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This paper gives three related results: (i) a new, simple, fast,
monotonically converging algorithm for deriving the L1-median
of a data cloud in �d , a problem that can be traced to Fermat and
has fascinated applied mathematicians for over three centuries;
(ii) a new general definition for depth functions, as functions of
multivariate medians, so that different definitions of medians
will, correspondingly, give rise to different depth functions; and
(iii) a simple closed-form formula of the L1-depth function for a
given data cloud in �d .

1. Introduction

I n this paper, we derive three related results about multivariate
median (MM) and data depth (DD): (i) a simple, but nontriv-

ial, modification of the Weiszfeld (1) iterative algorithm for the
computation of the multivariate L1-median (L1-MM); (ii) a gen-
eral method for generating DD functions based on MMs, so that
different MMs will, correspondingly, give rise to different DD
functions and the MMs are always the points with the largest
DD (= 1) they generate; and (iii) a simple closed-form formula
for the L1 data depth (L1-DD), the DD function corresponding
to the L1-MM.

Consider the problem of minimizing the weighted sum of the
Euclidean distances from m points, in �d . In industrial appli-
cations, this is known as the optimal location problem of We-
ber (2). In statistics, the solution of this optimization problem
is the spatial median or L1-MM, considered by Brown (3) and
Small (4). As noted by Kuhn (5), the problem goes back to
Fermat in the early seventeenth century and was generalized
to the current form by Simpson in his Doctrine and Applica-
tion of Fluxions (6). In the nineteenth century, Steiner made
significant contributions to this problem and its extensions (cf.
Courant and Robbins; ref. 7). Thus, the problem is known as
the Fermat–Weber location problem and also as the Euclidean–
Steiner problem. Dozens of papers have been written on variants
of this problem, and most of them reproduced known results in
different fields of applications. Weiszfeld (1) proposed a simple
iterative algorithm, which has been rediscovered at least three
times, and Kuhn (5) gave the algorithm a rigorous treatment. In
particular, Kuhn corrected earlier claims and showed that the
algorithm converges (monotonically) unless the starting point
is inside the domain of attraction of the data points. Although
Kuhn claimed that the domain of attraction of the data points
is a denumerable set, Chandrasekaran and Tamir (8) pointed
out an error in Kuhn’s argument and showed that it could con-
tain a continuum set. This set of bad starting points is not easy
to identify, as demonstrated by Kuhn’s example. Furthermore,
Kuhn’s proof does not preclude the possibility that this set of
bad starting points is dense in an open region of �d , or per-
haps the entire �d . In Section 2, we provide a new algorithm,
a nontrivial modification of Weiszfeld’s, which is guaranteed to
converge monotonically to the L1-MM of a data cloud from any
starting point in �d .

Given the definition of an MM, say θ, and a distribution func-
tion in �d , say F , it is natural to treat F as data and define a
DD function by asking what is the minimum incremental mass
at location y � �d , say w�y�, needed for y to become the me-
dian of the resulting mixture distribution �wδy + F�/�1 + w�.

We take 1 − w�y� to be the depth at y. The value of the re-
sulting DD function is always between zero and one, provided
that θ satisfies the following condition: if F puts at least 1/2 of
the probability mass at y, then θ�F� = y (cf. 3.2 below). Based
on this concept of DD, different definitions of MM give rise
to different DD functions, and the maximum depth 1 is always
achieved at the MM that generates the DD function. This con-
cept of depth is developed and applied to a number of examples
in Section 3.

In Section 4, the above concept of DD-functions is applied
to the L1-MM to obtain a simple closed-form formula for the
L1-DD function.

2. The L1-Median
Let x1; : : : ; xm be m distinct points in �d and η1; : : : ; ηm be m
positive numbers. Think of the ηis as weights or, better yet, as
“multiplicities” of the xis, and let C�y� denote the weighted sum
of distances of y from x1; : : : ; xm:

C�y� =
∑
i

ηidi�y�; �2:1�

where di�y� = �y − xi�, the Euclidean distance between y and
xi in �d . The problem we consider is to find a point y � �d (or
a set of points) that minimizes the “cost function” C�y�, i.e., to
find

M = M�x1; : : : ; xmyη1; : : : ; ηm�
= arg min

{
C�y� x y � �d

}
:

�2:2�

The solution M is called the L1-median.
The problem has the following (idealized) interpretation of

optimal selection of a location: a company wishes to choose an
appropriate location for a warehouse that will service ηi cus-
tomers at location xi, i = 1; : : : ;m. Each customer requires a
daily trip from the warehouse, and the cost of travel from the
warehouse to the customer is proportional to the Euclidean dis-
tance between their respective locations. Fraction customers in-
cur the corresponding fraction of the cost. The company wants
to locate the warehouse at a point y that minimizes the total
cost of travel, C�y�, from the warehouse to its customers.

When the points x1; : : : ; xm are not collinear, C�y� is positive
and strictly convex in �d , and hence the minimum is achieved at
a unique point M � �d . In the collinear case where x1; : : : ; xm
lie in a straight line, the minimum of C�y� is achieved at any
one-dimensional median (always exists but may not be unique).
We now consider only noncollinear problems (unless specified
otherwise).

Abbreviations: MM, multivariate median; DD, data depth; L1-MM, multivariate L1-
median; L1-DD, L1 data depth.
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Modified Weiszfeld Algorithm for 2.2. Define an �d to �d mapping

T̃ x y→ T̃ �y� =
∑
xi 6=y

wi�y�xi; �2:3�

where �wi�y� x i = 1; : : : ;m; xi 6= y� are positive weights that
sum to one and satisfy

wi�y� 9 ηi/di�y�:

Alternatively, because di�y� = �y − xi�, T̃ �y� can be written as

T̃ �y� =
{∑

xi 6=y

ηi
�y − xi�

}−1 ∑
xi 6=y

ηixi
�y − xi�

: �2:4�

The Weiszfeld algorithm is defined as

y→ T0�y� =
{
T̃ �y� if y 6� �x1; : : : ; xm�
xk if y = xk; k = 1; : : : ;m:

It converges to the L1-median in 2.2 for a given initial point, if
the algorithm never reaches the set �xk: k = 1; : : : ;m; xk 6=M�.
Thus, we shall modify the algorithm for y � �xk: k = 1; : : : ;m�.
If y = xk, then T̃ �y� = T̃ �xk� is a weighted average of data
points other than xk, so that it makes sense to consider a
weighted average of T̃ �xk� and xk. But what should be the
weights? Given y � �d , it is convenient to include y in the data
and define the multiplicity at y to be

η�y� =
{
ηk if y = xk; k = 1; : : : ;m;
0 otherwise.

�2:5�

The new algorithm is

y→ T �y� =
(

1− η�y�
r�y�

)+
T̃ �y� +min

(
1;
η�y�
r�y�

)
y; �2:6�

with the convention 0/0 = 0 in the computation of η�y�/r�y�,
where T̃ �y� is as in 2.4,

r�y� = �R̃�y��; R̃�y� =
∑
xi 6=y

ηi
xi − y
�xi − y� : �2:7�

For y 6� �x1; : : : ; xm�, T �y� = T̃ �y�, by 2.6 with η�y� = 0, as in
the Weiszfeld algorithm. For y = xk, T �y� is a weighted average
of T̃ �y� = T̃ �xk� and y = xk, so that by 2.4 T �y� is a weighted
average of �x1; : : : ; xm�. Also, for y 6� �x1; : : : ; xm�, R̃�y� of 2.7
is the negative of the gradient of C�y�. It follows from 2.3 and
2.4 that

R̃�y� = {T̃ �y� − y
}∑

xi 6=y

ηi/di�y�: �2:8�

This and 2.7 imply that T̃ �y� = y = T �y� when r�y� = �R̃�y�� =
0.

Properties of the L1-Median M in 2.2 and Algorithm 2.6.

y =M iff T �y� = y iff r�y� � η�y�: �2:9�
In words: y � �d is the L1-median if and only if it is a fixed-
point of our iterative algorithm 2.6, if and only if r�y� � η�y�,
where r�y� and η�y� are given in 2.7 and 2.5 respectively.

Monotonicity of the Algorithm.

If y 6=M; then C
(
T �y�) + C�y�: �2:10�

Convergence Theorem.

lim
n→:

Tn�y� =M for all y � �d: �2:11�

We note that the algorithm is extremely simple to program
and our simulation results indicate very quick convergence. The
proofs of 2.9–2.11 are given in Section 5. We proceed to describe
the concept of DD based on multivariate median and define the
L1-DD based on the above.

3. Depth
Given a definition of a multivariate median, say θ, and a distri-
bution function or, equivalently, data in �d , say F , we define the
corresponding depth function (DD function) in �d as follows:

Dθ;F�y� A DF�y� = 1− inf
{
w � 0 x θ

(
wδy + F

1+w
)
= y

}
; �3:1�

where δy is a point mass at y. That is, 1−DF�y� is the minimum
incremental mass w needed at position y for y to become the
median of the mixture �wδy+F�/�1+w�. Because DD functions
are defined by using MMs, it is natural that certain estimators
such as the mean

∫
xdF are excluded. Throughout this paper,

an MM must satisfy the following condition:

F��y�� � 1/2 ⇒ θ�F� = y; �3:2�

where F��y�� is the probability mass distributed to the point
y by F . If 3.2 holds for θ�·�, then the depth function in 3.1 is
nonnegative and well defined for all y and F .

It follows automatically from the definition of the depth in 3.1
that for all F in the domain of the multivariate median θ

θ�F� � {
y x Dθ;F�y� = 1

}
: �3:3�

In this sense, deeper points, with larger depth, are relatively
closer to the prescribed median. The definition applies to data
clouds by simply taking F to be the empirical distribution of the
data cloud. We shall consider 3.1 for three examples in this sec-
tion. The depth function associated with the L1-MM, the fourth
example, is discussed in detail in Section 4.

Example 1. The One-Dimensional Case. Let the median be denoted by
θ�1��F� for univariate distributions F . A point y is the median
of the mixture �wδy + F�/�1 + w� iff both �w + F�y��/�1 + w�
and �w+�1−F�y−���/�1+w� are greater than or equal to 1/2,
so that by 3.1 the depth function is

D
�1�
F �y� A Dθ�1�;F�y� = 2 min

{
F�y�; 1− F�y−�}: �3:4�

Example 2. Depth Based on the Marginal Median. A simple extension
of the univariate median to multivariate distributions F in �d is
the marginal median

θ�M��F� A (
θ�1��F1�; : : : ; θ�1��Fd�

)
;

where Fj is the marginal distribution of the jth variable under
F . The corresponding depth function, associated with θ�M� by
3.1, is then

D
�M�
F �y� = min

1�j�d

{
D
�1�
Fj

(
yj
)}

= 2 min
1�j�d

min
{
Fj�yj�; 1− Fj�yj−�

}
;

�3:5�

where D�1� is as in 3.4 and yj is the jth component of y.
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Example 3. The Tukey Depth. A more stringent extension, say θ�T �,
of the univariate median requires that the projection of θ�T ��F�
be the median of the projection of the distribution F under any
linear projection from �d to �. That is

θ�T ��F� = y iff atry = θ�1�(Fπa

) ∀a � �d; �3:6�
where Fπa

�t� = F(�x x atrx � t�) is the marginal distribution
of F with the projection x→ atrx. Although θ�T ��F� is not de-
fined for all F , the depth function 3.1 is always defined because
θ�T �

(�δy + F�/2
) = y for all F and y. The resulting depth func-

tion is

D
�T �
F �y� = inf

a��d
D
�1�
Fπa

(
atry

)
= 2 inf

a��d
min

{
Fπa

(
atry

)
; 1− Fπa

(
atry − )}; �3:7�

again with the D�1� in 3.4. Hence, D�T �F �y�/2 is the Tukey (9)
depth.

4. The L1-depth.
Consider x1; : : : ; xm � �d with multiplicities η1; : : : ; ηm, respec-
tively, and let y � �d . We shall apply the depth concept of 3.1
to this set-up using the L1-MM.

Let M be the L1-MM in 2.2. Given a point y in �d , what is
the minimum increment of multiplicity η′�y� at y, in addition to
η�y� in 2.5, to ensure that y becomes the L1-MM for the new
data set with the new multiplicities? The answer to this question
is an immediate consequence of 2.5, 2.7, and 2.9: because r�y� in
2.7 does not depend on the multiplicity y in 2.5, by 2.8 y becomes
the median for the modified data (multiplicities η�y� + η′�y� at
y and ηk at xk 6= y) if the incremental multiplicity η′�y� is large
enough to ensure that η�y� + η′�y� � r�y�. Thus, the minimum
increment, to turn y into the L1-MM, is

η′�y� = max�r�y� − η�y�; 0�: �4:1�
By 3.1, the L1-DD is the corresponding complementary propor-
tion:

D�y� = 1− η′�y�∑m
j=1 ηj

= 1− max�r�y� − η�y�; 0�
η1 + · · · + ηm

: �4:2�

Alternatively, if ei�y� = �y−xi�/�y−xi� and e�y� =∑xk 6=y ei�y�fi
with fi = ηi/

∑k
j=1 ηj , then

D�y� =
 1− ∥∥e�y�� if y 6��x1; : : : ; xm�,

1− (∥∥e�y�� − fk
)+ if y = xk; ∀k.

�4:3�

The function e�y� is the spatial rank function considered in
Möttönen and Oja (10) and Marden (11). Related multivariate
quantiles were considered by Chaudhuri (12).

Note that, because ei�y� are vectors of unit length for y 6= xi,∥∥e�y�� �∑
xk 6=y fk � 1, so that by 4.3

0 � D�y� � 1: �4:4�
Because limc→: ei�cy� = y for �y� = 1, lim�y�→: �e�y�� = 1 and

lim
�y�→:

D�y� = 0: �4:5�

Furthermore, by 4.3 and the fact that
∥∥e�y�� � ∑

xi 6=y fi,
D�xk� = 1 if fk � 1/2; i.e., a data point xk is the L1-MM
if it possesses half of the total multiplicity. Thus, 3.2 holds
for the L1-MM. The identity 4.5 is closely related to the well
known fact that the breakdown of the L1-MM is 1/2. Note
that Dθ;F = 0 iff the optimal w in 3.1 is one, that corresponds
to the mixing probability w/�1 + w� = 1/2 for the mixture
�wδy + F�/�1+w�. See (6.1–6.3) in Section 6.

5. Proofs of 2.9–2.11
The key to the proof is the inequality

C�T �xk�� + C�xk� if xk 6=M; k = 1; : : : ;m: �5:1�
The monotonicity property 2.10 follows from 5.1, because
C�T �y�� = C�T̃ �y�� for y 6� �x1; : : : ; xm�, and Kuhn (5) proved
C�T̃ �y�� + C�y� for the Weiszfeld algorithm in this case. In-
equality 2.10 then implies that, starting from any initial point y
in �d , the sequence Tn�y� in the iterative algorithm 2.6 visits
each xk 6= M at most once and it will not get stuck at xk 6= M.
After the last visit to the set �xk; k = 1; : : : ;m; xk 6=M�, Tn�y�
converges to the L1-MM M by Kuhn (5). This proves the
convergence theorem 2.11 based on 5.1. Moreover, Kuhn (5)
proved that

y = M iff R�y� = 0;

R�y� A �r�y� − η�y��+R̃�y�/r�y�; �5:2�

with the convention R�y� A 0 for r�y� A �R̃�y�� = 0. Thus, y =
M implies r�y� � η�y�. Finally, r�y� � η�y� implies T �y� = y by
2.6, as r�y� = 0 implies T �y� = T̃ �y� = y, while T �y� = y implies
y = M by the monotonicity 2.10. Thus, 2.9 is also proved based
on 5.1.

It remains to prove 5.1, because the rest of the proof has al-
ready been completed above under the assumption of 5.1. Con-
sider a fixed data point xk 6=M. Define

gk�x� = 2ηk�x− xk� +
∑
i 6=k

ηi
di�xk�

�x− xi�2: �5:3�

Because T̃ �xk� is the weighted average of �xi; i 6= k� with
weights proportional to ηi/di�xk�, as in 2.3, T̃ �xk� is the min-
imizer of

∑
i 6=k�ηi/di�xk���x − xi�2 in 5.3 and due to the

cancelation of cross-product terms

gk�x� = 2ηk�x− xk� +
∑
i 6=k

ηi
di�xk�

�x− T̃ �xk��2

+
∑
i 6=k

ηi
di�xk�

�T̃ �xk� − xi�2

= 2ηk�x− xk� +Ak�x− T̃ �xk��2 + Bk;

�5:4�

where Ak =
∑

i 6=k ηi/di�xk� and Bk =
∑

i 6=k�ηi/di�xk���T̃ �xk�−
xi�2. Because ηk, Ak and Bk in 5.4 do not depend on x,

min
z
gk�z� = min

0�w�1
gk��1− w�T̃ �xk� +wxk�: �5:5�

i.e., gk�x� � gk�z� if x is the projection of z to the line segment
with endpoints xk and T̃ �xk�. For the points in this segment and
the above gk�·�,
gk��1− w�T̃ �xk� +wxk�
= �1−w�2ηk�T̃ �xk� − xk� + w2Ak�T̃ �xk� − xk�2 + Bk;

as a strictly convex function in w, is uniquely minimized at

w∗ A min
{

1;
ηk�T̃ �xk� − xk�
Ak�T̃ �xk� − xk�2

}
= arg min

w
gk��1−w�T̃ �xk� +wxk�:

�5:6�

Because xk 6=M, by 5.2 and 2.8

r�xk� , η�xk� � 0; T̃ �xk� 6= xk: �5:7�
By 2.7 and 2.8 and the definition of Ak in 5.4, r�xk� = �T̃ �xk�−
xk�Ak, so that w∗ = η�xk�/r�xk� � �0; 1� by 2.5 and 5.7. Thus,
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by 5.5, 5.6 and 2.6, T �xk� = �1−w∗�T̃ �xk� +w∗xk is the unique
minimizer of gk�x� and T �xk� 6= xk. These and 5.3 and the def-
inition of C�y� in 2.1 imply that

C�xk� = gk�xk� , gk�T �xk��
= 2ηk�T �xk� − xk� +

∑
i 6=k

ηi
di�xk�

d2
i �T �xk��

� 2ηk�T �xk� − xk�
+
∑
i 6=k

ηi
di�xk�

[
d2
i �xk� + 2di�xk�

{
di�T �xk�� − di�xk�

}]
= C�xk� + 2C�T �xk�� − 2C�xk�:

Hence, 5.1 holds for xk 6=M and the proof is complete.

6. Remark
An alternative definition of DD functions, based on the same
idea as 3.1, is

D̃θ;F�y� A DF�y�
= 1− inf�w � 0 x θ�wδy + �1−w�F� = y�: �6:1�

That is, 1 − DF�y� is the minimum mixing probability mass
needed to be mixed into F , at position y, for y to be the median
of the mixture wδy + �1 − w�F . Condition 3.2 is not required
here, because 6.1 is well defined for all F and y if θ�δy� = y
for all y � �d . By simple algebra, 3.1 and 6.1 are monotone
functions of each other, with

D̃θ;F�y� =
1

2 −Dθ;F�y�
; Dθ;F�y� = 2 − 1

D̃θ;F�y�
: �6:2�

Moreover, by 4.5

lim
�y�→:

D̃θ;F�y� = 1/2: �6:3�

Consider the mean µ�F� = ∫ xF�dx�. Because µ
(�wδy + F�/

�1 + w�) = �wy + µ�F��/�1 + w� for the mixture in 3.1,
Dµ;F�y� = 1 for y = µ�F� and Dµ;F�y� = −: otherwise. Thus,
the concept of depth function 3.1 is not useful for the mean
µ�F�. It seems reasonable to exclude such multivariate location
estimators by considering only those θ�F� satisfying Dθ;F�y� � 0,
or equivalently only those multivariate median θ satisfying 3.2,
as in 3.4, 3.5, 3.7 and 4.3.

It is well known that the L1-median is not affine equivari-
ant, so that the L1-depth in 4.2 is not affine invariant. It seems
that we can make the L1-median affine equivariant if a suit-
able data-dependent coordinate system is used, e.g., to replace
di�y� = �y − xi� throughout by �A�y − xi��, where A = V −1/2

for a suitable robust covariance-type matrix V based on data.
See Chakraborty and Chaudhuri (13) for a similar approach. For
general discussion of affine equivariant and related estimators of
multivariate location and covariance, and their applications, we
refer to Barnett (14); Brown and Hettmansperger (15); Donoho
and Gasko (16); Eddy (17); Hettmansperger and Oja (18); Liu
(19); Liu, Parelius, and Singh (20); Oja (21); Oja and Niinimaa
(22); Rousseeuw (23); Rousseeuw and Leroy (24); Small (4);
Tukey (9).
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