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Cis-regulatory Variation Is Typically Polyallelic in Drosophila

Jonathan D. Gruber1 and Anthony D. Long

Ecology and Evolutionary Biology, University of California, Irvine, California 92697

Manuscript received November 6, 2008
Accepted for publication December 3, 2008

ABSTRACT

Gene expression levels vary heritably, with �25–35% of the loci affecting expression acting in cis. We
characterized standing cis-regulatory variation among 16 wild-derived strains of Drosophila melanogaster. Our
experiment’s robust biological and technical replication enabled precise estimates of variation in allelic
expression on a high-throughput SNP genotyping platform. We observed concordant, significant differential
allelic expression (DAE) in 7/10 genes queried with multiple SNPs, and every member of a set of eight
additional,one-assaygenes suggest significantDAE.Fourof thehigh-confidence,multiple-assay genesharbor
three or more statistically distinguishable allelic classes, often at intermediate frequency. Numerous
intermediate-frequency, detectable regulatory polymorphisms cast doubt on a model in which cis-acting
variation is a product of deleterious mutations of large effect. Comparing our data to predictions of popula-
tion genetics theory using coalescent simulations, we estimate that a typical gene harbors 7–15 cis-regulatory
sites (nucleotides) at which a selectively neutral mutation would elicit an observable expression phenotype. If
standing cis-regulatory variation is actually slightly deleterious, the true mutational target size is larger.

VARIOUS strategies have been used to identify pu-
tative cis-regulatory differences between strains or

alleles [e.g., microarrays and linkage mapping (Brem

et al. 2002) and allelic imbalance/allelic expression
(AE) (Yan et al. 2002)], but estimates of the numbers of
segregating, functional alleles and their frequencies
have not yet been made. Given recent attention paid to
the question of whether the evolution of form proceeds
largely by changes in cis-regulation (Hoekstra and
Coyne 2007; Wray 2007; Stern and Orgogozo 2008),
this is a critical gap in knowledge. Like any trait, the
evolutionary trajectory of a gene’s expression is affected
by standing genetic variation and the pressures of
mutation, selection, and drift. Mutation-accumulation
experiments have indicated that natural selection does
curtail mutational variance for expression (Denver

et al. 2005; Rifkin et al. 2005), but nevertheless some cis-
acting variation in gene expression is readily observed
between species (Wittkopp et al. 2004, 2008b; de

Meaux et al. 2006; Zhuang and Adams 2007; Genissel

et al. 2008). Inbred strains of Drosophila melanogaster
afford us the opportunity to address the strength, fre-
quency, and number of distinguishable cis-regulatory
alleles in a panel of wild-derived chromosomes.

Screens for differential allelic expression (DAE)—dif-
ferences in the relative expression of the two gene
copies possessed by a diploid individual—have been
used to identify genes affected by cis-acting alleles in

humans (Yan et al. 2002; Bray et al. 2003; Lo et al. 2003;
Pastinen et al. 2004; Pant et al. 2006), mice (Cowles

et al. 2002; Campbell et al. 2008), Arabidopsis (de

Meaux et al. 2005), and Drosophila (Wittkopp et al.
2004, 2008b; Wittkopp 2005). We adapted the high-
throughput oligo ligation assay (OLA) (Macdonald et al.
2005) to quantify allelic expression in 16 D. melanogaster
strains over 39 SNP assays querying 18 genes.

MATERIALS AND METHODS

Strains: Wild-type and mutant-marked strains of D. mela-
nogaster were obtained from stock centers, and most were
inbred by brother–sister mating for 18 generations (supple-
mental Table 1). In this study, there were two distinct functions
that an allele inherited from one of the strains could serve: as
a ‘‘reference’’ or as a ‘‘tester.’’ The reference allele is always
SS (Bloomington 2057) or BWST (Bloomington 686). In any
block of experimental individuals, every individual shares its
reference allele in common; the other allele is the basis for
comparison among individuals and is designated the tester
allele.

Gene/assay selection: Genes were selected irrespective of
whether they had been previously shown to be subject to
regulatory variation of any kind. To facilitate future genetic
dissection, we selected genes that are located on the X chro-
mosome. Biological relevance was assessed from microarray
data (Pletcher et al. 2002): X chromosome genes were
ranked by average expression level in 3-day-old adult females.
After amplification of �1-kb PCR products, we sequenced
�100 highly expressed X-linked genes to discover SNPs. PCR
template was cDNA from adult males of three wild-type strains
and the BWST reference strain. We used primer3 (Rozen and
Skaletsky 2000) to design PCR/sequencing primers (sup-
plemental Table 2) that amplified �1000 bp of mRNA
sequence from each gene, focusing on 39-UTR regions. Poly-
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morphisms were discovered by aligning all four sequences to
the reference genome of D. melanogaster (Berkeley Drosophila
Genome Project Release 3.1, SS). Only polymorphisms for
which one or both reference alleles were the minor genotype
were selected for assay design; consequently, only genes
harboring at least one such SNP received further consideration.

Crossing design: In conjunction with our SNP selection, we
devised a crossing scheme that ensures that at least half of the
experimental individuals are informative heterozygotes at
every interrogated SNP. In this ‘‘two-reference’’ design (Figure
1a), every tester strain is crossed to each reference strain,
yielding 30 unique trans-heterozygous genotypes (or 29 if prog-
eny from reciprocal SS 3 BWST crosses are considered
identical). Under the rule for SNP selection described above,
the structure of crosses that result in heterozygous individuals
must take one of two forms. Usually, only one reference strain
is the rare genotype. Therefore, the testers that are informa-
tive in a cross to SS will exactly complement the testers that are
informative in a cross to BWST; every tester can be found in
heterozygous form once (depicted in Figure 1, c and e). Less
commonly, if both reference strains are the same rare
genotype, a majority of testers will be heterozygous in the
crosses to both reference strains (although some testers will be
missed completely); consequently, more than half of the
experimental individuals are informative.

Crosses were performed by mating three to five tester males
to four to five virgin reference females in each of seven replicate
vials containing standard banana–molasses media. Vials were
cleared before the emergence of the first adult progeny. All
crosses to a given reference strain were initiated on the same day.

Sampling scheme: To extend our power to describe the cis-
regulatory characteristics of a panel of wild-derived alleles,
we collected RNA from 640 experimental individuals, �20
individuals per tester 3 reference cross (with the exception of
crosses to tester strain P, from which �40 individuals were
sampled; see supplemental Table 1). We employed a sampling
strategy with the specific goal of minimizing the extent to
which differential allelic expression could be confounded with
sampling. Experimental samples underwent collection and
RNA extraction in 80-fly blocks. In each block, each tester
allele was represented by approximately five individuals, and
all individuals in a block shared the same reference allele. Four
blocks were collected for crosses to each reference strain. For
each block, the female experimental flies from each vial (and
their male siblings) were transferred, without anesthetic, to a
vial of fresh media within their first 24 hr post-eclosion. After
3 days, these flies were transferred to an empty vial without the
use of anesthesia. After all strains and replicates had been
transferred, the vials were put on ice until flies were motion-
less. Choosing vials and genotypes in random order, a single
female from each vial was quickly transferred to a well of a
U-bottom polypropylene 96-well plate (Evergreen Scientific,
Los Angeles), which had been prechilled on ice. Although less
desirable than flash freezing in liquid nitrogen, collection by
this technique allowed us to ensure that every fly in the block
experienced ice-anesthesia for the same length of time. Large
blocks also ensured that every genotype was multiply represented
in each block, reducing the possibility that any sample collection
and RNA extraction effects were confounded with genotype.

RNA extraction: We adapted the manufacturer’s standard
TRIzol (Invitrogen, Carlsbad, CA) RNA extraction protocol to
our unique situation of individual flies extracted in 96-well
format. All liquid-handling steps were performed with multi-
channel pipettors and aerosol-resistant filter tips. Before
collecting flies, a stainless-steel 5/32-inch grinding ball
(BT&C/OPS Diagnostics, Bridgewater, NJ) was placed in each
well of the U-bottom plate. After flies were placed in each well,
150 ml cold TRIzol was added. Plates were sealed with Micro-

Amp clear adhesive films (Applied Biosystems, Foster City,
CA). Homogenization was performed in the Geno/Grinder
2000 (BT&C/OPS Diagnostics, Bridgewater, NJ) for 45 sec at
1500 rpm. After a 5-min room-temperature incubation, the
entire 150 ml lysate was transferred to a 96-well PCR-style plate
(ABgene, Rochester, NY) containing 30 ml chloroform. After
sealing with a new MicroAmp film, plates were shaken in the
Geno/Grinder 2000 at 750 rpm for 15 sec. After a 3-min
incubation at room temperature, plates were centrifuged for
45 min at 2300 3 g. Approximately 65 ml of the top aqueous
layer was removed using a multichannel pipettor and mixed
with 75 ml isopropanol in another 96-well PCR-style plate.
Plates were again centrifuged at 2300 3 g for 45 min, after
which liquid was removed from the wells by inverting the plate
on paper towels and centrifuging at minimal speed for a few
seconds. Each pellet was covered in 150 ml ethanol (75%) and
samples were centrifuged for 15 min at 2300 3 g. Most of this
ethanol was removed by inverting plates on paper towels
without centrifugation. Pellets were covered in 130 ml ethanol
(100%) and stored at �80� until the RNA of all samples had
been extracted. Prior to use as template for cDNA synthesis,
ethanol was pipetted off. Samples were dried at room tem-
perature and resuspended in 13 ml Molecular Biology Grade
water (Eppendorf, Westbury, NY). RNA was dissolved by
incubation for 10 min at 55�.

cDNA synthesis: To synthesize cDNA, we utilized a protocol
that allowed us to overcome the hurdle of relatively little RNA
starting material yet provided a generic cDNA end product
that any assay of any gene could interrogate directly. RNA was
used as template for cDNA synthesis using an adapted pro-
tocol of the SMART system (Clontech, Mountain View, CA).
Briefly, this technology utilizes the terminal transferase activity
of Powerscript Moloney murine leukemia virus (MMLV) reverse
transcriptase (RT) to incorporate priming sequences at the
ends of the first-strand cDNA synthesis product, which can
then be used for amplification in a 15- or 25-cycle PCR-like
process. At the 59-end of the first-strand cDNA (39-end of the
gene), the oligo(dT) primer is modified with a tail; at the
39-end of the first-strand product, an additional SMART oligo
has been incorporated by virtue of base pairing with the
oligo-C added by MMLV reverse transcriptase. An aliquot of
3.6 ml RNA was used as template for first-strand synthesis by the
manufacturer’s protocols. Samples were incubated for 90 min
at 42�, followed by 15 min at 70� to inactivate the reverse
transcriptase. Reverse transcription product was then used as
template of a 25-ml second-strand synthesis/amplification
reaction according to the manufacturer’s protocols, with the
following modifications: A substantially larger aliquot of first-
strand product, 5.5 ml, was used as template for this reaction;
after 15 cycles, 12 ml of the reaction was removed and stored;
the remaining mix then underwent 10 additional cycles.
Amplified, double-stranded cDNA products (15 and 25 cycles)
were stored at�20� until all RNA samples had been processed
to cDNA. All samples that share reference genotype and cycle
number in common were joined on a single 384-well plate.
Samples were then treated with 7.5 units of exonuclease I
(Amersham, Piscataway, NJ) by incubating for 1 hr at 37�,
followed by 15 min at 80�. Finally, 0.25 ml of each sample’s
cDNA was aliquoted to 384-well plates and dried; plates were
stored at �80� until use in the OLA reaction (below).

Multiplex OLA for allelic expression: Our multiple-gene,
multiple-assay, highly replicated experiment required a low-
cost, high-throughput mechanism for quantifying AE. We
used a multiplex OLA approach. In OLA, allele-specific up-
stream oligonucleotides are ligated to a common downstream
oligo in proportion to the allele representation among tem-
plate DNA molecules. Using multiplex OLA for SNP genotyp-
ing, Macdonald et al. (2005) showed that under realistic
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laboratory settings genotype calls are 99.65% accurate, 86% of
attempted assays convert, and 93.9% of data can be assigned
a genotype. These figures compare favorably to most SNP
genotyping methods, including those popularly used to
quantify AE (summarized in Bray and O’Donovan 2006).
In practice, we experienced a conversion rate of ,50% (see
supplemental Table 3) when adapting the technology to AE
measurement. As the conversion rate is a function of template
abundance (not shown), this lower rate is related to our
attempts to use OLA on SMART-amplified cDNA as opposed to
gene-by-gene reverse-transcription PCR reactions.

We pooled oligos and performed the oligo ligation assay
under conditions that were nearly identical to previous SNP
genotyping projects. The oligos used to query each SNP by
OLA are listed in supplemental Table 2. OLA has been shown
to readily tolerate multiplexing for SNP genotyping (Macdonald

et al. 2005); expression data from test assays were indistinguish-
able in 6-plex or 12-plex (not shown). Assay oligos for allelic
expression were pooled so that each multiplex had a maxi-
mum of 12 assays. Furthermore, none of the queried SNPs
in an assay pool were located within 50 bp of one another.
Samples were processed essentially as previously described
(Macdonald et al. 2005). The 0.25-ml cDNA was used as
template for a multiplex ligation reaction, which introduces
an allele-specific DNA ‘‘barcode.’’ The ligated product is sub-
sequently amplified by PCR and affixed to nylon membrane
arrays. The relative positions of samples on the array are the
same as in the 384-well source plate, and the source plate was
rotated 180� between the printing of the first spot and the
printing of a second, replicate spot to mitigate any plate/array
position effects. Allelic expression was quantified by hybrid-
ization of radioactively labeled probes that are complementary
to the allele-specific tags. It is important to note that in the
OLA assay, the two SNP alleles are distinguished by using two
16-bp non-cross-hybridizing bar-code sequences. Spot intensi-
ties were quantified with ArrayVision (Imaging Research, St.
Catharines, ON, Canada).

Allele quantification by Pyrosequencing: For one assay at
each of three genes (CG2247 assay j07, CG6398 assay b05,
CG11674 assay c12), we performed allelic expression quanti-
fication by an alternative technology on a subset of samples for
comparison to OLA. For each sample, a 4-ml RNA aliquot
(�400 ng) was incubated for 30 min at 37� with 0.6 units
DNAse I (Thermo Fisher Scientific, Waltham, MA), followed
by the addition of 0.5 ml Stop Solution (20 mm EGTA, pH 8.0)
and incubation at 65� for 10 min. Gene-specific reverse
transcription was performed according to the manufacturer’s
protocol using 50 units Moloney murine leukemia virus reverse
transcriptase (NEB, Ipswich, MA), 2 ml DNAse-treated RNA
template, and 0.5 pmol primer in a 5-ml reaction. The resulting
RT product was diluted with 10 ml water; 0.5–1.5 ml diluted RT
product served as template for a 30–50 ml PCR. Each 10-ml PCR
mix contained 13 ExTaq buffer, 2 nmol each dNTP, 1.25 pmol
each primer, 0.25 units ExTaq (Takara, Otsu, Japan). We
incubated the samples at 94� for 4 min with 45 cycles of 94�
for 30 sec, 58� for 30 sec, 72� for 30 sec, and 72� for 10 min with
a 4� hold. Pyrosequencing was performed according to the
manufacturer’s instructions. Reverse transcription, PCR, and
sequencing primers are available in supplemental Table 2.
After plotting the log-transformed signal intensity of the two
alleles, AE was calculated from the minimum deviation of each
datum from the first principal axis through all heterozygous
samples. Technical replication and blocking did not pertain
to the Pyrosequencing experiment, so we determined the
significance of tester as a predictor of AE in a one-way ANOVA.

Sample genotyping: Because most testers’ genotypes at
query SNPs were unknown prior to our performing of the
allelic expression assays, our first use of ‘‘expression’’ data was

to infer the genotypes of the parental strains on the basis of the
clustering patterns of each strain’s offspring. For each tester
allele, we plotted the spot intensities of all of its samples (i.e.,
all samples from flies that were fathered by the strain) on top
of the clusters formed by plotting the intensities of the
remaining samples. Assays for which genotypes could not be
readily ascertained were excluded (supplemental Table 3). We
note that for many assays, genomic DNA from each inbred,
homozygous tester strain was also used to amplify the locus in
question by standard PCR. OLA genotypes from these ampli-
cons were used as a check against cDNA-inferred genotypes.
Additionally, specific cDNA samples whose genotypes were
inconsistent with their parents’ consensus genotypes were
excluded. Finally, data points of abnormally low signal or
abnormal distance from the main cluster were excluded on
an assay-by-assay basis.

Quantifying allelic expression with principal components
analysis: We devised a single measure to capture the allelic
expression described by each data point. After selecting
heterozygous individuals for a given SNP, we plotted the log
intensities of the two probes (i.e., bar codes that distinguish
between alleles) against one another (Figure 1b). Plots of all
typable assays are available in supplemental Figure 3. To utilize
principal components analysis (PCA), we calculated a first
principal axis (Sokal and Rohlf 1995, pp. 586–593), which
averages the first principal components, in this situation
representing overall expression (the diagonal characteristic
of the data cloud in Figure 1b). When the two reference strains
had alternative alleles, this axis was defined using solely SS/
BWST reciprocal heterozygotes; otherwise, all heterozygous
samples were used. We define AE for any datum as its per-
pendicular distance to the axis (i.e., parallel to the second
principal axis). These distances encapsulate the expression of
the tester allele normalized to the expression of the reference
allele; as described below, significant differences in this metric,
not in the value of the metric itself, indicate DAE.

Estimating within-assay tester means and significance: We
used our measure of AE to compare the expression of tester
alleles. Under our experimental structure, the AE of a strain is
directly comparable to the alleles of all other strains that have
the same genotype at the assay SNP. For each such data set,
we fit a linear mixed-effects model in R using the lme()
function Yijkl ¼ Ti 1 Bj 1 Fkð jÞ1 eijkl , where Yijkl is the lth mea-
surement (random) of the allelic expression of the kth fly
(random) nested in the jth block (random) of the ith tester
(fixed). In all, 74 models were fit (�2/assay); therefore, the
a ¼ 0.05 Bonferroni correction for the significance of tester is
P , 6.76 3 10�4. Separate analysis of data conditional on cycle
number (15 or 25) results in nearly identical findings; thus, the
Yijkl were first determined by extracting the residuals from a
linear model fitting cycles as a categorical predictor of AE.
For every SNP assay/reference cross combination, an average
AE estimate for each tester allele was obtained using the
‘‘$coefficients$fixed’’ function in R. When necessary, these aver-
age tester estimates were multiplied by �1 so that the relative
sign of AE measures always had a consistent biological syntax.

Calibration to estimate fold differences: For 30/39 assays,
we were able to include calibration samples that enabled us to
calibrate our average AE estimates, which are quantified in
relative, arbitrary units, to fold differences between tester
alleles. To generate a set of calibration samples, RNA was
extracted from homozygous reference strain flies and resus-
pended to 23 standard concentration. We pooled these pure
samples of reference alleles in known proportions to construct
12 RNA calibration samples, with relative volumetric fold
difference between alleles ranging 10-fold from�3.2-fold to its
inverse, �0.31-fold. This pooling procedure was performed
for three different pairs of RNA samples (each pair known as
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a ‘‘pool’’); the calibration samples were then randomly
positioned on an 8 3 6 PCR plate and used as template for
reverse transcription and cDNA amplification, as above. Each
calibration sample cDNA was used as template for four
separate OLA reactions: one sample from a 15-cycle SMART
amplification and three from a 25-cycle amplification.

Although the exact molar ratio of any calibration sample
was unknown, the molar fold differences between calibration
samples are expected to reflect the known volumetric fold dif-
ferences. Separately for each pool, we used R’s smooth.spline()
function to fit a spline to a plot of calibration samples’ measure
of AE vs. log2(volume B/volume A) (supplemental Figure 1).
The equation of this spline was used to convert each experi-
mental AE datum into theoretical log-transformed volumetric
ratios (log2V.R.). We analyzed log2V.R. values by our standard
procedures to estimate the mean log2V.R. of each tester. The
difference between log2V.R. of each possible pair of testers was
calculated and averaged across pools. Thus, 2meanðDlog2V:R:Þ

gives the average fold difference between any two testers. For
two reasons—(1) because an absolute molar ratio of each
individual’s two alleles cannot be calculated, even with the
calibration data, and (2) because calibration was not available
for all assays—all further analysis was conducted on the relative
AE estimates described in Quantifying allelic expression with
principal components analysis (above).

Estimating within-gene tester means and significance: For
10 genes, we obtained multiple working SNP assays, which
were then combined to create a single estimate of AE for that
gene. For each gene, estimates of each tester strain’s average
relative AE (obtained from different assays and/or reference
alleles) were treated as a separate observation of the true AE.
An initial model Yjkl ¼ Aj 1 Rkð jÞ1 ejkl was fit, where Yjkl was
the lth observation of a block effect applied to any strain
crossed to the kth reference strain nested within the jth assay.
The residual error (ejkl ) from this initial ‘‘nuisance model’’ was
used as the response variable for a second model. In the
second model, rij ¼ Ti 1 eij , the ith tester allele is the sole
predictor of allelic expression. The P-value associated with this
predictor was determined in a one-way ANOVA. Because the
foundation of the model is the mean of the AE measures
assessed over multiple assays and crosses, significance indi-
cates that the allelic differences observed in multiple assays are
more concordant than expected by chance. Moreover, for
each gene examined, the use of this linear model results in a
single measure (r i) of the cis-regulatory propensity of each
tester allele.

Estimating the number of allelic classes represented in the
tester panel: We compared our results from gene-level analysis
(the model rij ¼ Ti 1 eij , as above) to null expectations to
estimate the number of distinguishable allelic classes (ACs)
likely to exist in the tester panel. The general principle of this
comparison is the following: if a statistic can be calculated
from a group of testers’ data that significantly exceeds the
expectations of a reasonable null model (H0, no significant
difference among testers), it is likely that the group of testers is
composed of at least two true alleles. The power of this
approach is dependent on properties of the data such as the
magnitude of the difference between putative ACs and the
number of observations of each. Starting with a single class
encompassing all testers, we progressively defined ACs by
accepting the most significant bifurcation of any existing class,
with significance assessed by permutation testing. The heuris-
tic terminated when no prospective division of a class achieved
significance. A full description of the heuristic can be found in
the supplemental materials. There, we demonstrate that (1)
the heuristic overestimates the number of alleles �5% of the
time or less and (2) the heuristic’s power is dependent upon
strong penetrance of allelic effects and the size of the data set.

Estimating the size of the neutral mutational target with the
coalescent: We simulated the process of selecting 16 chromo-
somes at random from a population evolving with neutral
Wright–Fisher dynamics using the program MS (Hudson

2002). Specifically, we compared the average number of
unique haplotypes obtained (k) when considering only poly-
morphisms that occur at i ¼ {2, 3, 4 . . . 26} regulatory sites.
Each set of 1000 simulations was defined by a value of u and r.
We utilized the locus u¼ 3Nm (all genes studied are X linked)
as a compound parameter equal to the number of consequen-
tial regulatory sites (i) multiplied by a recent estimate of per-
site u (Andolfatto 2007; u ¼ 0.031 obtained from selection
models using 12 Zimbabwe alleles of 137 X-linked loci). The
population recombination rate r ¼ 2Nc was set arbitrarily at
values between 0 and 2000, inclusive, a reasonable range for a
10-kb locus (Haddrill et al. 2005). Simulations were con-
ducted for each value of r paired with each value of u (and
therefore i). Custom perlscripts were used to determine the
number of unique haplotypes (k) represented in the output of
each run. To place our empirical data in the context of the
simulationresults,weusedbootstrapping toobtainan80%con-
fidence interval on our observed �̂k (the average number of ACs
estimated by the heuristic over genes).

RESULTS

Analysis of calibration samples showed that the prop-
erties of the high-throughput OLA platform are appro-
priate for quantifying AE. Like all surveys of AE, the
signal intensities of two transcribed alleles assessed on
our SNP genotyping platform serve as a proxy for the
relative expression of each diploid’s homologous gene
copies. To evaluate OLA, we included samples of known
allelic input in 30/39 SNP assays. Overwhelmingly, these
showed an appropriately linear relationship over a 10-
fold range of variation of relative transcript abundance
(supplemental Figure 1), demonstrating that our metric
for AE effectively accounts for experimental differences
between alleles (e.g., differential probe hybridization
efficiency). Unlike other SNP genotyping methods, our
multiplex OLA assay is intrinsically high throughput,
allowing economical expansion of the set of experi-
mental samples and the battery of assays performed.
Enabled in part by a novel crossing design (Figure 1;
materials and methods), a typical SNP assay in our
experiment manifested as �1100 informative AE meas-
ures comprising �300 heterozygous individuals repre-
senting the 16 different genotypes.

These high levels of replication are necessary for pre-
cise estimates of AE and for detection of small differ-
ences across a panel of alleles. We found that significant
DAE is detectable even when the estimated range of
variation over alleles was as subtle as 1.14-fold. For
comparison, we assayed three SNPs on a subset of RNA
samples using Pyrosequencing (Biotage AB, Uppsala,
Sweden), quantifying AE once in four to five individuals
per genotype. For two such SNPs, the significant results
of the full experiment could not be recapitulated
by Pyrosequencing, and the same subset of samples
showed significant results by OLA data only when
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technical replicates were considered. Results from the
Pyrosequencing assay of the third SNP were not con-
cordant with the comparable OLA assay, although we
detected significant DAE in the subset using either
platform. This observed discrepancy may be associated
with the different methodologies used to amplify tem-
plate: Pyrosequencing employs a SNP-specific 45-cycle
RT–PCR, whereas OLA reactions were carried out on a
universal SMART-amplified cDNA template (materials

and methods).
In our experiment, we detected significant DAE

among the panel of 16 paternally transmitted tester
alleles for 17/18 genes, although two genes failed to
remain significant when discordance between multiple
assays was considered (see below). We first used a linear
mixed-effects model to estimate the significance of the
tester allele as a predictor of observed AE. This model
was applied after grouping samples according to their
maternal ‘‘reference’’ allele because the heterozygous
pairing of the same reference with different informative
testers serves as a normalizing factor. At first we judged
that a gene was subject to DAE if there was a significant
difference in relative AE in either of the two groups of

informative testers for at least one SNP assay. By these
initial criteria, 34/39 Bonferroni-corrected SNP assays
showed DAE. The significant assays comprised all 18
genes with at least one assayable SNP except CG9012, for
which 0/3 SNPs showed significant DAE.

Relative AE estimates and confidence intervals (ex-
ample in Figure 1e) and the estimated ranges of the fold
differences observed (when applicable) are provided in
supplemental Figure 2. For assays that showed signifi-
cant DAE and for which calibration samples were
available, our estimates of the expression fold differ-
ence between extreme alleles were restricted to ,2-fold
for seven genes, while some alleles differed by 2.01- to
3.55-fold in assays of the four remaining calibrated
genes. For the SNP assays with calibration curves, the
largest fold difference in AE observed (i.e., ,4-fold) is
much smaller than the range over which fold differ-
ences appear to be linear (10-fold).

For genes with multiple SNP assays interrogating AE,
examining all the data in concert for that gene leads to a
more conservative measure of DAE than simply assess-
ing DAE on a SNP-by-SNP basis. We use linear models to
combine AE estimates across SNP assays and reference

Figure 1.—A high-throughput structure for measuring AE (a–e, clockwise). (a) SNPs are identified by comparing three wild-
type sequences with the SS and BWST reference sequences. A subset of SNPs—those for which SS or BWST or both is the rare
allele—is selected for assay design. In our ‘‘two-reference’’ cross, each reference strain is crossed to all tester strains, most of which
have unknown genotypes. RNA is collected from offspring. (b) AE SNP assays (here, multiplex oligo ligation assays) are per-
formed. The two axes represent log-transformed expression of the two SNP alleles. (c) AE data are first used to ascertain the
genotypes of all tester strains so that the genotype of each datum can be inferred. Note that when SS and BWST are of a dif-
ferent genotype, every strain is heterozygous in one of the two crosses, and .50% of experimental individuals are informative.
In contrast, any panel of outbred individuals will have a much lower rate of informative samples in a multi-gene, multi-SNP survey
(cf. 27.7% of assayed samples that were heterozygous over 193 SNPs surveyed in 63 unrelated human subjects; Pastinen et al.
2004). (d) AE for each datum is calculated as its perpendicular distance from the first principal axis drawn through the hetero-
zygous data, effectively rotating the data clockwise from b. Uninformative samples (gray: homozygotes, controls, and calibration
samples) are culled so that heterozygotes (black) can be used to compare testers’ AE. (e) Using linear mixed-effects models, the
expression of each tester allele is estimated relative to the other strains of the same SNP genotype (left and right plots; unlabeled
positions indicate uninformative strains). Separate P-values for the effect of the tester on AE in the two groups are calculated.
Error bars indicate 95% confidence intervals.
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crosses for the 10 multiple-SNP genes; by this approach,
we detected significant DAE in 7 genes (Figure 2). Such
combined estimates of AE greatly reduce the danger of
concluding the existence of DAE due to an assay-specific
artifact. In this regard, two (CG2913 and CG11674) of
the 10 genes with multiple assays showed incongruent
results across SNPs, a phenomenon that has been
previously reported (Pastinen et al. 2005; Campbell

et al. 2008). Whether the confounding factors are
biological (e.g., alternative splicing) or technical is
unclear, but in such cases at least one SNP assay must
be influenced by factors other than canonical cis-
regulatory variation. In the combined analyses, one of
these genes, CG2913, as well as CG1372 did not show
significant overall DAE despite having had highly
significant tester effects for 5/5 and 1/2 assayed SNPs,
respectively. Moreover, CG2913 clearly illustrated the

value of multiple assays: when heterozygous with the SS
reference allele, we estimate that the tester allele F was
3.35-fold more abundant than allele B in SNP assay f16,
2.48-fold less abundant in SNP assay f10, and showed no
significant difference in SNP assay f06 (see supplemen-
tal Figure 2). Overall, we detected high rates of DAE in
both SNP-level and gene-level analyses. Because the
gene-level analyses are more robust against assay arti-
facts, our further efforts to elucidate the number and
frequency of regulatory alleles were performed solely on
the 10 multiple-assay genes (Figure 2).

Inspection of the relative AE estimates of each gene
(Figure 2) suggested that the tester alleles do not often
cluster into visually obvious groupings. To estimate the
number of allelic classes represented, we developed a
permutation-based heuristic to systematically partition
the tester alleles into statistically distinguishable ACs

Figure 2.—A permutation-based heuristic assigns testers to allelic classes according to estimates of AE combined across SNP
assays. Combined estimates of AE for the 10 genes with at least two working SNP assays are shown, with strains ordered consistently
across plots (labeled below CG11129 and CG11674). For each gene, bar plots are color coded according to the allelic classes iden-
tified by the heuristic. Error lines indicate 95% confidence intervals for relative AE. The table summarizes the data for all genes
with at least one working assay: Assays, assays attempted (assays showing significant DAE); Combined P, the P-value for a significant
difference among testers in the linear model fitted to all relevant assays AE estimates; n, number of observations per tester, as a
harmonic mean; k, number of allelic classes identified by the permutation-testing heuristic; Membership, number of testers as-
signed to each allelic class.

666 J. D. Gruber and A. D. Long



(materials and methods; supplemental materials).
Applying our heuristic enabled us to determine the
groups of tester strains that are likely to be different from
each other, to the resolution limits imposed by the
number of observations and the magnitudes of un-
derlying allelic differences relative to technical pre-
cision. Our analysis indicated that the tester panel was
composed of at least three unique alleles (k . 2) for four
genes and was at least biallelic (k¼ 2) for three genes. As
expected, the heuristic did not support any division of
the panel for the three genes in which we detected no
significant difference among tester genotypes. We also
challenged the heuristic with simulated data sets to
verify the procedure’s power and accuracy (supplemen-
tal materials). The simulations showed that we over-
estimated the true number of ACs by one class�4.5% of
the time and by two classes�0.5% of the time. They also
showed that the heuristic’s power to increment up to the
correct number of ACs decreases drastically as the true
number of alleles increases. For example, in simulations
with only four true ACs and a highly penetrant AE
phenotype, we underestimated the true number of
alleles �50% of the time. Underestimates of the true
number of ACs are even more common in simulations of
less penetrant AE phenotypes because a consequence
of weakly replicated and/or noisy data is a failure to
subdivide an AC that is actually composed of two or
more alleles. Nonetheless, applying our heuristic to the
10 multi-assay genes gave us preliminary insight into
the population genetics architecture of each gene’s AE
diversity.

Under neutral dynamics, population genetics theory
offers predictions for the number of unique alleles (k)
in a sample of n chromosomes as a function of the
mutational target size (c.f. Ewens 1972 for a non-
recombining region), leading us to investigate the
number of consequential regulatory sites consistent
with our data. For each unique set of mutation and
recombination parameters, we performed 1000 coales-
cent simulations and calculated the average k (per 16
samples), considering only the mutations allowed to
occur at a prescribed number of regulatory sites (Figure
3). To compare simulation results to our data, we
bootstrapped our 10 multiple-SNP estimates of k to
establish the 10% lower and 90% upper bounds on �̂k of
1.8 and 2.8 (of 16), respectively. At these bounds (Figure
3, boxed area), our simulations suggest that the number
of sites at which individual mutations will result in
selectively neutral yet observable cis-regulatory differ-
ences is 9–23 or 7–15 sites (under zero or high recom-
bination, respectively).

DISCUSSION

Our experiments profile cis-regulatory variation in a
panel of 16 genotypes, and the structure of our work

emphasizes strong biological and technical replication
of samples and multiple SNPs within genes. This
experimental structure enabled us to regularly detect
variation, particularly effects as subtle as 1.14-fold, and
to examine the concordance of different SNPs that
should function as proxies for the same gene’s expres-
sion. We often, but not always, observed concordance
between AE assays. As occasional discrepancies have also
been observed in different organisms and assay tech-
nologies (Pastinen et al. 2005; Campbell et al. 2008), we
suggest that, in general, AE data from single SNPs may
be prone to misinterpretation and ought to be com-
plemented with additional markers. It should also be
noted that experiments on ‘‘natural’’ heterozygotes will
face difficulties because the set of informative samples
will differ between any two such SNPs. This highlights an
advantage to the crossing employed in our experiment:
as long as SNPs are chosen such that the two reference
strains always differ in genotype, all the tester genotypes
are informative at all assays. Moreover, the ability to
systematically compare cis-regulatory properties within a
large panel will add an important hypothesis-testing
utility to future AE studies. For example, one could
construct the panel to ask whether the strains’ pheno-
typic or geographic parameters covary with the AE of a
candidate gene.

Using differential allelic expression as an indicator
of cis-regulatory variation, in this study we find that
a panel of 16 D. melanogaster alleles harbors cis-acting

Figure 3.—The effect of recombination on the number of
haplotype classes in a 16-chromosome sample. Dashed lines
indicate the mean number of unique haplotypes (conserva-
tively assuming each class is phenotypically distinguishable)
calculated from 1000 simulations of i ¼ 2, 3, 4 . . . 26 mutable
sites; corresponding solid lines indicate splines fit to these
means. The rectangle indicates the 80% confidence interval
calculated from bootstrapping the number of haplotype clas-
ses observed in our original 10 genes.
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genetic diversity at a majority of surveyed genes. Al-
though direct comparisons to other studies are con-
founded by a number of experimental variables, our
observation of a large fraction of genes showing DAE is
consistent with other claims in the literature (Yan et al.
2002; Bray et al. 2003; Lo et al. 2003; Pastinen et al.
2004; Pant et al. 2006; Campbell et al. 2008). In 4/10
high-confidence genes we detect more than two alleles,
implying that either multiple biallelic sites or polyallelic
features such as microsatellites affect cis-regulation.
Previously, cis-regulatory variation affected by multiple
sites has been documented for only a single human
gene, and in that instance only two population alleles
were observable owing to linked transmission as a hap-
lotype (Tao et al. 2006).

Unique to our study is a rudimentary view of the
frequencies of cis-regulatory haplotypes, a modest step
toward understanding the population genetics archi-
tecture of standing cis-regulatory variation. Many out-
standing questions exist for this field. How many sites,
when mutated, affect cis-regulatory properties? What
fraction of such sites is polymorphic in populations?
What is the distribution of allelic effects and the se-
lection coefficients for cis-regulatory variants? Unfor-
tunately, direct answers to such questions may require
large, potentially unwieldy experiments. Our study is
suitable for asking whether patterns of detected cis-
regulatory variation are consistent with large-effect
mutations that are strongly deleterious (i.e., j2Nsj .

100), which would likely be unique in a sample of 16
chromosomes. Under such a model (not dissimilar to
classical Mendelian phenotypes such as Drosophila eye
and body color mutants), mutations that change cis-
regulation would be detected at low frequency, and
many genes would harbor no variation. In our data, we
examined the frequency of different ACs in search of
this pattern. Of our 10 multiple-assay, high-confidence
genes, three (CG1372, CG2913, CG9012) show no
significant evidence of variation and three (CG4070,
CG6398, CG8408) have variation in the form of one very
common and one very rare AC. These genes are consis-
tent with a large-effect mutation-selection balance model,
but four other genes (CG2221, CG2247, CG11129, CG11674)
do not fit this pattern.

The key indictment of the deleterious, large-effect
model observed in the four other genes is the apparent
presence of more than one intermediate-frequency AC,
leaving several plausible interpretations for the exis-
tence of this pattern. One interpretation is that AC
assignments are essentially correct (i.e., to assume that
all strains in a given AC really do have the same cis-
regulatory allele). In this case the detection of multiple
intermediate frequency classes suggests that no allele
has a large selection coefficient. Or it is formally pos-
sible that detected classes represent alternative states
subject to balancing selection or reflect local adaptation
(progenitors of the tester strains were collected on

several continents). But the claim of pervasive balancing
selection or local adaptation for cis-regulation through-
out the genome seems incredible, and the latter would
predict that AC groupings would be highly similar
between genes, which is not observed (Figure 2).

A second broad interpretation of multiple interme-
diate-frequency ACs must also be considered; each AC is
underclassified and actually reflects a functional group-
ing of haplotypes whose similar regulatory properties
belie genetic differences. A number of lines of reason-
ing support the ‘‘underclassified’’ interpretation. First,
as noted by Ewens (1972), even under neutral dynamics
it is unusual for several haplotypes to segregate at in-
termediate frequency. Second, testing of the heuristic
showed that it is indeed likely to undercount the
number of true alleles, presumably by failing to distin-
guish between strains of functionally similar, noniden-
tical genotypes. Finally, a greater number of undetected
unique ACs implies a moderately greater number of
consequential segregating sites.

Such a model is appealingly unremarkable, plausible,
and explanatory. Although selection continuously acts
to reduce moderately deleterious variation, a large
number of segregating non-neutral sites can explain
the same sampling properties as a small number of neu-
tral sites. And if the architecture of cis-regulatory diversity
is one in which a moderate or a large number of sites can
harbor alleles of small average effect, neither selective
neutrality nor balancing selection nor local adaptation
needs to be invoked to explain our results. This model is
in line with a recent analysis showing that 40–70% of the
D. melanogaster noncoding genome is evolving under
positive or negative selection (Andolfatto 2005). We
must also consider that a portion of the standing
variation may be due to sites where allelic effects are
sufficiently subtle to escape selection altogether. Such
variation has been observed in the human ENCODE
project, which estimated that �50% of biochemically
functional noncoding sequence is not evolutionarily
constrained (Encode Consortium 2007). Our experi-
ments have shown that cis-regulatory diversity is not
wholly caused by deleterious alleles of large effect, and
it appears that regulatory haplotypes represented in the
panel are not typically subject to strong selection.
However, until the actual AC assignments can be made
with less ambiguity (perhaps with a larger set of strains)
or until the regulatory haplotypes can be otherwise
distinguished, it will remain difficult to demonstrate
the superiority of one of the remaining explanations.

Comparing our data to coalescent simulations offers a
conservative view of the cis-regulatory mutational target
size in terms of the number of potentially biallelic sites
consistent with the data. Given the limits of our ex-
periment, it is reasonable to question the value of the
simulations, which assume selective neutrality. We see
two points of utility to this exercise. First, the simula-
tions show that, under neutrality, recombination has

668 J. D. Gruber and A. D. Long



a small effect (�20%) on the lower limit and a slightly
higher impact (�35%) on the upper limit of our target
size estimate. Diminishing returns were observed for
additional recombination, as r ¼ 1000 and r ¼ 2000
yield essentially identical estimates of the mutational
target size (data not shown). As the actual genetic
distance across the relevant cis-regulatory region is
essentially unknown for most genes, a sense of the
magnitude of potential impacts from recombination
will be critical for future work on mutational targets.
Second, almost all the potential biases of inputs to our
analysis would result in underestimation of the muta-
tional target size, so our conclusions provide a conser-
vative baseline. These biases include practical limits on
our ability to assign strains to ACs (the real number of
alleles sampled in the panel may be higher) compared
to inerrant counting of alleles in the simulations, the use
of an estimate of u from the highly polymorphic
‘‘Zimbabwe’’ D. melanogaster (the tester strains are the
less-diverse ‘‘Cosmopolitan’’), and the assumption of
neutrality (to assume that mutations at all cis-regulatory
nucleotides have neutral selection coefficients is cer-
tainly erroneous). However, it is reasonable to expect
that much of this selection is negative and is likely to
reduce the diversity of the pool of unique haplotypes in
the population, thereby decreasing the average number
of observed alleles and contributing to the underesti-
mation of the target size. In a pragmatic sense, it is a
simple exercise to calculate u on the basis of the number
of observed alleles if one cares to ignore recombination
and assume neutrality (Ewens 1972). Given the com-
plexity of describing the mutational target more realisti-
cally, the effective neutral mutational target size may be a
useful descriptor for each gene’s functional diversity.

Interpretation of our data depends on the verisimil-
itude of a reasonable but only modestly examined
relationship between AE and cis-regulatory variation.
Although each is limited in its scope, a particular subset
of our experiments and a previously published study
suggest that observed variation in AE is not influenced
by trans-acting effects or cis 3 trans interactions. An
idealized implementation of AE surveys would contrast
the cis-regulatory properties of a given gene’s alleles in a
standard genetic background, but this is highly imprac-
tical. In our experiment, the individuals that shared a
unique cis-regulatory heterozygous genotype also shared
a private paternal haploid genome. If it affects AE
quantification, non-cis-acting variation in each back-
ground would indeed be confounded with cis-regulatory
diversity. However, we find no evidence to support this
particular concern. Our data include six assays (five
genes) in which the same subset of testers is interrogated
in the different haploid backgrounds of the two refer-
ence strains. In each of these assays, the reference 3

tester interaction term is not significant (at P , 0.05)
in a linear mixed-effects model predicting AE (data
not shown), suggesting that the ratio of differentially

expressed alleles may be invariant with respect to genetic
background or at least that cis 3 trans effects are subtle
compared to cis effects. This supports other work that
also failed to document AE 3 trans interactions, even
when trans-regulatory effects on total gene expression are
significant (Wittkopp et al. 2008a). Combining the two
studies, the number of genes (seven) and particularly the
number of genetic backgrounds compared (two per
investigation) are both extremely limited and explicit
study is warranted. But there is currently no empirical
evidence suggesting that cis–trans interactions are likely to
complicate the interpretation of AE as a proxy of cis-
regulatory variation.

Unfortunately, the slow progress that has character-
ized attempts to dissect standing phenotypic variation
(for example, Robin et al. 2002; Macdonald and Long

2004; Gruber et al. 2007) may well apply to cis-
regulatory phenotypes. Chief among these concerns is
difficulty defining the set of relevant, functional muta-
tions contributing to intraspecific organismal variation,
and our observation that cis-regulatory variation is often
characterized by several function alleles suggests that
this may be an equally formidable challenge with cis-
regulatory variation. In general, it also remains to be
seen whether standing variation is the general source of
evolutionary novelty at all. A hopeful possibility is that
the presumed localized nature of cis-regulatory variation
may yet propel investigations toward greater success in
addressing this fundamental question.
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A. Dutta, R. Guigó et al., 2007 Identification and analysis of
functional elements in 1% of the human genome by the EN-
CODE pilot project. Nature 447: 799–816.

Ewens, W. J., 1972 The sampling theory of selectively neutral alleles.
Theor. Popul. Biol. 3: 87–112.

Genissel, A., L. McIntyre, M. Wayne and S. Nuzhdin, 2008 Cis
and trans regulatory effects contribute to natural variation in
transcriptome of Drosophila melanogaster. Mol. Biol. Evol. 25:
101–110.

Gruber, J. D., A. Genissel, S. J. Macdonald and A. D. Long,
2007 How repeatable are associations between polymorphisms
in achaete-scute and bristle number variation in Drosophila? Ge-
netics 175: 1987–1997.

Haddrill, P. R., K. R. Thornton, B. Charlesworth and P. Andolfatto,
2005 Multilocus patterns of nucleotide variability and the demo-
graphic and selection history of Drosophila melanogaster populations.
Genome Res. 15: 790–799.

Hoekstra, H., and J. Coyne, 2007 The locus of evolution: Evo-Devo
and the genetics of adaptation. Evolution 61: 995–1016.

Hudson, R. R., 2002 Generating samples under a Wright-Fisher
neutral model of genetic variation. Bioinformatics 18: 337–338.

Lo, S., Z. Wang, Y. Hu, H. Yang, S. Gere et al., 2003 Allelic variation
in gene expression is common in the human genome. Genome
Res. 13: 1855–1862.

Macdonald, S. J., and A. D. Long, 2004 A potential regulatory poly-
morphism upstream of hairy is not associated with bristle number
variation in wild-caught Drosophila. Genetics 167: 2127–2131.

Macdonald, S., T. Pastinen, A. Genissel, T. Cornforth and A.
Long, 2005 A low-cost open-source SNP genotyping platform
for association mapping applications. Genome Biol. 6: R105.

Pant, K., H. Tao, E. Beilharz, D. Ballinger, D. Cox et al., 2006 Anal-
ysis of allelic differential expression in human white blood cells.
Genome Res. 16: 331–339.

Pastinen, T., R. Sladek, S. Gurd, A. A. Sammak, B. Ge et al., 2004 A
survey of genetic and epigenetic variation affecting human gene
expression. Physiol. Genomics 16: 184–193.

Pastinen, T., B. Ge, S. Gurd, T. Gaudin, C. Dore et al., 2005 Map-
ping common regulatory variants to human haplotypes. Hum.
Mol. Genet. 14: 3963–3971.

Pletcher, S., S. Macdonald, R. Marguerie, U. Certa, S. Stearns

et al., 2002 Genome-wide transcript profiles in aging and calo-
rically restricted Drosophila melanogaster. Curr. Biol. 12: 712–
723.

Rifkin, S., D. Houle, J. Kim and K. White, 2005 A mutation accu-
mulation assay reveals a broad capacity for rapid evolution of
gene expression. Nature 438: 220–223.

Robin, C., R. F. Lyman, A. D. Long, C. H. Langley and T. F. C. Mackay,
2002 hairy: a quantitative trait locus for Drosophila sensory bristle
number. Genetics 162: 155–164.

Rozen, S., and H. Skaletsky, 2000 Primer3 on the WWW for gen-
eral users and for biologist programmers. Methods Mol. Biol.
132: 365–386.

Sokal, R., and J. Rohlf, 1995 Biometry. W. H. Freeman, San Francisco.
Stern, D. L., and V. Orgogozo, 2008 The loci of evolution: How

predictable is genetic evolution? Evolution 62: 2155–2177.
Tao, H., D. Cox and K. Frazer, 2006 Allele-specific KRT1 expres-

sion is a complex trait. PLoS Genet. 2: e93.
Wittkopp, P. J., 2005 Genomic sources of regulatory variation in cis

and in trans. Cell. Mol. Life Sci. 62: 1779–1783.
Wittkopp, P., B. Haerum and A. Clark, 2004 Evolutionary changes

in cis and trans gene regulation. Nature 430: 85–88.
Wittkopp, P. J., B. K. Haerum and A. G. Clark, 2008a Independent

effects of cis- and trans-regulatory variation on gene expression in
Drosophila melanogaster. Genetics 178: 1831–1835.

Wittkopp, P. J., B. K. Haerum and A. G. Clark, 2008b Regulatory
changes underlying expression differences within and between
Drosophila species. Nat. Genet. 40: 346–350.

Wray, G. A., 2007 The evolutionary significance of cis-regulatory
mutations. Nat. Rev. Genet. 8: 206–216.

Yan, H., W. Yuan, V. E. Velculescu, B. Vogelstein and K. W. Kinzler,
2002 Allelic variation in human gene expression. Science 297:
1143.

Zhuang, Y., and K. Adams, 2007 Extensive allelic variation in gene
expression in populus F1 hybrids. Genetics 177: 1987–1996.

Communicating editor: M. Aguadé
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