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ABSTRACT

Estimates of gene flow between subpopulations based on FST (or NST) are shown to be confounded by
the reproduction parameters of a model of skewed offspring distribution. Genetic evidence of population
subdivision can be observed even when gene flow is very high, if the offspring distribution is skewed. A
skewed offspring distribution arises when individuals can have very many offspring with some probability.
This leads to high probability of identity by descent within subpopulations and results in genetic
heterogeneity between subpopulations even when Nm is very large. Thus, we consider a limiting model in
which the rates of coalescence and migration can be much higher than for a Wright–Fisher population.
We derive the densities of pairwise coalescence times and expressions for FST and other statistics under
both the finite island model and a many-demes limit model. The results can explain the observed genetic
heterogeneity among subpopulations of certain marine organisms despite substantial gene flow.

NATURAL populations of organisms are often
subdivided by geography. Individuals may or may

not migrate between these subpopulations. Modeling
gene flow between subpopulations can be traced back
to Wright (1931), whose island model describes a
population subdivided into discrete, local subpopula-
tions by geography, with limited migration between
individual subpopulations. With the advent of techni-
ques to characterize genetic variation, several measures
of population subdivision have been proposed on the
basis of probabilities of identity (see Rousset 2002 for
a review). These include Wright’s (1951) FST, Nei’s
(1982) gST, and Lynch and Crease’s (1990) NST.

The quantity FST can, under the assumption of equi-
librium, be used to estimate levels of gene flow from
allozyme data (Wright 1951). The quantity gST can be
calculated from DNA sequence data and is equivalent to
FST if the mutation rate is very low (Slatkin 1991).
Levels of gene flow between subpopulations can thus
also be estimated from DNA sequence data. However,
Slatkin (1991) argues that FST is appropriate for allozyme
data, whereas the gene genealogy-based method of
Slatkin and Maddison (1989) is appropriate for DNA
sequence data. As FST continues to be used in inves-
tigations of population structure and, recently, as a tool
for identifying loci under selection (e.g., Murray and
Hare 2006), we are concerned with FST and related
measures below.

We derive expressions for FST and NST under the
island model of population subdivision with symmetric
migration (Nagylaki 1980; Strobeck 1987) and
skewed offspring distribution among individuals in a
population. When the offspring distribution is skewed,
individuals have some nonnegligible probability of
having very many offspring. The population model of
skewed offspring distribution we adopt in this work can
result in an ancestral process with asynchronous multi-
ple mergers (Eldon and Wakeley 2006). An ancestral
process with asynchronous multiple mergers, or L-
coalescent, was introduced by Pitman (1999) and also
derived by Sagitov (1999) from a Cannings (1974)
model. In a L-coalescent, any number of ancestral lines
can coalesce at once to a single ancestor. In contrast, the
Kingman coalescent (Kingman 1982a,b) allows only two
lines to coalesce each time. For a single population, the
ancestral process obtained from the population model
of Eldon and Wakeley (2006), and employed in this
work, is a special case of the L-coalescent of Pitman

(1999) and Sagitov (1999).
Type III survivorship curve, and high fecundity,

characterize a diverse group of organisms (e.g., many
plants and marine animals). A prime example are
marine species with broadcast spawning, including
Atlantic cod (Gadus morhua; Árnason 2004), Pacific
oysters (Crassostrea gigas; Beckenbach 1994; Hedgecock

1994a), and red drum (Sciaenops ocellatus; Turner et al.
2002). A model of skewed offspring distribution, in which
individuals can have very many offspring with a non-
negligible probability, may therefore better apply in such
cases than the Wright–Fisher (Fisher 1930; Wright

1931) or the Moran (Moran 1958, 1962) models.
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Genetic observations from these species also argue
against the standard population models. Genetic di-
versity is observed to be much lower than expected on
the basis of population size for some marine popula-
tions (Hedgecock et al. 1982; Nei and Graur 1984;
Avise et al. 1988; Avise 1994). In particular, low effective
to actual population size ratios have been reported for
Atlantic cod (Árnason 2004), red drum (Turner et al.
2002), and the Pacific oyster (Hedgecock 1994a), and
this has been explained by high variance in offspring
distribution (Crow and Kimura 1970; Hedrick 2005).
Second, models of skewed offspring distribution predict
a large number of singleton variants (Eldon and Wakeley

2006; Sargsyan and Wakeley 2008), a feature observed,
for example, in Pacific oysters (Boom et al. 1994), Atlantic
cod (Árnason 2004), and some hydrothermal vent taxa
(Won et al. 2003; Hurtado et al. 2004; Johnson et al. 2006;
Young et al. 2008).

Genetic heterogeneity on a small spatial scale has
been observed for many marine populations, including
the purple sea urchin (Strongylocentrotus purpuratus;
Edmands et al. 1996), even though planktonic larvae
disperse over wide-ranging habitats ( Johnson and Black

1984; Watts et al. 1990; Hedgecock 1994b; David et al.
1997). A range of explanations has been proposed for the
observed heterogeneity (see Burton 1983; Palumbi

1994). Our aim is to address, by analytic methods, the
problem concerning the genetic population structure of
a highly fecund species with potentially highly skewed
offspring distribution, like the Atlantic cod (Árnason

et al. 2000).
We obtain the probability distributions of pairwise

coalescence times, and expressions for FST, for both the
finite island and a many-demes limit model. Our main
result is that evidence of population subdivision can
be observed in genetic data even if the usual migration
rate Nm is very large. In essence, a skewed offspring
distribution leads to high probabilities of identity by
descent within subpopulations and thus high FST.
Therefore, patterns in genetic data indicating popula-
tion subdivision cannot be taken to indicate low levels
of gene flow in a population with a skewed offspring
distribution. In fact, estimates of migration rate based
on FST (or NST) are confounded by the reproduction
parameters of our model of skewed offspring distribu-
tion. These results may explain the genetic heterogene-
ity among subpopulations of some marine species like
the purple sea urchin (S. purpuratus; Edmands et al.
1996), despite the potential for wide dispersal of long-
lived planktotrophic larvae (Burton 1983; Palumbi

1994).

METHODS AND RESULTS

Throughout we are concerned with neutral genetic
diversity at a single nonrecombining locus in a haploid

population. As usual, N is the population size. The
results should hold for a diploid population with gam-
etic migration if we replace N with 2N. The population
model we consider is a modification of the well-known
Moran model of reproduction (Moran 1958, 1962).
In the Moran model, a single randomly chosen in-
dividual reproduces each time step. To keep the
population size constant a randomly chosen individ-
ual, but not the offspring, dies to make room for the
offspring.

In our model, which was first presented in Eldon and
Wakeley (2006), a single randomly chosen individual
(the parent) reproduces each time step. With probabil-
ity 1 – e the parent has one offspring. Alternatively, with
probability e the parent has cN – 1 offspring (a large
reproduction event) with 0 , c , 1. To keep population
size constant when a large reproduction event occurs, a
total of cN – 1 individuals die to make room for the new
offspring. In our model the parent always persists. The
parameter c represents the fraction of the population
that is replaced by the offspring of the parent. Eldon

and Wakeley (2006) show that this modified Moran
model of overlapping generations gives rise to a co-
alescent process that allows for asynchronous multiple
mergers of ancestral lines, i.e., is of the same type as the
ancestral process considered by Pitman (1999) and
Sagitov (1999).

For ease of presentation, we define the following
quantities: Ng, cN, lg, and IA. The quantity Ng is the
coalescence timescale in our model. The coalescence
timescale is proportional to the number of time steps,
on average, it takes for two individuals to coalesce (in a
single population). It depends on the value of e that we
assume has the form e [ 2f/N g for some constants f

and g with 0 , f, g , ‘. In our model, the coalescence
timescale is N g/2 time steps when 0 , g , 2. In the usual
Moran model, the timescale is N 2/2 time steps, which is
also the value of Ng when g $ 2.

For a single population, Eldon and Wakeley (2006)
show that different coalescent processes result depend-
ing on g. Multiple mergers of ancestral lines are allowed
in the coalescent process when 0 , g # 2, while
Kingman’s coalescent (Kingman 1982a,b) results when
g . 2. The probability that two individuals do coalesce
in a single time step is denoted by cN and depends on e.
The rate lg of coalescence of two individuals is obtained
from cN by ‘‘speeding up’’ time by a factor of Ng. When
0 , g # 2, lg depends on the reproduction parameters
f and c. In mathematical notation, Ng is expressed as
Ng [ ð1=2ÞminðN g;N 2Þ, and the coalescence probabil-
ity cN is

cN ¼
2ð1� eÞ1 cN ðcN � 1Þe

N ðN � 1Þ : ð1Þ

For notational convenience, we also define the indicator
function IA as
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IA [
1 if A is true;
0 otherwise:

�

For example, Ig,2 ¼ 1 if g , 2, and zero otherwise. In
our model a large reproduction event occurs when the
number of offspring of the parent equals cN – 1. These
events occur with probability e. Our choice of e¼ 2f/N g

results in the coalescence timescale being Ng. The rate
lg of coalescence is then

lg [ lim
N /‘

NgcN ¼ Ig $ 2 1 fc2Ig # 2: ð2Þ

The coalescence rate lg is a key quantity in nearly all of
our results below.

Model of subdivision: We now consider the finite
island model of population subdivision with the simpli-
fying assumption that migration does not change the
sizes of the subpopulations (Nagylaki 1980; Strobeck

1987; Herbots 1997). Reproduction in all the subpo-
pulations follows the modified Moran model described
above. The discrete-time ancestral process for a sample
of size 2 is a Markov chain with transition probabilities
given in Equation A1 in the appendix.

We are concerned with small migration rates, specif-
ically those on the order of 1/Ng time steps. This means
that a single individual resides in the same subpopula-
tion for 2Ng time steps, on average, before migrating to
a different subpopulation. When 0 , g , 2, each
individual resides in the same subpopulation for only N g

time steps, on average. This time can be much shorter
(when 0 , g , 1) than the usual average of N time steps
assumed in Wright–Fisher populations. In other words,
a large number of individuals migrate during N time
steps when 0 , g , 1. We let m denote the probability
that a single individual resided in a different subpop-
ulation in the previous time step and model m as m ¼
mg [ k/(2Ng) in which k is a finite constant (0 , k , ‘).

To illustrate the difference between our migration
rate k and the usual migration rate Nm let M* [ N 2mg

denote a migration rate scaled in units of N 2 time steps
(or N generations). This corresponds to the usual ‘‘Nm’’
in the Wright–Fisher model. Substituting for mg gives
M* ¼ ðIg$2 1 N 2�gIg,2Þk. If, for example, g ¼ 3

2, then
M* ¼

ffiffiffiffiffi
N
p

k. When g , 2 the migration rate M* is very
high; i.e., M*/‘ as N /‘ since k is finite. However, in
our modified model of reproduction coalescence also
occurs on the timescale of N 3/2 time steps (or

ffiffiffiffiffi
N
p

gen-
erations when g ¼ 3

2) and thus ‘‘counteracts’’ the effects
of high migration rate.

The main results of this work concern expected co-
alescence times (Equations 3 and 5) and FST-like mea-
sures (Equations 10–12). We also derive the densities
of the coalescence times (see appendix). The densities
are used to derive distribution functions for the number
of segregating sites between two sequences (see the
appendix), which in turn yield expressions for FST-like
measures including mutation (Equations 13 and 14).

The distributions of the coalescence times are
functions of lg: DNA sequences differ because they
have accumulated mutations from the time of their
most recent common ancestor until they are sampled.
By assuming a very low mutation rate, Slatkin (1991)
derived an expression for FST in terms of expected
values of coalescence times. The time until two genes
coalesce is therefore a fundamental quantity in theo-
retical work on structured populations. Given two genes
sampled from a structured population, two different
coalescence times arise that are of interest: the time T0

until two genes sampled from the same subpopulation
coalesce and time T1 until two genes sampled from
different subpopulations reach a common ancestor.
The densities of T0 and T1 were previously derived
under the structured coalescent by Takahata (1988)
and Nath and Griffiths (1993) in the case of two
subpopulations and by Herbots (1997) for any finite
number of subpopulations.

Given the transition rates in Equation A2, we can
obtain the distributions of the coalescence times T0 and
T1 (see the appendix). Figure 1 shows the distributions
of T0 and T1, respectively, as functions of time for
different values of c (the fraction of the population
replaced by the offspring of a single individual). As c

increases (i.e., tends to 1), the coalescence times T0 and
T1 become very short.

The expected value and variance of T0 are both less
than the corresponding quantities for T1. Specifically,

EðT0Þ ¼
D

lg

;

EðT1Þ ¼
D

lg

1
D � 1

k

ð3Þ

and

VarðT0Þ ¼
D2

l2
g

1
2ðD � 1Þ2

klg

;

VarðT1Þ ¼
D2

l2
g

1
2ðD � 1Þ2

klg

1
ðD � 1Þ2

k2 :

ð4Þ

Equation 3 holds a key result, namely that E(T0) is always
less than E(T1).

The significance of the result in Equation 3 is best
understood by an example. When g , 2, say 3

2; then the
timescale is Ng ¼ N 3/2, and lg ¼ c2 (assuming f ¼ 1).
Our migration parameter is then k ¼ mgNg ¼ mgN 3/2.
Migration is scaled in units of N 2 time steps in a standard
Moran population. If we let M* [ N 2mg be a scaled
migration rate in units of N 2 time steps, then if mg is of
order 1/N 3/2 as above, M* becomes very high in a large
population. Specifically, since g ¼ 3

2, we have M* ¼
k
ffiffiffiffiffi
N
p

/‘ (as N /‘), since k is a constant. The result in
Equation 3 says that even when M*/‘ one will still see
evidence of population structure in DNA sequence data,
since coalescence occurs on a timescale of N 3=2>N 2
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time steps (in a large population) when g ¼ 3
2. In fact,

M*/‘ as N /‘ whenever 0 , g , 2.
Similarly, VarðT0Þ is always less than VarðT1Þ. In

addition, the expected value and variance of T0 are
inversely proportional to lg and thus will be small when
the probability of large reproduction events is close to
one. The expressions for E(T0) and E(T1) (Equation 3)
obtained under the usual reproduction models (Nei

and Feldman 1972; Li 1976; Griffiths 1981) can be
recovered by assuming that large reproduction events
occur on a longer timescale (g . 2) than usual (e.g.,
Wright–Fisher) sampling, in which case lg ¼ 1. The
variances of T0 and T1 were first derived by Hey (1991)
under the structured coalescent and can be recovered
in the same way from Equation 4.

A many-demes limit: The structured coalescent sim-
plifies under certain migration mechanisms when the
number of subpopulations is taken to be much greater
than the sample size of DNA sequences (Wakeley

1998). The convergence of the ancestral process under
a many-demes limit (i.e., when D/‘) follows from the
work of Möhle (1998), which shows how events in a
stochastic process that occur on different timescales can
be separated (see the appendix for a more detailed
description). We consider the ancestral process in the
limit D/‘ and N /‘. Switching the order of the limits
leads to the same coalescent process (see the appendix).

The limit process of two genes sampled from a
population subdivided into very many subpopulations
(D/‘), each of which is very large (N /‘), is of the
form P*e t G* in which P* and G* are given by Equations
A16 and A19, respectively. The form of P* tells us that
the ancestral process immediately enters the continu-
ous-time process if the two genes are sampled from two

different demes. If the two genes are sampled from the
same subpopulation, they coalesce with probability
lg=ðlg 1 kÞ or enter the continuous-time process by
moving to different subpopulations with probability
k=ðlg 1 kÞ. In the continuous-time process the two lines
wait with exponential time with rate klg=ðk 1 lgÞ on a
timescale of DNg time steps until they coalesce. The
ancestral process under the many-demes limit model
(Equation A19) differs from the limit process obtained
when the number of subpopulations is finite (Equation
A2), in that G* has a zero entry for the transition where
the two alleles enter the same subpopulation, after
having been separated. When D , ‘, the corresponding
rate is k/(D – 1) (Equation A2). Ancestral lines can
coalesce, however, only if they reside in the same
subpopulation. The matrix B* (Equation A18) ensures
that the two lines do arrive in the same subpopulation.

Again we are interested in the coalescence times T0

and T1 of two genes sampled from the same, or
different, subpopulations, respectively. The distribution
of T0 is a mixture distribution (see appendix), and we
obtain

EðT0Þ ¼
1

lg

;

EðT1Þ ¼
1

lg

1
1

k

ð5Þ

and

VarðT0Þ ¼
1

l2
g

1
2

klg

;

Var T1ð Þ ¼
1

l2
g

1
2

klg

1
1

k2 :

ð6Þ

Figure 1.—The densities fT0
and fT1

of times to
coalescence for two genes sampled from the
same (T0), or different (T1), subpopulations as
functions of time for different values of c when
the number of subpopulations D ¼ 3 and f ¼
k ¼ 1. The coalescence timescale is N 2/2 in a
and c and N g/2 with 0 , g , 2 in b and d.
The solid lines in a and c are the densities ob-
tained under the standard coalescent (i.e., g .
2).
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The expressions for the expected value and variance of
T0 and T1 obtained under the many-demes limit model
(Equations 5 and 6) are functions of lg and k in the
same way as the corresponding expected values and
variances (Equations 3 and 4) obtained for a finite
number of subpopulations. In particular, we always
expect a shorter coalescence time for two ancestral
lines sampled from the same subpopulation than if they
were sampled from different subpopulations.

Deriving FST and NST: The quantity FST is commonly
used to assess levels of population subdivision. The
inbreeding coefficient of an individual relative to a
collection of subpopulations, FIT, can be attributed to
nonrandom mating within a subpopulation (FIS) and to
differences among subpopulations (FST; Wright 1951).
Two sequences are identical by descent if they have not
experienced mutation from the time of their most
recent common ancestral sequence until they are
sampled. If we let f0 and f denote the probability of
identity by descent of two genes sampled from the same
subpopulation ( f0) and at random from the collection
of subpopulations ( f ), we can express FST as

FST ¼
f0 � f

1� f
ð7Þ

(Nei 1973). By the definition of FST in terms of in-
breeding coefficients (as in Equation 7), FST depends on
the mutation rate (m). By forcing m to be very low
Slatkin (1991) derived an approximation of FST that is
a function of expectation of coalescence times and is
given by

F
ð0Þ
ST [ lim

m/01
FST ¼

EðT Þ � EðT0Þ
EðT Þ ; ð8Þ

in which T is the coalescence time of two lines randomly
sampled from the collection of subpopulations, T0 is the
time to coalescence of two lines from the same sub-
population, and m is the mutation rate.

To obtain an expression of F ð0ÞST in terms of coales-
cence times under skewed offspring distribution, we can
proceed by first obtaining the expected coalescence
time E(T ) of two genes randomly sampled from the
collection of subpopulations, which is readily obtained
from Equations 3 and A10 and is given by

EðT Þ ¼ D

lg

1
ðD � 1Þ2

Dk
: ð9Þ

When the number of subpopulations D is finite, the
general form of F ð0ÞST is

F
ð0Þ
ST ¼

1

ðk=lgÞðD=ðD � 1ÞÞ2 1 1
: ð10Þ

For example, when 0 , g , 2, the rate of coalescence is
lg ¼ c2 (with f ¼ 1) and Equation 10 gives F ð0ÞST ¼
ðkc�2ðD=ðD � 1ÞÞ2 1 1Þ�1. The expression for F ð0ÞST

in Equation 10 has the same form as the one derived
by Slatkin (1991) under the standard coalescent. The
key difference is that, under skewed offspring distri-
bution, FST is a function of the rate lg (Equation 2) of
coalescence and thus a function of the reproduction
parameters f and c. The result that Slatkin (1991)
obtained can be recovered from Equation 10 by taking
g . 2, in which case lg¼ 1 (recall that the probability of
large reproduction events } 1/Ng).

When the number of subpopulations D ?1, we obtain
from Equation 10

F
ð0Þ
ST �

1

1 1 k=lg

: ð11Þ

In Equation 11 we have taken two limits: N /‘ and
D/‘. Switching the order of the limits gives the same
limit result for FST in Equation 11.

Following Wright (1951), the value of FST has often
been used to estimate levels of gene flow. Figure 2 shows
k̂ [ lgðð1=FSTÞ � 1Þ, obtained from Equation 11, as a
function of c for different values of FST (Figure 2a) and
f (Figure 2b) and for two different values of lg. Since
FST is a function of c and f, so is any estimate of gene
flow based on FST, as Figure 2 clearly shows.

Lynch and Crease (1990) used the number of
pairwise sequence differences of DNA sequences to
estimate levels of genetic heterogeneity. In that context,
Lynch and Crease (1990) introduced the quantity NST

that has the form v̂1=ðv̂1 1 v̂0Þ in which v̂1 and v̂0 are the
average number of pairwise differences between se-
quences sampled from different, or the same, subpo-
pulations, respectively. If mutation rate is constant and
mutations occur according to the infinite-sites model
(Watterson 1975), then NST estimates ðEðT1Þ �
EðT0ÞÞ=EðT1Þ (Slatkin 1993). Using the results ob-
tained for expected coalescence times (Equation 3), we
obtain NST ¼ F ð0ÞST as in Equation 11 for the many-demes
limit model of population subdivision and

NST ¼
1

1 1 ðk=lgÞD=ðD � 1Þ ð12Þ

when D , ‘. The effect of skewed offspring distribution
is the same on NST as it is on FST. Under the infinite-sites
mutation model we do not need an assumption of small
mutation rate to obtain an expression of NST in terms of
coalescence times, unlike the case for FST. As NST is
defined, the mutation parameter cancels out (Slatkin

1993).
Number of segregating sites between pairs of

sequences: By the definition of FST in terms of proba-
bilities of identity by descent (Equation 7), FST depends
on mutation. Eldon and Wakeley (2006) show that the
limit process (as N /‘) of our model of skewed
offspring distribution predicts nonzero levels of genetic
variation only when g . 1. If we (as in Eldon and
Wakeley 2006) let m denote the probability of mutation
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for each offspring in a single time step, we define the
mutation rate u as u [ limN /‘ðNg=N Þm (and g . 1). We
can include mutation in an expression for FST by first
obtaining the probability distributions of the number
of segregating sites, under the infinite-sites model
(Watterson 1975), between two genes given a model
of population subdivision with migration. Let K0 denote
the number of segregating sites between two genes
sampled from the same subpopulation and K denote
the number of segregating sites between two genes
sampled randomly from the collection of subpopula-
tions. The distributions of K0 and K are derived in the
appendix, along with the distribution of the number of
segregating sites K1 between two genes sampled from
different subpopulations. Then by the definition of FST

given in Equation 7 we obtain

FST ¼
PðK0 ¼ 0Þ � PðK ¼ 0Þ

1� PðK ¼ 0Þ
¼ 1

1 1 ðD=ðD � 1ÞÞ2ðk=lgÞ1 ðD=ðD � 1ÞÞððu=2Þ=lgÞ
:

ð13Þ

When D ?1,

FST �
1

1 1 k=lg 1 ðu=2Þ=lg

: ð14Þ

From Equation 14 we conclude that mutation can affect
FST only if u is large relative to lg. The expression for FST

in Equation 14 has the same form as the one derived by
Wilkinson-Herbots (1998) and by Nei (1975) and
Takahata (1983) by other methods, under the Wright–
Fisher model, including mutation. In Figure 3, FST from
Equation 14 is graphed as a function of c for different
values of u and k. The interpretation of Figure 3 is that
FST, as a function of c, can vary considerably when the
timescale of coalescence (and migration) is in units of
N g/2 generations with 1 , g , 2 (Figure 3, b and d).

Nei’s genetic distance d: Not all indicators of
separation between populations depend on lg. Nei’s
(1972) genetic distance is more appropriate for esti-
mating divergence time between species, and FST-like

quantities are more suitable for inferring population
structure within species (Slatkin 1991). Nei’s (1972)
genetic distance measure is given by dN ¼ �lnð f1=f0Þ in
which f0 and f1 are the probabilities of identity by
descent of two genes sampled from the same or
different subpopulations, respectively, and we add the
subscript N to remind us that time is discrete. If we now
assume that 0 , mE(ti) , 1 for i ¼ 0, 1, then using the
Maclaurin series expansion of the logarithmic function
lnð1� mEðtiÞÞ we obtain dN � mðEðt1Þ � Eðt0ÞÞ (previ-
ously obtained by Slatkin 1991) in which t0 and t1 are
the coalescence times for two genes sampled from
the same, or different, subpopulations, respectively.
To obtain an expression of d for continuous time,
we assume that the product ðNg=N Þm converges to a
constant u as N /‘ (and g . 1). Rewriting the
approximation for dN gives

dN �
Ng

N
m E

t1
Ng=N

� �
� E

t0
Ng=N

� �� �
; ð15Þ

which has the continuous-time limit

d ¼ lim
N /‘

dN � uðEðT1Þ � EðT0ÞÞ: ð16Þ

However, using the expressions for E(T1) and E(T0)
(Equation 3), we obtain d � uðD � 1Þ=k and so Nei’s
(1972) genetic distance is independent of lg. Another
way of deriving an expression for d is to note that the
probability of identity by descent of two genes is the
same as the probability that no mutations occur from
the time they are sampled until they reach a common
ancestor. Thus fi ¼ P(Ki ¼ 0) for i ¼ 0, 1. We can
therefore write

d ¼ �ln
PðK1 ¼ 0Þ
PðK0 ¼ 0Þ

� �
ð17Þ

for any model of population subdivision. For the many-
demes limit model under consideration,

d ¼ �ln
1

1 1 ðu=2Þ=k

� �
:

Figure 2.—The estimate k̂ [ lg ð1=ðFSTÞ � 1Þ
of migration rate from Equation 11 as a function
of c. (a) c2ð1=ðFSTÞ � 1Þ when FST ¼ 0.1 (solid
line), FST¼ 0.2 (dashed line), and FST¼ 0.5 (dot-
ted line). (b) ð1 1 fc2Þð1=ðFSTÞ � 1Þ with FST ¼
0.1 and f ¼ 1 (solid line), f ¼ 2 (dashed line),
and f ¼ 5 (dotted line).
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Using either the limit approach (Equation 16) or the
substitution approach (Equation 17) in the many-
demes limit model, and assuming small u/k (i.e., 0 ,

u/k , 1), d is of the form u/k. The same result is
obtained for a finite number of subpopulations. Indeed,
when D is finite, we obtain from Equations A28 and A29

PðK1 ¼ 0Þ
PðK0 ¼ 0Þ ¼

1

1 1 ðu=2ÞðD � 1Þ=k
: ð18Þ

Thus, if 0 , (u/2)(D – 1)/k , 1, we have from Equa-
tions 17 and 18

d � u

2

D � 1

k
: ð19Þ

Even if (u/2)(D – 1)/k . 1, we have from Equations 17
and 18 that d is not a function of lg. Thus Nei’s (1972)
genetic distance can be used to estimate divergence
times of species even if one or both species have skewed
offspring distribution, since d is proportional to the
time of separation of two populations (Nei 1972;
Slatkin 1991).

DISCUSSION

Someorganisms, forexamplePacificoysters (Beckenbach

1994; Hedgecock 1994a) and Atlantic cod (Bekkevold

et al. 2002; Árnason 2004), may exhibit skewed off-
spring distribution among individuals in a population.
Both Beckenbach (1994) and Hedgecock (1994a)
describe the reproductive mode of oysters, for example,
as a lottery, in which only the offspring of a few lucky
females survive. Oyster and cod females have very high
reproductive potential, as they may produce millions of
eggs in a single spawning (May 1967; Strathmann

1987; Chambers and Waiwood 1996; Kjesbu et al.
1996). The Wright–Fisher model does not capture the
skewed offspring distribution possibly exhibited by
organisms with high fecundities and high early mortal-
ity. The models of Pitman (1999) and Sagitov (1999),
and later of Eldon and Wakeley (2006) and Sargsyan

and Wakeley (2008) for overlapping generations in a
single population, incorporate the skewness and may
thus better apply to organisms with highly fecund
individuals and sweepstakes-style recruitment. By de-
riving distributions of coalescence times for two genes
sampled from a subdivided population, we show how
skewed offspring distribution confounds estimates of
migration rate between subpopulations when based on
FST-like measures of population subdivision.

An important result of this work is that FST depends
not only on the migration rate k but also on the
parameters (c and f) of our model of large offspring
numbers. Demographic processes such as population
size fluctuations, founder effects, or skewed offspring
distribution have been thought to increase genetic
differentiation among subpopulations. As defined and
calculated from genetic data, common indicators of
population subdivision then take on high values, thus
suggesting low levels of migration (Boileau et al. 1992;
Whitlock 1992; Slatkin 1993; Hedgecock 1994a).
Our main conclusions are twofold. First, FST is shown to
depend on the parameters controlling the size (c) and
frequency (f) of large reproduction events (the prob-
ability that the offspring of a single individual replace a
fraction c of the population is e¼ 2f/N g) and can thus
indicate high or low levels of genetic heterogeneity
depending on c and f. To illustrate, consider the
expression for FST derived under the many-demes limit
model without mutation (Equation 11), and let the

Figure 3.—The quantity FST from Equation 14
as a function of c (with f¼ 1) for different values
of u, k, and rate of coalescence (lg). Solid lines,
u ¼ 10; dashed lines, u ¼ 1; dotted lines, u ¼ 0.1.
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timescale of coalescence occur on N g/2 time steps (i.e.,
0 , g , 2). In that case the rate of coalescence lg ¼ c2

(by taking f ¼ 1), and the rate of large reproduction
events is high. By fixing k, we see that FST ranges from
very low (when c is low), to �1/(1 1 k), when c � 1.
Second, to the extent that FST (or NST) is used in
estimating levels of gene flow, these estimates are
confounded by lg and thus by f and c. Also, migration
in our model is not the usual Nm quantity, but is given by
k ¼ mgNg. This means that even when Nm is very large,
we may still observe genetic heterogeneity, since the rate
of large reproduction events is also large. In a popula-
tion where individuals can have very many offspring,
gene flow is not the only demographic force that
influences genetic heterogeneity.

The coalescence times T0 and T1 (for genes sampled
from the same or different subpopulations, respec-
tively) are fundamental quantities of the ancestral
process of genes in subdivided populations. The time
during which DNA sequences accumulate mutations
is determined by T0 and T1. As we have shown, the
coalescence times depend on the skewness of the
offspring distribution through the rate lg (Equation
2) of coalescence. By deriving the distributions of T0 and
T1 for two genes in a structured population, we have
obtained insight into how skewed offspring distribution
shapes the genetics of structured populations. Since T0

and T1 are functions of f and c through the rate of
coalescence lg, all the quantities of interest in regard to
investigation of the genetics of structured populations,
including expected values, number of segregating sites,
and indicators of population subdivision, are functions
of lg.

One such insight is that genetic heterogeneity can be
observed in genetic data even if gene flow is very high
by the usual standard (Nm ?1). Edmands et al. (1996)
found significant genetic heterogeneity among subpo-
pulations of the purple sea urchin S. purpuratus sampled
along the coast of California and Baja California. The
ecology and physiology of S. purpuratus indicate the
capacity for highly skewed offspring distribution: exter-
nal fertilization and very high fecundity. Despite a
planktonic larval period of several weeks (Strathmann

1978), and thus a potential for high dispersal, both
allozyme and mtDNA sequence data revealed genetic
differentiation, even over short distances (Edmands

et al. 1996). We have shown that, regardless of the
timescale of migration, E(T0) , E(T1). Genetic hetero-
geneity can, therefore, be observed in DNA sequence
data even if gene flow is very high, in a population with
skewed offspring distribution. Population turnover in a
metapopulation model when demes that become ex-
tinct are recolonized by one or a few individuals can also
lead to increased FST (Wade and McCauley 1988;
Whitlock and McCauley 1990; Pannell 2003). In-
deed, a model of metapopulation structure that allows
only one founder for every deme that is recolonized

necessarily results in a coalescent process with multiple
mergers, if the founder can have many offspring.

In summary, we consider the coalescence times of a
subdivided population following a sweepstakes-style
recruitment. The expected coalescence time for two
genes sampled from the same subpopulation is always
less than the expected coalescence time for two genes
sampled from different subpopulations, even when
migration occurs on a very short timescale. Estimates
of migration rate based on FST are confounded by the
rate lg of coalescence, since FST-like measures of genetic
heterogeneity are a function of the reproduction pa-
rameters of our model of skewed offspring distribution.
These results underscore the importance of choosing
an appropriate limit process for the population under
consideration.

We thank two anonymous reviewers for helpful comments and
suggestions.

LITERATURE CITED
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APPENDIX

The discrete-time transition matrix: The probability transition matrix PN (Equation A1) for the ancestral process
over one time step for the case of arbitrary fixed number D $ 2 of subpopulations has three states: (1) two lines in the
same deme but not coalesced, (2) two lines in different demes, and (3) the two lines have coalesced. We do not
distinguish between subpopulations. The transition probabilities in PN are derived under the assumption that
migration does not alter the subpopulation sizes (Nagylaki 1980; Strobeck 1987; Herbots 1997). We let m denote
the single backward migration fraction. The matrix PN is

PN ¼

�
M10 1 M

ðsÞ
12

�
ð1� cN Þ M11 1 M

ðdÞ
12

�
M10 1 M

ðsÞ
12

�
cN�

M
ðsÞ
21 1 M

ðsÞ
22

�
ð1� cN Þ M20 1 M

ðdÞ
21 1 M

ðdÞ
22

�
M
ðsÞ
21 1 M

ðsÞ
22

�
cN

0 0 1

0
BB@

1
CCA ðA1Þ

in which cN is the coalescence probability and

M10 ¼
N ð1� mÞðN ð1� mÞ � 1Þ

N ðN � 1Þ

M11 ¼
2Nmð1� mÞN

N ðN � 1Þ

M
ðsÞ
12 ¼

NmðNm � 1Þ=ðD � 1Þ
N ðN � 1Þ

M
ðdÞ
12 ¼

NmðNm � 1ÞðD � 2Þ=ðD � 1Þ
N ðN � 1Þ

M20 ¼ ð1� mÞ2

M
ðsÞ
21 ¼

2mð1� mÞ
D � 1

M
ðdÞ
21 ¼

2mð1� mÞðD � 2Þ
D � 1

M
ðsÞ
22 ¼

m2ðD � 2Þ
ðD � 1Þ2

M
ðdÞ
22 ¼ m2 1

D � 1
1
ðD � 2Þ2

ðD � 1Þ2
� �

:

The matrix in Equation A1 is a generalization of the matrix for the same migration mechanism (cf. Wakeley 2008)
obtained under the usual Wright–Fisher model of reproduction. In Equation A1, the probability of coalescence is cN,
instead of the usual 1/N, as is the case for the haploid Wright–Fisher model. The corresponding continuous-time
process has rate matrix G given by
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G ¼ lim
N /‘

NgðPN � IÞ ¼
�k� lg k lg

k
D� 1

k
1�D 0

0 0 0

0
B@

1
CA: ðA2Þ

Distribution functions of the coalescence times when D is finite: In this section we derive the distribution functions
for the coalescence times T0 and T1 when the number of subpopulations is finite. Given the distributions of T0 and T1

we can determine the distribution of the coalescence time T of two genes sampled at random from the collection of
subpopulations. The distributions of these coalescence times allow us to derive expressions for FST with or without
mutation.

We can use the rate matrix (Equation A2) to obtain the density functions for T0 and T1. Using Laplace transforms
(see Herbots 1997) we obtain

fT0ðtÞ ¼ A1er1t 1 A2er2t ðA3Þ

in which

Ai ¼
kglg 1 ðD � 1Þlgri

D � 1

ð�1Þi
r2 � r1

; i ¼ 1; 2 ðA4Þ

and

ri ¼
�Dkg � ðD � 1Þlg 1 ð�1Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDkg 1 ðD � 1ÞlgÞ2 � 4ðD � 1Þkglg

q
2ðD � 1Þ ðA5Þ

for i ¼ 1, 2. To obtain the density function of T1, we note that T1 can be represented as a sum of two independent
random variables, T1¼ Y1 1 T0, where Y1 is an exponential random variable with rate kg/(D – 1). By direct calculation,

fT1ðtÞ ¼
A1kg

kg 1 ðD � 1Þr1
ðer1t � e�kgt=ðD�1ÞÞ1 A2kg

kg 1 ðD � 1Þr2
ðer2t � e�kgt=ðD�1ÞÞ: ðA6Þ

The form of the continuous functions fT0
and fT1

(Equations A3 and A6) immediately yields the cumulative densities
FT0

and FT1
for T0 and T1, respectively. Namely, writing li ¼ –ri for i ¼ 1, 2,

FT0ðtÞ ¼
A1

l1
ð1� e�l1tÞ1 A2

l2
ð1� e�l2tÞ ðA7Þ

and

FT1ðtÞ ¼
B1

l1
ð1� e�l1tÞ1 B2

l2
ð1� e�l2tÞ � ðB1 1 B2ÞðD � 1Þ

kg

ð1� e�kgt=ðD�1ÞÞ ðA8Þ

in which

Bi ¼
Aikg

kg 1 ðD � 1Þri
; i ¼ 1; 2:

Let T denote the time to coalescence for two genes sampled at random from the collection of subpopulations. Then,
with probability 1/D the two genes are sampled from the same subpopulation, and with probability 1 – 1/D they are
sampled from different subpopulations. The cumulative density function (c.d.f.) FT of T is then given by

FT ðtÞ ¼
1

D
FT0ðtÞ1

D � 1

D
FT1ðtÞ ðA9Þ

in which FTi
denotes the c.d.f. of Ti for i ¼ 0, 1. The expected value of T is

EðT Þ ¼ EðT0Þ=D 1 EðT1ÞðD � 1Þ=D ðA10Þ

in which E(T0) and E(T1) are given by Equation 3 and the variance of T is

VarðT Þ ¼ 1

D
VarðT0Þ1

D � 1

D
VarðT1Þ1

D � 1

D2 ðEðT0Þ � EðT1ÞÞ2 ðA11Þ
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in which Var(T0) and Var(T1) are given by Equation 4. Note that although the expected value of T lies between E(T0)
and E(T1), Equation A11 tells us that the variance of T may not lie between the variance of T0 and T1. If D?1, then
Var(T) . Var(T1).

A many-demes limit model: In this section we derive the ancestral process for two genes in the many-demes limit
(D/‘) and as N /‘. Since now D/‘, the single-generation backward transition matrix, following Möhle (1998),
can be written

PD ¼ A 1
B

D
1 Oð1=DÞ ðA12Þ

in which the matrices A and B are given below. The matrix A describes the probabilities of the transitions that occur on
a timescale of time steps. The matrix B/D describes transitions that occur on a timescale of D time steps, thus forming
the continuous-time part of the ancestral process. The limit process (as D/‘) is then given by P(t)¼ Pe t PBP in which
P ¼ limr/‘ Ar describes the equilibrium process of the events that occur on the timescale of time steps (Möhle 1998).
The ancestral history of a sample is first adjusted by an instantaneous process described by P and then enters a
continuous-time process described by the rate matrix PBP. Given the ancestral process, we can derive the distributions
of T0 and T1.

The instantaneous matrix A is

A ¼

ð1�mÞðN ð1�mÞ�1Þ
N � 1 ð1� cN Þ 2Nmð1�mÞ1 mðNm� 1Þ

N � 1
ð1�mÞðN ð1�mÞ� 1Þ

N � 1 cN

0 1 0

0 0 1

0
BB@

1
CCA ðA13Þ

with eigenvalues l1 ¼ l2 ¼ 1 and

l3 ¼
ð1� cN Þð1� mÞðN ð1� mÞ � 1Þ

N � 1

and we observe that limr/‘lr
3 ¼ 0. By calculating the corresponding eigenvectors (not shown) we obtain the limit

matrix P by diagonalizing A,

P ¼ lim
r/‘

A ¼
0 P12 1� P12

0 1 0

0 0 1

0
B@

1
CA; ðA14Þ

in which

P12 ¼
2mN � m � Nm2

NcN 1 2Nm � cN � m 1 cN m � 2NcN m � Nm2 1 NcN m2 ; ðA15Þ

and in the limit N /‘ we obtain

P* ¼ lim
N /‘

P ¼
0 k

k 1 lg

lg

k 1 lg

0 1 0

0 0 1

0
B@

1
CA: ðA16Þ

When D/‘ but holding N finite, the ancestral process is given by Pe t PBP, in which the matrix B is given by

B ¼

ð1�cN ÞmðmN�1Þ
N�1

mðmN�1Þ
N�1

cN mðmN�1Þ
N�1

ð1� cN Þð2� mÞm �ð2� mÞm cN ð2� mÞm

0 0 0

0
BBB@

1
CCCA ðA17Þ

and we obtain

B* ¼ lim
N /‘

NgB ¼
0 0 0
k �k 0
0 0 0

0
@

1
A: ðA18Þ

The rate matrix G* ¼ P*B*P* then takes the general format
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G* ¼
0 � k2lg

ðk 1 lgÞ2
k2lg

ðk 1 lg Þ2

0 � klg

k 1 lg

klg

k 1 lg

0 0 0

0
BBB@

1
CCCA: ðA19Þ

The ancestral process in the limit D/‘ and N /‘ is P*e t G* and immediately yields the density functions for T0 and T1

as follows. The time T1 to coalescence for two lines sampled from different demes follows in each case (g . 2, g ¼ 2,
and 0 , g , 2) an exponential distribution with rate klg=ðk 1 lgÞ. Now consider the time T0 to coalescence for two
lines sampled from the same subpopulation. Going back in time, two lines in the same subpopulation can either
coalesce with probability lg=ðk 1 lgÞ or they enter the continuous-time process with probability k=ðk 1 lgÞ, in which
case one of the two lines migrates to a different subpopulation. Thus T0 follows a mixture distribution with cumulative
density function

FT0ðtÞ ¼
lg

k 1 lg

1
k

k 1 lg

ð1� e�tklg=ðk1lgÞÞ: ðA20Þ

Order of limits irrelevant in the many-demes limit model: In this section we show that the same ancestral process is
obtained irrespective of the order of the limits N /‘ and D/‘. We have already derived the process when first D/‘

and then N /‘. Now we show that the same ancestral process is obtained when first N /‘ and then D/‘.
As N /‘, we obtain the ancestral process described by the rate matrix

G ¼ A 1 B=D ¼
�lg � k k lg

0 0 0
0 0 0

0
@

1
A1

1

D

0 0 0
k �k 0
0 0 0

0
@

1
A: ðA21Þ

We remark that An ¼ (–k – lg)n�1A for n $ 1. Since A is a rate matrix, we have, with a ¼ k 1 lg,

etA ¼ I 1
X‘

n¼1

tn

n!
An ¼ I� 1

a

X‘

n¼1

ð�atÞn
n!

A ¼ I 1 ðe�at � 1ÞA: ðA22Þ

Equation A22 immediately gives us the instantaneous matrix

P ¼ lim
t/‘

etA ¼ I� 1

a
A ¼

0 k
k 1 lg

lg

k 1 lg

0 1 0

0 0 1

0
BB@

1
CCA: ðA23Þ

Equations A21 and A23 then give us the rate matrix G ¼ PBP after first taking the limit N /‘ and then D/‘.
By similar arguments we can show that the ancestral process does indeed result in coalescence regardless of initial

state. Indeed,

Gn ¼ � kglg

kg 1 lg

� �n�1

G; n $ 1; ðA24Þ

which gives, writing b ¼ klg/(k 1 lg),

etG ¼ I� 1

b

X‘

n¼1

ð�btÞn
n!

G ¼ � 1

b
ðe�bt � 1ÞG: ðA25Þ

The equilibrium distribution (as t/‘) is then

L ¼ lim
t/‘

etG ¼ I 1
1

b
G ðA26Þ

and we obtain that two genes do reach a common ancestor regardless of initial state—i.e.,

lim
t/‘

PetG ¼
0 0 1
0 0 1
0 0 1

0
@

1
A: ðA27Þ
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Number of segregating sites: We now consider the number of segregating sites, under the infinite-sites model
(Watterson 1975), between two genes in the two models of population subdivision discussed previously. First,
consider the model of finite number of subpopulations. Let K0 and K1 denote the number of segregating sites for two
genes sampled from the same or different subpopulations, respectively. We let u denote the scaled mutation rate and
note that, given a specific length of time t, the number of segregating sites is Poisson distributed with rate ut/2. The
probability distribution for the number of segregating sites for two genes sampled from the same subpopulation is

PðK0 ¼ kÞ ¼ A1

u=2 1 l1

u=2

u=2 1 l1

� �k

1
A2

u=2 1 l2

u=2

u=2 1 l2

� �k

ðA28Þ

in which A1 and A2 are given in Equation A4, and li ¼ –ri from Equation A5.
The probability distribution for the number of segregating sites between two genes sampled from different

subpopulations is

PðK1 ¼ kÞ ¼ B1

u=2 1 l1

u=2

u=2 1 l1

� �k

1
B2

u=2 1 l2

u=2

u=2 1 l2

� �k

� B1 1 B2

u=2 1 kg=ðD � 1Þ
u=2

u=2 1 kg=ðD � 1Þ

� �k

; k ¼ 0; 1; . . . ; ðA29Þ

in which Bi ¼ Aik/(k 1 (D – 1)ri) for i ¼ 1, 2. The expected value and variance of K0 are both less than the
corresponding quantities for K1. Indeed,

EðK0Þ ¼
u

2

D

lg

,
u

2

D

lg

1
D � 1

k

� �
¼ EðK1Þ ðA30Þ

and

VarðK0Þ ¼
u

2

D

lg

1
u2

4

D2

l2
g

1
2ðD � 1Þ2

klg

 !
, VarðK0Þ1

u

2

D � 1

k
1

u

2

ðD � 1Þ2

k2

� �

¼ VarðK1Þ: ðA31Þ

The probability mass distribution of the number of segregating sites K for two genes sampled at random from the
collection of subpopulations is

PðK ¼ kÞ ¼ C1

u=2 1 l1

u=2

u=2 1 l1

� �k

1
C2

u=2 1 l2

u=2

u=2 1 l2

� �k

1
C3

u=2 1 k=ðD � 1Þ
u=2

u=2 1 k=ðD � 1Þ

� �k

; ðA32Þ

in which Ci¼ Ai/D 1 (D – 1)Bi/D for i¼ 1, 2 and C3 ¼ ð1� DÞðB1 1 B2Þ=D. One can write K� (1/D)K0 1 (1 – 1/D)K1;
i.e., K is a mixture distribution. In fact, K is distributed as K0 with probability 1/D and as K1 with probability 1 – 1/D.
Hence,

EðK Þ ¼ u

2

D

lg

1
ðD � 1Þ2

Dk

� �
ðA33Þ

and so E(K0) , E(K) , E(K1). However, the variance of K (Equation A34), which can be obtained in the same way as
the variance of the time to coalescence of two genes sampled at random from the collection of subpopulations
(Equation A11), may not lie between the variance of K0 and K1. The variance of K is

VarðK Þ ¼ u

4D2k2l2
g

ð�ul2
g 1 D4ðk 1 lgÞ2u 1 2Dðk 1 uÞl2

g

1 2D2klgðu� 2lgÞ1 2D3lgðk2 1 kðlg � 2uÞ � ulgÞÞ: ðA34Þ

Number of segregating sites under the many-demes limit model: Under the many-demes limit model of population
subdivision, the probability mass distribution for the number of segregating sites K1 between two genes sampled from
different subpopulations is
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PðK1 ¼ kÞ ¼ 2klg

uðk 1 lgÞ1 2klg

uðk 1 lgÞ
uðk 1 lgÞ1 2klg

� �k

: ðA35Þ

The expected number and the variance of the number of segregating sites between two genes sampled from different
subpopulations is then

EðK1Þ ¼
u

2

k 1 lg

klg

� �
ðA36Þ

VarðK1Þ ¼
u

2

k 1 lg

kglg

� �
1 1

u

2

k 1 lg

klg

� �� �
: ðA37Þ

The probability mass function for K0, the number of segregating sites between two genes sampled from the same
subpopulation, is (k ¼ 0, 1, . . .)

PðK0 ¼ kÞ ¼ lg

k 1 lg

Ik¼0 1
k

k 1 lg

PðK1 ¼ kÞ; ðA38Þ

which gives expected value

EðK0Þ ¼
u

2

1

lg

; ðA39Þ

and the variance of K0 is

Var K0ð Þ ¼
u

2

1

lg

1 1
u

2

k 1 lg

klg

� �� �
1

u2

4

1

klg

: ðA40Þ
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