stimulated yeast with single-transient pulses of
a-factor across a broad range of both stimulation strength and
pulse duration; all combinations of four a-factor concentration
(5, 10, 20, and 50 nM) and eight pulse widths (20, 40, 60, 90, 120,
150, 180, and 210 min) were tested. Consistent with experiments
under static conditions, we observed no threshold of response
and measured expression in all conditions (Fig. 3F and SI Text).

Release from stimulation resulted in a characteristic decay
time of 3.6 h, beginning ~30 min after release, which was
independent of pulse duration and the maximum level of GFP.
This is consistent with reported GFP maturation times and
dilution of GFP during cell growth, suggesting that the rapid
deactivation of signaling output is independent of input dose
(Fig. 3F). In contrast to the case of periodic stimulation (de-
scribed below), single-pulse stimulation revealed no new differ-
ences between mutants, suggesting that any changes in network
dynamics arise through transients with fast characteristic time
scales or adaptation occurring at very long time scales. Similarly,
analysis of cell cycle response (Fig. S7C) indicates that cell
growth quickly resumes upon a-factor removal (Fig. 3E). No
morphological changes were observed in any cells for pulses
shorter than 90 min even at saturating a-factor concentrations,
indicating that the emergence of a full mating response requires
sustained stimulation. Directly probing signaling at faster time
scales by using single-pulse experiments is limited by low ex-
pression and the long maturation time of GFP and will require
future studies with faster reporters such as those using fluores-
cence resonance energy transfer, photoactivatable GFP (39), or
mRNA tagging (40).

Response to periodic stimulation. Under constant stimulation, dif-
ferent deletion mutants may exhibit phenotypes that are indis-
tinguishable, thus making it difficult to assign unique functions
to these genes. These genes may nonetheless have distinct roles
in controlling short time-scale network dynamics and thus may
be separated by analysis under varying stimulation. Although
these differences are difficult to detect with fluorescent protein
reporters, the monitoring of response under periodic stimulation
allows for integration of the GFP output to amplify subtle
differences across conditions and mutant genotypes. We used
this strategy to investigate mutant variations in pathway memory
by measuring transcriptional output to repeated 10-min pulses of
pheromone of varying frequency. All strains were tested under
repeated pulse conditions of varying concentrations (5, 10, 20,
and 50 nM) and delay times (15, 40, 65, and 140 min) between
pulses (Fig. 44). Although the WT response was found quali-
tatively to increase with total time-averaged a-factor dose, there
were notable deviations from this trend that suggest a more
complicated dependence on the frequency response of signaling.
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Fig.4. Mating response to short repeated pulses of a-factor. (A) Population
mean GFP concentration, reporting mating-specific gene expression, of WT
cells for the 50, 20, 10, and 5 nM a-factor concentrations across four pulse
delay lengths (15, 40, 60, and 140 min). In each condition, 10-min pulses of
a-factor are used. The green rectangles depict the four pulse patterns of
a-factor stimulation over time; values indicated delay time in min. (B) Sensi-
tivity of kss7A, fus3A, msg5A, and ptp2A mutants under periodic stimulation
under conditions of varying a-factor concentration (columns) and pulse delays
(rows). Mean population GFP concentration over three experimental repli-
cates are shown normalized to WT. Data are taken at t = 600 min.

Cells were found to respond comparatively more strongly to
repeated intermittent pulses of low pheromone than would be
expected under a model of response to simple time-averaged
concentration. For instance, conditions of repeated 10-min
pulses of 5 nM pheromone every 25 min, corresponding to a
time-averaged dose of 2 nM, resulted in a gene expression
response similar to conditions of 50 and 20 nM stimulation with
pulse delays of 40 min (corresponding to time-averaged dose of
10 and 4 nM, respectively). Similarly, 10-min pulses of both 5 and
50 nM pheromone every 75 min, corresponding to 0.67 and 6.7
nM time-averaged doses, respectively, show a very similar re-
sponse. Taken together, these observations under periodic stim-
ulation indicate that pathway output depends strongly on cell
history and the frequency of signal input.

Mutants Implicated in Dynamic Phenotypes. Analysis under periodic
stimulation allows for the classification of mutants on the basis
of differing dynamic response. To test this idea, we compared the
dynamic responses of all mutants (Fig. S8B) and found distinct
patterns of hypersensitivity for mutants lacking two highly
related kinases, Fus3 and Kss1 (11), and two phosphatases, Msg5
and Ptp2 (13). All four of these mutants exhibit WT-like mating
phenotypes, are indistinguishable under saturating pheromone
concentrations (50 nM) (16), and were found to be increasingly
hypersensitive at low a-factor concentrations (Fig. 4B). This
divergence from WT behavior was greatly amplified under
low-frequency periodic stimulation across all concentrations
tested. Moreover, the frequency response of mating pathway-
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dependent gene expression under varying pheromone concen-
trations was unique to each mutant.

The ability to stratify mutants unambiguously on the basis of
response to time-varying stimulation provides a stringent test for
the development and testing of quantitative network models and
suggests new regulatory roles of for signaling proteins. Across all
conditions, kss/A mutants exhibited the greatest divergence
from WT. In addition to reported hypersensitivity at low pher-
omone concentrations, kss/A mutants display hypersensitivity
under intermittent pheromone stimulation. This effect was
evident for all transient conditions, even when pulses are de-
layed by as little as 15 min, and was most pronounced for
low-frequency stimulation with high-pheromone concentrations.
By comparison, mutant fus3A cells, which show similar pathway
output to WT under all constant stimulation conditions, exhibit
hypersensitivity to transient stimulation only for pulse delays of
40 min or more. Also, whereas the degree of hypersensitivity for
fus3A cells was found to depend primarily on the frequency of
stimulation, the sensitivity of kss/A mutants exhibits both con-
centration and frequency dependence, being most pronounced
for transient pulses of high concentration. Taken together, these
results implicate Kssl in a regulatory mechanism that acts to
filter both weak and intermittent a-factor stimulation whereas
Fus3 appears primarily to filter transient signals (Fig. 4B).
Analysis of the phosphatase mutants reveals a similar trend in
which the hypersensitivity of msg5A mutants is largely deter-
mined by frequency whereas pfp2A mutants exhibit hypersensi-
tivity depending on both pulse frequency and pheromone
concentration. Similarities in behavior were also noted between
kinase and phosphatase deletion mutants. The sensitivity trend
for fus3A mutants under dynamic stimulation, having a fre-
quency threshold with little concentration dependence, is similar
to that of msg5A mutants at pulse delays longer than 15 min. At
short pulse delays (15 min), kss/A mutants exhibit hypersensi-
tivity similar to that of msg5A mutants.

Discussion

Here, we have presented a system for high-throughput measure-
ments of single-cell response over a broad array of precisely
controlled and time-varying conditions. Further improvements
will allow for both increased genotypic throughput and more
refined analysis of single cells in time. Straightforward device
modifications will allow for the parallel analysis of ~40 strains,
allowing for comprehensive network-scale analysis on a single
device run. Additionally, an important component of single-cell
analysis is the ability to track single-cell response and lineage
through time, something that is difficult to automate in the
current format because of the motion of cells within the traps
during perfusion sequences. We are currently refining cell
immobilization techniques, image processing algorithms, and
data analysis methods to enable automated high-throughput
tracking of tens of thousands of single cells, spanning multiple
genotypes and stimulation conditions, through time.
Microfluidics provides a powerful method for high-
throughput imaging analysis with programmable control over
the chemical environment, offering a new temporal dimension to
live-cell imaging studies. Our present work demonstrates that the
analysis of cellular networks under static conditions or with
coarse chemical resolution is insufficient to reveal the function
of genes in regulating network response. Indeed, dynamic anal-
ysis of mutants compromised for genes known to be key players
in the pheromone response, including Kss1, Fus3, Msg5, and
Ptp2, reveals unique properties of network response that are
invisible under constant stimulation and that suggest possible
mechanisms of network regulation. For instance, the similarity
in frequency threshold for the hypersensitivity of kss/A and
msg5A mutants may be caused by increased Fus3 activity in both
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of these mutants. The Kss1 kinase competes with Fus3 (41), and
Msg5 phosphatase acts on Fus3 (13).

Usually, the response to transient stimulus is discussed in the
context of signal filtering to prevent unproductive response.
Conversely, we speculate that frequency-dependent signal mem-
ory enables productive responses in natural environments. For
instance, one might expect that the paracrine induction and
autorepression of the mating response, including the secretion of
pheromone and pheromone-degrading enzymes, coupled with
hydrodynamics, varying cell density, and cell motion, create
spatiotemporal variations in pheromone concentration and
intermittent opportunities for successful mating. Pathway mech-
anisms selected to filter or remember stimulations over appro-
priate time scales could act to prime cells for more rapid
response, thus increasing mating success. Testing of such hy-
potheses will ultimately require combined approaches based on
quantitative modeling and experiment. We contend that high-
throughput single-cell measurements of network dynamics will
provide a stringent test for in silico models and are essential for
ultimately developing a quantitative and predictive understand-
ing of cellular decision making.

Methods

Cell Loading. For each experiment, yeast cells were grown with aeration
overnightin YPD (30C), diluted, and grown to log phase in synthetic complete
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medium with 2% dextrose (SCD), sonicated for 5s, and concentrated to an Agoo
of 3. The chip was primed with SCD medium containing 20 mg/mL BSA for ~3
h before cell loading. Strains used in this work are shown in Table S2.

Microfluidic Fabrication. Fabrication of the microfluidic device was accom-
plished by using multilayer soft lithography (27, 42). Our chips used a three-
layer design: The top layer was a “flow layer,” containing the cells and the
chemical channels. The middle layer was a “‘control layer,” containing chan-
nels used for pneumatic valves. The bottom layer was a “’blank layer,” used to
tightly seal the control channels to the glass slide. All devices were made from
polydimethylsiloxan (RTV615; General Electric).

Image Acquisition. Microfluidic devices were mounted onto a Leica DMIRE2
fluorescent microscope modified with a custom LED brightfield source to
increase acquisition speed. Cells were imaged with a 40X air objective (HCX,
long working distance, FLUOTAR PL with correction collar, NA = 0.6) and
1,344- X 1,024-pixel cooled CCD camera (ORCA-ER; Hamamatsu Photonics,
differential interference contrast), and fluorescent images were captured
with a 100-ms and 250-ms exposure, respectively.
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