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Abstract

Background: Lassa fever is caused by a viral haemorrhagic arenavirus that affects two to three million people in West Africa,
causing a mortality of between 5,000 and 10,000 each year. The natural reservoir of Lassa virus is the multi-mammate rat
Mastomys natalensis, which lives in houses and surrounding fields. With the aim of gaining more information to control this
disease, we here carry out a spatial analysis of Lassa fever data from human cases and infected rodent hosts covering the
period 1965–2007. Information on contemporary environmental conditions (temperature, rainfall, vegetation) was derived
from NASA Terra MODIS satellite sensor data and other sources and for elevation from the GTOPO30 surface for the region
from Senegal to the Congo. All multi-temporal data were analysed using temporal Fourier techniques to generate images of
means, amplitudes and phases which were used as the predictor variables in the models. In addition, meteorological rainfall
data collected between 1951 and 1989 were used to generate a synoptic rainfall surface for the same region.

Methodology/Principal Findings: Three different analyses (models) are presented, one superimposing Lassa fever
outbreaks on the mean rainfall surface (Model 1) and the other two using non-linear discriminant analytical techniques.
Model 2 selected variables in a step-wise inclusive fashion, and Model 3 used an information-theoretic approach in which
many different random combinations of 10 variables were fitted to the Lassa fever data. Three combinations of
absence:presence clusters were used in each of Models 2 and 3, the 2 absence:1 presence cluster combination giving what
appeared to be the best result. Model 1 showed that the recorded outbreaks of Lassa fever in human populations occurred
in zones receiving between 1,500 and 3,000 mm rainfall annually. Rainfall, and to a much lesser extent temperature
variables, were most strongly selected in both Models 2 and 3, and neither vegetation nor altitude seemed particularly
important. Both Models 2 and 3 produced mean kappa values in excess of 0.91 (Model 2) or 0.86 (Model 3), making them
‘Excellent’.

Conclusion/Significance: The Lassa fever areas predicted by the models cover approximately 80% of each of Sierra Leone
and Liberia, 50% of Guinea, 40% of Nigeria, 30% of each of Côte d’Ivoire, Togo and Benin, and 10% of Ghana.
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Introduction

Lassa fever (LF) is a viral haemorrhagic fever the pathogenic

agent of which is an arenavirus Lassa virus (LASV) first discovered

in 1969 in Nigeria, in a missionary nurse living in Lassa, a village

close to the border with Cameroon [1]. Lassa fever is widespread

in West Africa, affecting 2 million persons per annum with 5,000–

10,000 fatalities annually [2]. Since its initial discovery, nosoco-

mial outbreaks of Lassa fever have occurred repeatedly in Sierra

Leone: Panguma, Kenema, 1971–83, 1997, Liberia: Zorzor, 1972;

Phebe 1972, 1977, 1982; Ganta 1977, 1982 and Nigeria: Jos,

1970, 1993; Onitsha, 1974; Zonkwa, 1975; Vom, 1975–77, Imo,

1989; Lafia, 1993; and Irrua, 2004 [3,4,5,6,7,8,9]. In Guinea,

some acute but isolated cases were recorded in hospitals [10] and a

single rural outbreak was recorded on the Sierra Leone border in

1982–83 [11]. Between these two areas, namely in Côte d’Ivoire,

Ghana, Togo and Benin, no outbreak has ever been recorded,

though isolated cases show evidence of viral circulation in that

area [12,13,14]. Lassa fever therefore appears to have 2

geographically separate endemic areas: the Mano River region

(Guinea, Sierra Leone, Liberia) in the West, and Nigeria in the

East.

The reservoir host of this virus is the multimammate rat,

Mastomys natalensis, which was found infected for the first time in

Sierra Leone and in Nigeria in 1972 [15,16], and recently in

Guinea [17]. In Upper Guinea, these commensal rodents

aggregate in houses during the dry season, and disperse into the

surrounding fields in the rainy season, foraging in cultivated areas

before harvesting [18]. Villages where LASV-positive rodents have

been trapped are all located in rain forest areas or in the transition

zone between forest and savannah, within the 1500 mm rainfall

isohyet. Rainfall seems to be an important ecological factor

because a recent longitudinal study in rodents demonstrated that

LASV infection was two to three times higher in the rainy season

than in the dry season [18]. There are no studies to date indicating

that the virus can survive better in humid than in dry soil, but

evidence points in this direction. For example, the recent discovery

of a new arenavirus in Mus minutoides (Kodoko virus [19]) and of
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hantavirus in Hylomyscus simus (Sangassou virus) in Guinea [20],

were both made in rodents trapped in wet habitats, swamps or

along river edges. In the USA, many new hantaviruses discovered

within the last 15 years are found in damp or wet places such as

arroyos or canyons, i.e. Black Creek canal virus, Blue river virus,

El moro Canyon virus, Limestone Canyon virus. In the case of Sin

Nombre virus, responsible for hemorrhagic fever with pulmonary

syndrome, high risk areas are associated with higher elevation and

mesic vegetation whereas low risk areas are associated with lower

elevation and xeric vegetation. Soil moisture appears to be a key

factor explaining the maintenance of this virus in high risk areas

[21,22]. In Europe, the transmission and persistence of Puumala

virus, responsible for nephropathia epidemica, seems possible only

if indirect transmission through a contaminated environment is

included in a mathematical model. The combination of viral

dynamics inside and outside the host, rodent demographic

patterns and humid periods seems to explain the geographical

distribution of this disease [23]. These advances all indicate the

possible importance of rainfall patterns and humidity for Lassa

Fever. We present our analysis of LF in West Africa in three steps:

a first univariate analysis linking LF with high rainfall areas (Model

1) and the other two, multivariate analyses quantifying associations

between LASV presence and a number of environmental

parameters, derived from earth-observing satellites, that lead to

the production of the first predictive risk maps for Lassa fever. One

of these multivariate modelling approaches uses step-wise variable

selection procedures (Model 2) whilst the other uses random

combinations of predictor variables to identify the individual best

predictors of LASV presence and absence (Model 3).

Materials and Methods

Model 1
Disease Data. Nosocomial outbreaks and prevalences of

Lassa fever in humans were derived from the dataset, and were

placed on a map of West and Central Africa (see table 1 for the

detailed references by country). The null prevalences recorded in

Cameroon, CAR, Gabon and Congo were derived from samples

taken in towns [24,25,26], whereas the low prevalence of 5%

recorded in Pool region in Congo came from samples taken in

villages [27]. Elsewhere, prevalences appear as a mean, estimated

regionally from several villages or from hospital staffs. Data on

human infections cover the period 1965 to 2007.

Climatic data. A synoptic rainfall map of West Africa was

obtained from L’Hôte&Mahé [28] and is shown in Figure 1. This

synoptic map is derived from rainfall records for the period 1951

to 1989. In West Africa, the highest rainfall regions are located

either side of the Dahomey gap, which separates the 2 great

rainforest zones of Guinea and Congo, each region receiving more

than 1500 mm of rainfall per year. On the western side, the region

includes Guinea, Sierra Leone, Liberia, the extreme West of Côte

d’Ivoire and coastal Ghana. The eastern side includes the

Congolese zone and south eastern Nigeria (Figure 1).

Models 2 and 3
Disease data. The new Lassa fever database was developed

with all indications of Lassa fever presence in West Africa in the

period 1965 to 2007. These indications included sero- and

virologically positive rodents and human beings. For the rodents,

all the localities where M. natalensis was screened for LASV were

included. Localities were defined as positive when at least one M.

natalensis was positive, and negative when none was infected.

Because of the heterogeneous data for humans, the database was

more complicated to establish. The localities were defined as

positive when clinical cases were confirmed by a laboratory test or

when sampled populations had a seroprevalence $10%. The

‘negative’ localities were defined when seroprevalence was ,10%.

This cut off was defined on the basis of the combined screening of

both rodents and humans in the same locality. Rodents were

always negative when seroprevalence in humans was ,10%. This

low human prevalence could be due to the movement of infected

humans into an area without infection, whereas one positive

rodent always indicates local transmission of LASV. Rodent and

human data were acquired from an extensive review of the

literature (Table 1).

The latitude and longitude of each recorded locality were then

derived from the National Geographic Agency database (http://

earth-info.nga.mil/gns/html/namefiles.htm). Because data on

rodent infections came mostly or only from targeted samples of

these animals, whereas it is assumed that the distribution of human

infections is more likely to reflect the distribution of Lassa fever in

humans, only data referring to the latter were used in the models

presented here. Data referring to humans and rodents were also

modelled, but are not presented here because they add only 8 new

points, and make little difference to the final map (all data are

recorded in Table 1).

Environmental variables. Sets of environmental data were

derived from remotely sensed imagery from the MODIS instrument

on board the NASA Terra satellite for the period 2001–2005 [29]

and the processed version 4 of these data were downloaded from

NASA’s EOS data gateway (http://edcimswww.cr.usgs.gov/pub/

imswelcome/). A complete description of the MODIS satellite data

used to make these maps, and their processing, is provided by

Scharlemann et al 2008 [30]. Data for daytime and night-time land

surface temperature (dLST and nLST respectively; MOD11A2

datasets) are available as 8-day composites (compositing removes

many of the problems associated with cloud contamination in

individual images) [31], whilst data for the Middle Infra Red channel

(MODIS band 7, 2105–2155 nm, closest spectrally to the NOAA/

AVHRR Channel 3 found useful in previous distribution studies), for

the Normalised Difference Vegetation Index (NDVI = [near infrared

(NIR)2RED]/[NIR+RED], where NIR is MODIS band 2 and

Author Summary

Previous studies on the eco-epidemiology of Lassa fever in
Guinea, West Africa, have shown that the reservoir is two
to three times more infected by Lassa virus in the rainy
season than in the dry season. None of the intrinsic
variables of the murine population, such as abundance or
reproduction, was able to explain this seasonal variation in
prevalence. We therefore here investigate the importance
of extrinsic environmental variables, partly influenced by
the idea that in the case of nephropathia epidemica in
Europe contamination of the environment, and therefore
survival of the pathogen outside the host, appears to be
an important factor in this disease’s epidemiology. We
therefore made an extensive review of the literature,
gathering information about the geographical location of
sites where Lassa fever has been certainly identified.
Environmental data for these sites (rainfall, temperature,
vegetation and altitude) were gathered from a variety of
sources, both satellites and ground-based meteorological
stations. Several statistical treatments were applied to
produce Lassa ‘risk maps’. These maps all indicate a strong
influence of rainfall, and a lesser influence of temperature
in defining high risk areas. The area of greatest risk is
located between Guinea and Cameroon.

Lassa Fever Maps
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Table 1. Positive localities recorded from humans and rodents indicating the presence of Lassa virus in West Africa.

Country
Administrative
region

Town/village/
hospital Latitude Longitude Year

Reference
for humans

Reference
for rodents

Benin Borgou department Bambéréké hosp. 10.23 2.66 1977 [14]

Burkina Comoé province Banfora 10.63 24.77 1974 [54]

Congo Pool region Ngamambou 24.33 14.85 1981 [27]

Cote
d’Ivoire

Beoumi prefecture Beoumi 7.67 25.57 1970–74 [54]

Cote
d’Ivoire

Duekoue prefecture Forêt Classée 6.66 27.07 2000 [12]

Cote
d’Ivoire

Guiglo prefecture Guiglo 6.54 27.48 2000 [12]

Guinea Faranah prefecture Bantou 10.07 210.58 2003–05 [17,18]

Guinea Faranah prefecture Gbetaya 9.84 211.03 1990–92, 1996–97, 2003–05 [55] [17,18,56]

Guinea Faranah prefecture Kamaraya 9.88 210.75 1990–92 [55]

Guinea Faranah prefecture Sangoyah 9.72 210.88 1990–92, 1996–97 [55] [56]

Guinea Faranah prefecture Tanganya 10.00 210.97 2003–05 [17,18]

Guinea Faranah prefecture Tindo 9.97 210.70 1990–92 [55]

Guinea Gueckedou prefecture Bawa 8.56 210.03 1990–92, 1996–97 [55] [56]

Guinea Gueckedou prefecture Denguedou 8.49 210.44 1993, 2005 [57] [17]

Guinea Gueckedou prefecture Fangamandou 8.50 210.60 1990–92, 1993, 1996–97 [55,57] [56]

Guinea Gueckedou prefecture Guedembou 8.76 29.99 1993 [57]

Guinea Gueckedou prefecture Kassadou 8.91 210.35 1993 [57]

Guinea Gueckedou prefecture Kpolodou 8.85 210.34 1993 [57]

Guinea Gueckedou prefecture Nongoa Mbalia 8.70 210.37 1990–92 [55]

Guinea Gueckedou prefecture Owe Jiba 8.48 210.44 1990–92, 1996–97 [55] [56]

Guinea Gueckedou prefecture Sassani Toli 8.75 210.30 1990–92 [55]

Guinea Gueckedou prefecture Tekoulo 8.54 210.01 1993, 1996–97 [57] [56]

Guinea Gueckedou prefecture Telekolo 8.47 210.43 1990–92 [55]

Guinea Gueckedou prefecture Temessadou 8.66 210.31 1993 [57]

Guinea Gueckedou prefecture Tomandou 8.50 210.30 1993 [57]

Guinea Kindia prefecture Madina Oula 9.88 212.45 1982–83, 1990–92, 1996–97 [11,55] [56]

Guinea Kissidougou prefecture Bambaya 9.30 210.10 1996–99 [10]

Guinea Kissidougou prefecture Banankoro 9.18 29.30 1996–99 [10]

Guinea Kissidougou prefecture Boue 9.01 29.95 1996–97 [56]

Guinea Kissidougou prefecture Fedou 9.20 29.90 1996–99 [10]

Guinea Kissidougou prefecture Telekoro 9.18 210.10 1965, 1967, 1968, 1996–99 [10,14]

Guinea Kissidougou prefecture Yende Milimou 8.89 210.17 1996–99 [10]

Guinea Lola prefecture Gbah 7.62 28.55 1990–92 [55]

Guinea Lola prefecture Gbenemou 7.71 28.52 1990–92 [55]

Guinea Lola prefecture Thuo 7.58 28.50 1990–92 [55]

Guinea Macenta prefecture Lorlu 8.56 210.02 1996–97 [56]

Guinea Nzérékoré prefecture Bignamou 7.33 29.10 1996–99 [10]

Guinea Nzérékoré prefecture Dieke 7.35 28.95 1996–99 [10]

Guinea Nzérékoré prefecture Koulenin 7.75 28.82 1996–99 [10]

Guinea Siguiri prefecture Balato 11.57 29.32 1990–92 [55]

Guinea Yomou prefecture Bamakama 7.72 29.27 1990–92, 1996–97 [55] [56]

Guinea Yomou prefecture Komore 7.66 29.26 1990–92 [55]

Guinea Yomou prefecture Waita 7.56 29.26 1990–92, 1996–97 [55] [56]

Liberia Bomi county Goodrich plantation
hosp. ( = Klay)

6.69 210.87 1980 [58]

Liberia Bong county Suakoko (Phebe hosp.) 7.19 29.38 1972 [5,59,60]

Lassa Fever Maps
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Country
Administrative
region

Town/village/
hospital Latitude Longitude Year

Reference
for humans

Reference
for rodents

Liberia Grand Cape Mont county Mano river hosp.
( = Kongo)

7.33 211.14 1980 [58]

Liberia Lofa county Foya Kamara hosp. 8.36 210.21 1977, 1979, 1980, 1981 [58,60,61]

Liberia Lofa county Koindu 8.22 210.77 1974 [59]

Liberia Lofa county Yielah 7.82 29.402 1972 [14]

Liberia Lofa county Zigida 8.04 29.49 1972 [62,63]

Liberia Lofa county Zorzor hosp. 7.78 29.43 1969, 1972,1977, 1979, 1980–82 [5,58,59,60]

Liberia Nimba county Ganta hosp. 7.23 28.98 1982, 2004 [5,58]

Liberia Nimba county Louplay 6.95 28.71 2006 [64]

Liberia Nimba county Saglelpie 6.96 28.84 2007 [65]

Mali Segou region Ntorosso 13.9 5.4 1971 [54]

Nigeria Adamawa state Takum 7.27 9.98 1974 [54]

Nigeria Anambra state Onitsha hosp. 6.17 6.78 1974 [4]

Nigeria Benue state Gboko 7.32 9.00 1987 [66]

Nigeria Borno state Lassa 10.68 13.27 1969 [1]

Nigeria Edo state Ekpoma 6.75 6.13 2001–04 [9]

Nigeria Edo state Ibilo 7.43 6.08 2001–04 [9]

Nigeria Edo state Igarra 7.28 6.10 2001–04 [9]

Nigeria Imo state Aba hosp. 5.12 7.37 1989 [6]

Nigeria Imo state Aboh Mbaise hosp. 5.55 7.20 1989 [6]

Nigeria Kaduna state Rahama 10.42 8.68 1952 [67]

Nigeria Nasarawa state Lafia hosp. 8.48 8.52 1987, 1992–93 [7,66]

Nigeria Ondo state Ondo 7.10 4.83 1987 [66]

Nigeria Plateau state Bassa 9.93 8.73 1970 [3]

Nigeria Plateau state Fan 8.82 10.90 1977 [14]

Nigeria Plateau state Jos 9.92 8.90 1970, 1972, 1973, 1992–93 [7,54]

Nigeria Plateau state Ner-Pankshin 9.33 9.45 1972 [16]

Nigeria Plateau state Vom 9.73 8.78 1974–75, 1976, 1977 [14]

Nigeria Plateau state Zonkwa 9.78 8.28 1975 [14]

Nigeria Sokoto state Sokoto 13.06 5.25 1971 [54]

Nigeria Taraba state Gongola 8.50 11.50 1987 [66]

Nigeria Taraba state Jalingo 8.88 11.36 2007 [68]

Sierra
Leone

Bo district Bo hosp. 7.96 211.74 2001 [69]

Sierra
Leone

Bo district Gerihun camp 7.93 211.58 2003 [70]

Sierra
Leone

Bo district Jimmi camp 7.60 211.82 2003 [70]

Sierra
Leone

Bombali district (North) Kamabunyele 9.18 211.93 1977–1983 [71]

Sierra
Leone

Bombali district (North) Kathumpe 9.50 212.23 1977–1983 [71] [71]

Sierra
Leone

Bombali district (North) Mamaka 9.10 212.32 1977–1982 [71] [71]

Sierra
Leone

Kailahun district (East) Daru hosp. 7.99 210.85 2000 [72]

Sierra
Leone

Kailahun district (East) Kailahun hosp. 8.28 210.57 2001 [69]

Sierra
Leone

Kenema district (East) Bomie/Landoma 8.23 211.07 1977–83, 1996–97 [71,73]

Sierra
Leone

Kenema district (East) Buima 8.27 211.11 1996–97 [73]

Sierra
Leone

Kenema district (East) Daabu 7.92 210.95 1996–97 [73]

Table 1. Cont.
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RED is band 1, 841–876 nm and 620–670 nm, respectively) and for

the Enhanced Vegetation Index (EVI = (2.5 * [[NIR2RED]/

[NIR+6.0 * RED27.5 * BLUE+1.0]], where BLUE is MODIS

band 3, 459–479 nm and NIR and RED are as described above for

NDVI) were all derived from 16-day composites after nadir

Bidirectional Reflectance Distribution Function (BRDF)-adjustment

(MOD43B4 dataset) [32]. The BRDF adjustment removes

directional effects of view angle and illumination, providing

reflectance values as if every pixel were viewed from nadir, an

important correction especially for any channel involving human

visible wavelengths. All the MODIS data were available at a nominal

resolution of c. 1 km at the equator and in the Sinusoidal projection.

In addition to thermal and vegetation index data from MODIS a

series of monthly rainfall images was obtained from the CMORPH

project that uses a variety of satellite data to generate precipitation

estimates within the latitudinal range of 660 degrees [33].

Country
Administrative
region

Town/village/
hospital Latitude Longitude Year

Reference
for humans

Reference
for rodents

Sierra
Leone

Kenema district (East) Giema 8.20 211.05 1977–82 [71]

Sierra
Leone

Kenema district (East) Kenema hosp. 7.90 211.20 1996–97, 1999, 2001–04 [69,70,73,74]

Sierra
Leone

Kenema district (East) Konia 8.10 211.02 1977–83 [71] [71]

Sierra
Leone

Kenema district (East) Kpandebu 8.22 211.07 1977–83 [71] [71]

Sierra
Leone

Kenema district (East) Lalehun 8.20 211.08 1977–82 [71]

Sierra
Leone

Kenema district (East) Largo camp 8.05 211.12 2003 [70]

Sierra
Leone

Kenema district (East) Lowoma 8.22 211.03 1977–82 [71] [71]

Sierra
Leone

Kenema district (East) Macca 8.15 211.22 1996–97 [73]

Sierra
Leone

Kenema district (East) Neama 8.12 211.00 1977–83 [71]

Sierra
Leone

Kenema district (East) Niahun 8.00 211.07 1977–83 [71] [71]

Sierra
Leone

Kenema district (East) Njakundoma 8.23 211.05 1977–83 [71] [71]

Sierra
Leone

Kenema district (East) Nongowa 7.63 211.40 2003 [70]

Sierra
Leone

Kenema district (East) Palima/Tongola 8.22 211.05 1977–83, 1996–97 [71,73] [71]

Sierra
Leone

Kenema district (East) Pandebu 8.21 211.13 1996–97 [73]

Sierra
Leone

Kenema district (East) Panguma hosp. 8.20 211.22 1970–75, 1996–97, 2003 [70,73,75,76,77] [15]

Sierra
Leone

Kenema district (East) Segbwema hosp. 8.00 210.95 1975, 1977–83, 1996–97 [73,77] [71]

Sierra
Leone

Kenema district (East) Semewabu 8.02 210.87 1977–83 [71]

Sierra
Leone

Kenema district (East) Serabu hosp. 7.85 211.29 1977 [14]

Sierra
Leone

Kenema district (East) Tokpombu 8.22 211.09 1996–97 [73]

Sierra
Leone

Kenema district (East) Tongo field 8.45 211.12 1972 [15]

Sierra
Leone

Kenema district (East) Tongo hosp. 8.45 211.28 1970–72, 1996–97 [73,75]

Sierra
Leone

Kono district Kono hosp. 8.75 211.00 2001 [69]

Sierra
Leone

Moyamba district Taiama camp 8.20 212.07 2003 [70]

Sierra
Leone

Pujehun district Pujehun hosp. 7.35 211.72 2001 [69]

Year indicates the time of collection.
doi:10.1371/journal.pntd.0000388.t001

Table 1. Cont.
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The MODIS and CMORPH data were then temporal Fourier

processed to extract, for each channel, a mean, the amplitudes and

phases of the annual, bi-annual and tri-annual cycles (i.e. the

Fourier harmonics corresponding to these frequencies), the

minimum and maximum of the fitted signal and the variance of

the original signal. Temporal Fourier processing produces a set of

orthogonal (i.e. uncorrelated) variables that capture important

elements of habitat seasonality that is often an important driver of

vector-borne and other diseases [34,35]; the particular problems of

temporal Fourier processing of MODIS data (and their solutions)

are described in Scharlemann et al 2008 [30]. In addition to the

satellite variables, the descriptor datasets also included a digital

elevation image (DEM) derived from GTOPO30 [36]. All the

Fourier variables and the GTOPO30 layer were resampled (by bi-

linear interpolation) initially to a resolution of 1/120th degree in

the Geographical (latitude/longitude) ‘projection’ and these were

then progressively averaged (1/60th, 1/30th etc.) to a resolution of

1/15th of a degree, giving a total of 51 Fourier and other (DEM)

variables for modelling purposes. All modelling was carried out at

this resolution, at which there were 94 unique database records of

LASV presence in humans across West Africa. This total number

of datapoints is less than the number of human records in Table 1,

because some of the records fell within the same pixels at the

spatial resolution of the analysis.

Statistical techniques. There are many different

approaches to mapping species’ distributions, recently reviewed

by Elith et al [37]. The approach adopted here is described in

detail in Rogers 2006 [38] and is based on non-linear maximum

likelihood discriminant analysis techniques. For this approach we

needed to identify not only areas of presence of each of the cases

(from the database), but also equivalent areas of absence. There

were insufficient records of absence in the database itself, so an

alternative approach was followed, and one thousand points no

closer that 0.5 degrees and no farther than 10 degrees away from

any of the presence points in the database were chosen at random

across West Africa. Because the rodent hosts occur much more

extensively across West Africa than does LF, many of these

randomly generated absence points fell within the distribution

limits of these vertebrate hosts. Thus the models constructed were

designed specifically to distinguish the presence and absence of the

disease in humans, and not of the hosts of the disease. All satellite

and other data were then extracted for both the presence and

absence points (hereafter the ‘training set’). These data were first

clustered within SPSS for Windows (version 13.0, copyright SPSS

Inc., 1989–2004), using the means maxima and minima of each of

the MODIS channels, and also the DEM, to produce cluster

assignments of the presence and absence data that ran from 1 to 8

clusters each. Within the model the user selected the required

combination of numbers of presence and absence clusters at the

start of each model run. The LF models described here all used

two absence and either one or two presence clusters.

Because of the incomplete nature of the presence (and

presumably absence) data in each dataset, it was decided to

bootstrap sample the training set data one hundred times, to

Figure 1. West and Central Africa mean annual rainfall (1951–1989 [28]), Lassa fever nosocomial outbreaks (stars) and human
seroprevalence (numbers in %).
doi:10.1371/journal.pntd.0000388.g001
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produce a series of modelled predictions which were averaged to

produce the final output map for the disease. Each bootstrap

sample contained equal numbers of presence and absence points

(this tends to maximise model accuracy; [39]) randomly drawn

from the training set, sampled with replacement. The relationship

between the bootstrap sample and the training set is imagined to

be the same as that between the training set and the entire real

world of which the training set itself is a sample. By modelling each

bootstrap sample separately, and then averaging the results, it

should be possible to establish the variability of model predictions

arising from the incomplete sampling of the real world that the

training set represents.

Model 2 variable selection. Each model involved step-wise

inclusive selection of the predictor variables to maximise a goodness

of fit criterion; kappa the index of agreement, the area under the

curve (AUC) or the Akaike corrected Information Criterion (AICc),

all described in Rogers 2006 [38]; a maximum of ten predictor

variables was selected for each bootstrap model, but model efficiency

(as judged by the AICc) was often highest with fewer than 10

variables; where this applied the final prediction was made using this

lower total number of variables. Results for each of the 100 models

were kept separate and later brought together to generate accuracy

statistics, and to discover whether or not particular variables were

consistently included in the predictor datasets. This was done by

establishing the mean ranking of each variable in the model

selections. The variable selected first in any model run was given a

rank of 1, the one selected second a rank of 2, and so on, up to rank

10 for the tenth variable. All non-selected variables in that model run

were given a rank of 11. By averaging the ranks of each variable

across all models it was possible to establish that variable’s

importance in the overall predictions.

Model 3 variable selection. The problems of step-wise

variable selection are well documented; the occurrence of one

variable within a dataset can exclude a closely correlated variable

that may in fact be more important in determining a disease’s

distribution. The end product of step-wise selection is therefore a

group of variables that are often not strongly correlated with each

other, but which are more strongly correlated with those variables

left out of the selection. The question then arises about the real

importance of the individual variables in determining any

particular distribution. Burnham and Anderson [40] suggest a

way of answering this important question, and this was followed

here. Many random combinations of 10 variables from the entire

predictor dataset were made, sampling without replacement (i.e.

no variable occurred twice in the same combination), with each

variable finally occurring one thousand times across all

combinations. Each combination (of 10 variables) was then used

to construct a model of LASV distribution using the same

bootstrap samples as before. Model accuracy was measured by the

corrected Akaike Information Criterion (AICc, a smaller value

indicating a better model). Once all the models had been

constructed, the mean AICc value of all models containing each

variable in turn was calculated, and these mean values were then

finally ranked, lowest to highest. The variable giving the lowest

mean AICc is then regarded as the ‘best’ predictor of LASV since,

regardless of the other (random) variables with which it was

associated in the full set of models in which it occurred, those

models were overall better than models involving any other single

variable. The variable giving the next lowest AICc was the second

best individual predictor; and so on.

The difference between the step-wise selected sets of variables

(Model 2) and the list of top-ten variables produced by the

combination method described above (Model 3) is analogous to

the difference between a team (e.g. of footballers) and the top ten

runners in an Olympic race. The team players co-operate with

each other to win the football match; whilst no individual player

may stand out from all the rest, it is the individual’s ability to work

well with the others that wins the match. In contrast, each runner

in a race is competing against all the others. The winner is clearly

better than the one who came second who, in turn is better than

the one who came third; there is no cooperation between them.

They are all collectively better than all the other runners in the

race, but this is a result of individual, not collective, ability. It is

unlikely that the top ten runners in an Olympic race would make a

very good, co-operative team of footballers (and vice versa), so the

team selection and the individual selection methods explored in

Models 2 and 3 are unlikely to come up with the same results.

Differences between them may however be illuminating.

In both Models 2 and 3 the selected sets of predictor variables

were used within each bootstrap model to generate an image of the

posterior probability for each image pixel of belonging to the

category of presence pixels as defined within that model. Posterior

probabilities are on the scale from 0.0 to 1.0 and a probability in

excess of 0.5 is taken as indicating presence. The 100 images from

each set of bootstrap samples in each model run were then

averaged to produce a single output risk map for the disease.

Results

Model 1
Figure 1 shows the location of LF outbreaks (or areas of high

human seroprevalence) from 1951 to 1989. The Jos plateau in

Nigeria receives more rainfall than the surrounding areas and is

disconnected from the wet coastal area by lowland areas of lower

rainfall. Only the initial case in Lassa (800 mm/year) is located

outside the high rainfall area. The map in Figure 1 suggests that

areas with between 1200 mm and 1500 mm of rainfall per year are

at relatively low risk of LF; areas with above 1500 mm have a much

higher risk and, finally, areas with in excess of 3000 mm of rainfall

annually appear to be at zero risk (i.e. had no outbreaks of LF in that

period), although these very high rainfall areas are not widespread.

Model 2
The predictor variables chosen for the three different cluster

versions of Model 2 are shown in Table 2 with their mean ranks

across the 100 bootstrap models for each. The average accuracy of

these models is shown in Table 3 and the mean values of the

selected predictor variables for one of the top models from the 2

Absence: 1 Presence cluster combination is shown in Table 4.

Figure 2 shows the mean predicted risk map of LF from the 100

bootstrap models using this same combination of absence and

presence clusters. With only one cluster each, LF appeared to be

over-predicted whilst with two clusters each LF appeared to be

more strongly limited to the training set data points and their

immediate surrounding areas (i.e. the disease was possibly under-

predicted). The 2 Absence:1 Presence cluster combination was

therefore considered to give the best overall result.

The rainfall variables were disproportionately selected by all

cluster combinations in Model 1; each ‘top ten’ list in Table 2

contains four such variables, where the random expectation (5

satellite channels) is only two. At the same time, the vegetation index

channels (NDVI and EVI) are under-represented, with only a single

one of 20 such variables (10 Fourier variables per channel) chosen

across all cluster combinations; the balance of the important

predictor variables were thermal ones (either LST or MIR). The

relatively high values for the average ranks of even the top variables

in all cluster combinations in Table 2, however, reflects the fact that

each of the 100 bootstrap samples gave rather different results in
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terms of the variables selected, and in their order of selection. This is

a common feature of relatively small datasets.

Despite the variability in the selected predictor variables, mean

model accuracies were very high (Table 3) with, as expected, model

accuracy increasing with increasing cluster numbers. The mean

values of kappa put all models well within the ‘Excellent’ category of

the Landis and Koch [41] scale (where kappa,0.4 is ‘Poor’;

0.4,kappa,0.75 is ‘Good’; and kappa.0.75 is ‘Excellent’).

The mean values of the key predictor variables may differ

considerably, or only by rather small amounts (Table 4). Table 4

shows that the mean values for the single clusters of presence

points in the model are often intermediate between those of the

two absence clusters. This applies to mean rainfall, night-time LST

minimum, MIR phase 2 and daytime LST (mean and maximum).

In other cases, mean values for the presence points are well outside

those for either absence cluster. This applies to rainfall (amp1,

amp3, phase1 and minimum) and NDVI phase 3. Concentrating

on the important rainfall variables in Table 4 it is possible to

suggest that LASV requires high (but not the highest) mean rainfall

Table 2. Mean ranking of the key predictor variables (selected by minimising the AICc) across 100 bootstrap models for each
Absence:Presence cluster combination for Model 2.

Absence:Presence clusters

1:1 2:1 2:2

Variable Mean rank Variable Mean rank Variable Mean rank

1 nLST phase 1 7.31 dLST phase1 5.58 dLST min. 7.5

2 Rain phase3 7.56 Rain phase3 8.32 Rain phase2 8.13

3 MIR phase1 7.77 Rain amp3 8.58 nLST amp2 8.67

4 Rain mean 7.78 nLSTamp2 8.78 Rain amp3 8.81

5 Rain amp3 8.07 MIR phase1 8.85 Rain mean 8.95

6 nLST amp2 8.59 Rain mean 9.38 Rain phase3 9.09

7 nLST mean 8.69 nLST variance 9.39 MIR min. 9.11

8 dLST phase3 8.69 nLST mean 9.43 nLST phase1 9.18

9 Rain amp1 9.02 Rain phase1 9.46 dLST amp1 9.4

10 nLST max. 9.39 nLST min. 9.47 NDVI variance 9.42

Key to predictor variable names: MIR = Middle Infrared; dLST = daytime Land Surface Temperature; nLST = nighttime Land Surface Temperature; Rain = Rainfall;
NDVI = Normalised Difference Vegetation Index; EVI = Enhanced Vegetation Index. Key to Fourier variable names: Mean = average (observed and predicted); amp1,
amp2, amp3 = amplitudes of the annual, bi-annual and tri-annual cycles of changes in the respective variables; phase1, phase2, phase3 = phases (or timing) of the
annual, bi-annual and tri-annual cycles of changes in the respective variables; min. = minimum of Fourier fitted value (may therefore be negative); max. = maximum of
Fourier fitted value; variance = variance of the raw data.
doi:10.1371/journal.pntd.0000388.t002

Table 3. Mean accuracy statistics across 100 bootstrap
models for each Absence:Presence cluster combination for
Model 2 (see text for definitions) (variables selected by
minimising the AICc).

Accuracy Absence:Presence clusters

1:1 2:1 2:2

Kappa 0.913 0.944 0.982

Sensitivity 97% 97% 99%

Specificity 94% 97% 99%

AUC 0.987 0.991 0.998

AICc 67.5 54.3 30.9

doi:10.1371/journal.pntd.0000388.t003

Table 4. Example of the mean values of the ten selected variables from one of the 100 bootstrap models for the 2 Absence:1
Presence cluster situation (Model 2).

Rain
amp3

Rain
phase2

nLST
min.

Rain
min.

Rain
amp1

NDVI
phase3

MIR
phase2

Rain
mean

dLST
max.

dLST
mean

n
(sample)

cluster of absence 13.22 4.58 12.82 27.41 55.22 2.17 4.14 38.16 43.65 37.43 69

cluster of absence 30.33 2.62 17.63 20.6 96.8 2.01 2.17 143.83 28.65 26.33 30

All absent 18.40 3.99 14.28 25.34 67.82 2.12 3.54 70.18 39.10 34.07 99

cluster of presence 47.36 7.08 15.58 214.85 124.84 2.38 2.42 134.53 31.62 27.12 100

All present 47.36 7.08 15.58 214.85 124.84 2.38 2.42 134.53 31.62 27.12 100

Present & absent 32.96 5.54 14.93 210.12 96.47 2.25 2.98 102.52 35.34 30.58 199

The variables are given in their order of step-wise selection. See Table 2 for the key to the variable names.
doi:10.1371/journal.pntd.0000388.t004
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areas (rain mean), but with very high annual variation of this

variable (rain amp1), and with peak rainfall occurring much later

in the year (during August rather than during May or March, the

months of peak rainfall of the absence clusters in Table 4, rain

phase1). The significance of the higher amp3 rainfall value in

Table 2 (the first selected variable) is unclear; often such higher

harmonics act to modulate the lower frequency – annual or bi-

annual – harmonics, and thus adjust the seasonal pattern of

rainfall (extending or reducing high rainfall periods, depending on

the timing of this tri-annual harmonic).

The predicted risk map (Figure 2) captures most of the presence

points in the database (the grey areas in Figure 2 in southern

Nigeria and Cameroon are regions where cloud contamination is

so continuous that it was not possible to obtain either sufficient

cloud-free images or their temporal Fourier derivatives for

modelling; these are therefore areas where it is not possible to

make predictions of risk). The predicted risk areas in Figure 2

contract towards the coast in the ‘Dahomey gap’ between the

western and central forests of Africa (see Introduction) but are still

more extensive than the rainfall map and data in Figure 1 suggest.

In fact the satellite rainfall image (CMORPH mean, not shown)

also indicates a lower mean rainfall area in this region, so that the

positive LASV predictions for this area must arise from the values

of other key predictor variables. The differences between Figure 1

and Figure 2 in the basin of the River Zaire, towards Central

Africa, arise because these areas (though high in rainfall) are

environmentally quite distinct from those of the training set area

and so the risk map models classify them as ‘No prediction’ areas

(coloured grey in Figure 2).

Model 3
Tables 4 and 5 show results analogous to those of Tables 2 and

3 but for Model 3, where the important variables were identified

using the combination method of Burnham and Anderson [40].

This method highlights even more the importance of rainfall

variables (only 8 out of the 30 variables in Table 5 are not directly

rainfall related), with slightly different combinations in each case

for the different cluster combinations. Overall model accuracies

are still excellent (Table 6) though not quite as good as those for

Model 2. Figure 3 shows the mean predicted risk map obtained by

using in Model 3 the selected combination of the top 10 variables

for the same 100 bootstrap samples that were used in Model 2 to

generate Figure 2. Figure 3 is less equivocal about risk areas than is

Figure 2 (i.e. there are fewer regions of intermediate probability of

Figure 2. Mean predicted Lassa risk map for West Africa from the Model 2 series with two absence and one presence clusters, with
positive localities indicated by stars. The posterior probability colour scale, from 0.0 (no risk) to 1.0 (highest risk) is shown as an inset. Grey areas
are either areas with no suitable imagery (because of cloud contamination; coastal Nigeria and Cameroon) or else are so far from any of the training
set sites in their environmental conditions that no predictions are made for them.
doi:10.1371/journal.pntd.0000388.g002
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LASV risk) for the simple reason that the same 10 variables were

used throughout, whereas different combinations of variables were

often selected in the Model 2 models, giving more variable results.

Figure 3 again captures most of the presence sites within the

training set, with rather different predictions for the Dahomey

Gap region than those in Figure 2.

Discussion

The question that comes immediately to mind is: why does Lassa

fever occur only in West Africa, whereas the range of its vertebrate

host extends into East and Southern Africa? This is a recurrent

question for other rodent-borne diseases (such as plague and

hemorrhagic fevers with renal or pulmonary syndrome; see [42] for

a review), which are also much more restricted in their distributions

than are their hosts. Our analyses here show quite clearly that Lassa

fever requires a particular combination of high (but not the highest)

rainfall, and with a particular form of variability and seasonal

timing, whereas its hosts can and do occur over regions

experiencing a much wider range of rainfall conditions. Temper-

ature appears to be less important in determining LASV

distribution, although there are large differences between different

areas; for example the annual mean and maxima in high risk areas

are 27uC and 32uC respectively, whereas in low risk areas the mean

temperature was approx. 38uC. Such high temperatures are known

to increase LASV decay [43]. One curious feature of the present

results is the seeming unimportance of vegetation variables in the

predictor data sets. This lack of importance is not due to their

strong correlation with rainfall variables (such a correlation might

exclude them in step-wise inclusive variable selection), because

Model 3 (using a method that avoids the problems of step-wise

methods) independently and quite categorically failed to identify

vegetation variables as important in determining LASV distribu-

tion. Taken together these results suggest that the survival of the

virus outside of the vertebrate host might be a key to determining its

distribution, and that this survival depends upon moisture or

rainfall conditions above more or less all other environmental

variables. This result differs from the conditions favouring other

viral transmission; for example, low relative humidity and

temperature favour avian influenza [44]. In the case of Lassa, the

virus appears to survive better in humid conditions, during the

rainy season. Rodents will be more often contaminated during their

frequent movements at this season, for mating or dispersing into the

surrounding fields [45]. Conversely, viral aerosol stability, seems to

be higher when the humidity is lower [43], a condition that

obviously occurs more frequently in the dry season. The

experiments of Stephenson help to explain the numerous LF cases

recorded in hospitals during the late dry season, between January

and March in Sierra Leone and Nigeria ([46], Omilabu, pers. com.)

but they do not necessarily throw much or any light on the

persistence of Lassa fever in the general environment. We suggest

that rainfall, within defined limits, is the single most important

abiotic determinant of this persistence.

M. natalensis, the most important host of LASV, does not occur

in the western part of the region, in coastal Guinea and Sierra

Leone and west to the 12th meridian. Only M. erythroleucus occurs

in these regions, and our surveys have always found it to be

negative for LASV infections [17]. The low human sero-

prevalences recorded in these coastal areas are most likely due

to the movement of people from highly endemic zones, or to

human-to-human transmission. Towns and villages in these

coastal areas, from Guinea to Gabon, have been invaded by the

black rat Rattus rattus, and the domestic mouse, Mus musculus,

probably taken there in historical times by Arab and European

traders, explorers and colonisers. Absence of M. natalensis from

Table 5. Mean ranking of the key predictor variables across 100 bootstrap models for each Absence:Presence cluster combination
for Model 3.

Absence:Presence clusters

1:1 2:1 2:2

Variable Mean rank Variable Mean rank Variable Mean rank

1 Rain phase1 1 Rain amp1 1 EVI variance 1

2 Rain phase2 2 Rain mean 2 Rain variance 2

3 Rain amp1 3 Rain phase1 3 Rain max. 3

4 Rain amp3 4 EVI phase3 4 Rain phase2 4

5 Rain mean 5 Rain max. 5 Rain amp3 5

6 Rain max. 6 Rain phase2 6 NDVI variance 6

7 Rain variance 7 Rain amp3 7 Rain amp1 7

8 Rain amp2 8 dLST phase1 8 dLST mean 8

9 Rain min. 9 Rain min. 9 dLST amp2 9

10 EVI variance 10 EVI variance 10 Rain min. 10

doi:10.1371/journal.pntd.0000388.t005

Table 6. Mean accuracy statistics across 100 bootstrap
models for each Absence:Presence cluster combination for
Model 3 (see text for definitions).

Accuracy Absence:Presence clusters

1:1 2:1 2:2

Kappa 0.86 0.867 0.917

Sensitivity 93% 94% 96%

Specificity 93% 92% 95%

AUC 0.975 0.98 0.988

AICc 162.8 132 80.4

doi:10.1371/journal.pntd.0000388.t006
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coastal areas, for whatever reason (e.g. unsuitable habitats, or

competition from other, non-Lassa-reservoir rodents), would

explain the absence of Lassa fever in these areas, despite the

apparently favourable (for LASV) climatic conditions (although

the models suggest that some areas may be too wet for LASV). In

Conakry for example, rodent sampling (330 specimens) showed

that the most abundant species was M. musculus (70%), followed by

R. rattus (25%) (unpublished data).

In East and South Africa, the same reservoir species is present

but the virus is replaced by other Lassa-like viruses such as Ippy,

Morogoro and Mopeia, found in M. natalensis in CAR, Tanzania,

Mozambique and Zimbabwe (CRORA database in Pasteur

Institute website, http://www.pasteur.fr/recherche/banques/

CRORA/, [47,48,49]). These different Lassa –like viruses are

not known to be pathogenic in humans and are considered

ancestral by phylogenetic studies [50]. The scenario of multiple

infection with both Lassa-like and Lassa virus is highly unlikely,

and so we consider that central and eastern Africa are Lassa free.

This is supported by many negative serological studies in

Cameroon, in CAR, Congo, Equatorial Guinea and Gabon

[24,25,26,27]. However, the situation in south-west Cameroon

bordering Nigeria remains problematic because this zone appears

to be at high risk according to Figure 2. This is a volcanic area,

which could provide a geographic barrier (Mt Cameroon, 4100 m,

and the volcano chain up to the Adamaoua plateau). Furthermore,

another species of Mastomys is suspected to be present in this area,

M. kollmannspergeri, which is found in Niger, NE Nigeria, N

Cameroon, S. Sudan and Chad [51]. In Zakouma National Park

in Chad, some specimens were found in a village and in camps,

indicating a potential synanthropy of this species [52]. The

predictive risk map in Figure 2 identifies the central parts of

Cameroon and CAR as risky areas, where it is possible that other

Lassa-like viruses could occur, intermediate between Ippy/Mobala

and Lassa (Mobala is another Lassa-like virus found in Praomys sp.,

a closely related species to Mastomys spp, in CAR [53].).

According to the risk maps shown here, with the reservations

noted above, the LF risk area covers approximately 80% of the

area of each of Sierra Leone and Liberia, 50% of Guinea, 40% of

Nigeria, 30% of each of Côte d’Ivoire, Togo and Benin and 10%

of Ghana. Such maps help public health policies and research, in

targeting disease control and studies in potentially infected areas.

Supporting Information

Alternative Language Abstract S1 Translation of the abstract

into French by Elisabeth Fichet-Calvet

Found at: doi:10.1371/journal.pntd.0000388.s001 (0.02 MB

DOC)

Figure 3. Mean predicted Lassa risk map for West Africa from the Model 3 series with two absence and one presence clusters, with
positive localities indicated by stars. Other information as for Figure 2.
doi:10.1371/journal.pntd.0000388.g003
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