Skip to main content
. 2009 Feb 1;44(3):796–811. doi: 10.1016/j.neuroimage.2008.09.048

Table 1.

Parameter Priors for model parameters including the observation model, neuronal sources, and experimental effects

Parameter ϑi = πiexp(Θi) Interpretation Prior
Mean: πi Variance: Θi = N(0,σi)
Observation model
αu Exogenous white input παu = 0 σαu = 1/16
αs Channel specific white noise παs = 0 σαs = 1/16
αc White noise common to all channels παc = 0 σαc = 1/16
βu Exogenous pink input πβs = 0 σβu = 1/16
βs Channel specific pink noise πβc = 0 σβs = 1/16
βc Pink noise common to all channels πθi = 1 σθi = exp(8)
θ1…s Lead-field gain πλ = 0 σλ = 1
λ Noise hyperparameter



Neuronal sources
κe/i Excitatory/inhibitory rate constants πκe = 4 ms− 1πκi = 16 ms− 1 σκe = 1/8 σκi = 1/8
He/i Excitatory/inhibitory maximum post-synaptic potentials πHe = 8 mV πHi = 32 mV σHe = 1/16 σHi = 1/16
γ1,2,3,4,5 Intrinsic connections πγ1 = 128 σγ1 = 0
πγ2 = 128 σγ2 = 0
πγ3 = 64 σγ3 = 0
πγ4 = 64 σγ4 = 0
πγ5 = 4 σγ5 = 0
AF Forward extrinsic connections πAF = 32 σAF = 1/2
AB Backward extrinsic connections πAB = 16 σAB = 1/2
AL Lateral extrinsic connections πAL = 4 σAL = 1/2
C Exogenous input πC = 1 σc = 1/32
di Intrinsic delays πdi = 2 σdi = 1/16
de Extrinsic delays πde = 10 σde = 1/32
Design βki Trial specific changes πβki = 1 σβki = 1/2

In practice, the non-negative parameters of this model are given log-normal priors, by assuming a Gaussian density on a scale parameter, Θi = N (0,σi), where ϑi = πiexp(Θi), and πi is the prior expectation and σi2 is its log-normal dispersion.