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ABSTRACT

After migrant chromosomes enter a population, they are progressively sliced into smaller pieces by
recombination. Therefore, the length distribution of ‘‘migrant tracts’’ (chromosome segments with recent
migrant ancestry) contains information about historical patterns of migration. Here we introduce a
theoretical framework describing the migrant tract length distribution and propose a likelihood inference
method to test demographic hypotheses and estimate parameters related to a historical change in migration
rate. Applying this method to data from the hybridizing subspecies Mus musculus domesticus and M. m.
musculus, we find evidence for an increase in the rate of hybridization. Our findings could indicate an
evolutionary trajectory toward fusion rather than speciation in these taxa.

AN accurate understanding of population history is
essential for such diverse applications as the search

for recent signatures of positive selection in population
genetic data (e.g., Jensen et al. 2005), the study of ad-
mixed human populations to identify disease-associated
genetic variants (e.g., Montana and Pritchard 2004;
Patterson et al. 2004), and the definition of manage-
ment units in conservation (Pearse and Crandall

2004). Patterns of genetic variation contain information
about past changes in population size (e.g., Cornuet and
Luikart 1996; Marth et al. 2004), the timing of popu-
lation splitting events (e.g., Nielsen and Wakeley 2001),
and levels of migration between populations (e.g., Beerli

and Felsenstein 2001).
Since the advent of molecular markers, researchers

have sought to gauge the genetic differentiation of
populations and to draw conclusions about the level of
migration between them. Wright’s FST (Wright 1952)
has served as the classic metric of population differen-
tiation, and, under ideal conditions, the population
migration rate can be estimated by Nem ¼ ð1� FSTÞ=4FST,
where Ne is the effective population size, m is the per-
generation probability of being a migrant, and Nem is
thus equal to the number of migrants exchanged each
generation. However, this relationship relies on several
assumptions that may not be valid for most natural
populations (reviewed in Whitlock and McCauley

1999), including that of a constant rate of migration. A
given FST value between two populations could be pro-
duced by a constant level of migration over a long period
of time, or by genetic drift following a relatively recent

split between the two populations, or by recent admix-
ture between historically isolated populations, or by any
number of more complex scenarios. The isolation-
migration (IM) inference framework (e.g., Nielsen and
Wakeley 2001; Hey 2005) offers a way to differentiate
ongoing migration between populations from lineage
sorting in isolated populations, while estimating relevant
demographic parameters.

As in the case of IM, most population genetic methods
that estimate demographic parameters assume that all
sites or markers under study are either completely linked
(no recombination) or completely unlinked (free re-
combination) (although see Becquet and Przeworski

2007). And correspondingly, most population genetic
data have been collected with these criteria in mind.
Assuming either full linkage among sites or else in-
dependence among loci can greatly simplify the task of
modeling the histories of molecular markers. However,
the bulk of the genome in most organisms consists of
DNA that is subject to recombination, and, furthermore,
the pattern of recombination events within a sample of
chromosomes may hold valuable information concern-
ing population history. For example, we know that
haplotype statistics (Depaulis et al. 2003) and linkage
disequilibrium (Wall et al. 2002) across short loci are
quite sensitive to the effects of population bottlenecks.
The recent availability of genome-scale polymorphism
data should facilitate investigation of longer-range
linkage patterns, which may shed new light on the
recent histories of populations.

Patterns of diversity at partially linked markers may be
especially informative concerning the historical pattern
of migration between populations. Once a migrant
chromosome enters a new population, recombination
will break it down into progressively shorter segments.
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The lengths of these ‘‘migrant tracts’’—or admixture
‘‘chunks’’ (Falush et al. 2003)—therefore contain in-
formation about how long ago migration occurred. This
logic has been utilized to estimate the timing of recent
admixture events (e.g., Patterson et al. 2004; Hoggart

et al. 2004; Koopman et al. 2007), but its applicability
should extend beyond such cases. We suggest that
migrant tract lengths are expected to have a certain
equilibrium distribution under a constant migration
rate model. An excess of long migrant tracts would
indicate a recent increase in migration rate, while the
opposite pattern would suggest recently reduced gene
flow. We use theoretical predictions and simulations to
explore the migrant tract length distribution under a
variety of demographic scenarios, and we assess the
potential of this approach for inferring demographic
parameters related to migration rate changes.

MODELS AND METHODS

Constant migration rate: A large set of different pop-
ulation genetic models converges to the same coales-
cence process as the population size becomes large
(N / ‘; Kingman 1982a,b). In two-island models
(Wright 1931), an ancestral process arises (e.g., Hudson

1983), which can be described by a Markov pure jump
process {X(t), t $ 0} with state space on {0, . . . , n1} 3

{0, . . . , n2}\(0, 0), initial state (n1, n2), absorbing states (0,
1), (1, 0), and transition rates

qðði; jÞ/ði � 1; jÞÞ ¼ i
2

� �
if i $ 2

qðði; jÞ/ði; j � 1ÞÞ ¼ j
2

� �
N1

N2
if j $ 2 ð1Þ

qðði; jÞ/ði � 1; j 1 1ÞÞ ¼ N1m21i if i $ 1

qðði; jÞ/ði 1 1; j � 1ÞÞ ¼ N2m12j if j $ 1;

where n1 and n2 are the sample sizes from populations
1 and 2, respectively, and N1 and N2 are the population
sizes. Migration occurs from population 2 to 1, and from
1 to 2, at rates m21 and m12, respectively. Time is
measured in units of N1 generations, and Njmij can be
interpreted as the proportion of individuals in popula-
tion j that are replaced with individuals from population
i in each generation.

Consider the ancestry of a single lineage from popu-
lation 1. The waiting time in number of generations
until the last migration event for this lineage is expo-
nentially distributed with mean 1/m (letting m ¼ m21

here and in the following to simplify the notation). We
now introduce recombination and measure distances in
the genome as genetic distances. By using genetic
distances, we may assume that recombination in each
generation occurs according to a Poisson process with
rate 1 along the chromosome. We assume that migrant

tracts do not recombine together, we disallow back-
migration events (i.e., assume m12 ¼ 0), and we ignore
the effect of the ends of the chromosome (but later we
evaluate violations of these assumptions). Then, after t
generations, the distribution of tracts lengths follows an
exponential distribution with mean 1/t:

f ðx; tÞ ¼ te�tx : ð2Þ

Because we can reliably infer migrant tracts only over
a certain length, we are interested in the distribution of
tracts and the expected proportion of a chromosome in
tracts larger than a certain threshold, C. The proportion
of a migrant chromosome from time t that is in tracts on
a size .C, pC, can be found from the convolution of two
independent and identically distributed exponential
random variables with parameter t:

E ½pC j t� ¼ 1�
ðC

0
te�tyð1� e�tðC�yÞÞdy ¼ e�tC ð1 1 CtÞ:

ð3Þ
These two variables represent, respectively, the distance
to the left and right on the chromosome from the point
of inspection to the nearest recombination event.
Integrating over t, we find

E ½pC � ¼
ð‘

0
me�mte�tC ð1 1 CtÞdt ¼ mð2C 1 mÞ

ðC 1 mÞ2 : ð4Þ

The expected number of fragments in the population
of a migrant chromosome of length L is

E ½kðtÞ� ¼ 1 1 Lt ð5Þ

after t generations; i.e., the contribution of migrant tracts
from generation t to the population is proportional
to me�mt(1 1 Lt). Again ignoring recombination among
migrant tracts, the density of tract lengths will be
formed as a mixture distribution of tracts from different
times,

f ðxÞ ¼
Ð ‘

0 te�txð1 1 LtÞme�mtdtÐ ‘

0 ð1 1 LtÞme�mtdt
¼ m2ð2L 1 m 1 xÞ
ðL 1 mÞðm 1 xÞ3 :

ð6Þ
The conditional tract length distribution of tracts of a
length larger than C is then

f ðx j x . CÞ ¼ f ðxÞÐ ‘

C f ðxÞdx
¼ ðC 1 mÞ2ð2L 1 m 1 xÞ
ðC 1 L 1 mÞðm 1 xÞ3 : ð7Þ

These expressions do allow for genetic drift. However,
they assume that recombination events between de-
scendants of the same or different migration events
contribute to the breakdown of chromosomes into
smaller distinguishable tracts. In practice, we cannot
distinguish between nonrecombinants and recombi-
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nants between copies of the same allele. The approx-
imations we derive here are, therefore, expected to
break down when t becomes so large compared to N1

that migrant alleles may have drifted to appreciably high
allele frequencies, thereby allowing for recombination
between migrant tracts. However, this is not a funda-
mental problem as we can infer only relatively large
tracts that, with high probability, are descendants of
recent migrants. If C is sufficiently large, it is highly
probable that only fragments for which t is small have
been sampled. The chance that a migrant allele of size
.C has drifted to high frequencies is small if C ? 1/N
(since recombination will break down tracts below this
threshold before drift can substantially elevate them in
frequency). Problems identifying recombinants be-
tween migrant alleles are, therefore, avoidable if C is
sufficiently large. For the same reason, for large C,
inferences based on Equation 7 should be relatively
robust to violations of the assumption of no back
migration; i.e., m12 ¼ 0.

Changes in the migration rate: We now extend these
results to the case where there has been a discrete
change in the rate of migration. Again, we consider only
migration into population 1, and assume that the
current migration rate is m1, and that it before T
generations ago was m2. We then have

E2½pC �

¼
ðT

0
m1e�m1 t e�tC ð1 1 CtÞdt

1 e�m1T

ð‘

0
m2e�m2t e�ðt1T ÞC ð1 1 Cðt 1 T ÞÞdt

¼ m1ð2C 1 m1Þ
ðC 1 m1Þ2

� C2e�ðC1m1ÞT ðm1 � m2Þð2C 1 m1 1 m2 1 ðC 1 m1ÞðC 1 m2ÞT Þ
ðC 1 m1Þ2ðC 1 m2Þ2

:

ð8Þ
Likewise, setting

f2ðxÞ

¼
Ð T

0 te�txð1 1 LtÞm1e�m1t dt 1 e�m1T
Ð ‘

T te�txð1 1 LtÞm2e�m2ðt�T ÞdtÐ T
0 ð1 1 LtÞm1e�m1t dt 1 e�m1T

Ð ‘

T ð1 1 LtÞm2e�m2ðt�T Þdt
ð9Þ

and conditioning as in Equation 7, we find

f2ðx j x . CÞ ¼ f2ðxÞÐ ‘

C f2ðxÞdx

¼ eT ðC�xÞðC 1 m1Þ2ðC 1 m2Þ2 3
a � b

c
;

ð10Þ

where

a ¼ m2 ðm2 1 x 1 T ðm2 1 xÞ2 1 Lð2 1 T ðm2 1 xÞð2 1 T ðm2 1 xÞÞÞÞ
ðm2 1 xÞ3

b ¼ m1ððm1 1 xÞ ð1� eT ðm11xÞ1 T ðm1 1 xÞÞ1 Lð2� 2eT ðm11xÞ 1 T ðm1 1 xÞð2 1 T ðm1 1 xÞÞÞÞ
ðm1 1 xÞ3

c ¼ eðC1m1ÞT m1ðC 1 L 1 m1Þ ðC 1 m2Þ2 � ðm1 � m2Þ
3 ð�Lm1m2 1 C3ð1 1 LT Þ1 Cm1m2 ð1 1 LT Þ

1 C2ðL 1 m1 1 m2 1 Lðm1 1 m2ÞT ÞÞ:

Inference: We wish to estimate the parameters, m1,
m2, and T from an observed tract length distribution. As
only large tracts can be easily identified, we have to base
inferences on Equations 8 and 10 and not on Equation
9. We define a composite-likelihood function by taking
the product of Equation 10 among all tracts in the data
above a prespecified threshold (C). The reason why we
consider this a composite-likelihood function and not a
true-likelihood function is that the same tract can be
counted twice. However, for real data with C large, this
will rarely happen and the estimation function is essen-
tially a true-likelihood function.

Equation 10 contains only very little information
about the overall amount of population subdivision, be-
cause we look only at the relative abundance of tracts
with length greater than C. However, much of the infor-
mation regarding the overall level of population sub-
division is captured by our estimate of pC (Equation 8).
We therefore do a constrained optimization of the like-
lihood function subject to the constraint

E2½pC � ¼ p̂C ; ð11Þ

where p̂C is the observed proportion of the genome in
tracts larger than C. Specifically, we rearrange Equation
8 to express T as a function of C, m1, m2, and E2½pC �, and
we then substitute p̂C for E2½pC �. We then perform a two-
dimensional optimization for m1 and m2 while con-
straining T to take on the value given by the aforemen-
tioned equation. This approach reduces the number of
parameters from Equation 10 to be estimated (from
three to two) and adds information concerning the total
proportion of migrant DNA observed (from p̂C ). Con-
strained models with one of the two migration rates set
to zero are evaluated similarly, via a one-dimensional
optimization of the other migration rate. For the con-
stant migration rate model, m can be estimated simply
by setting m1 ¼ m2 in Equation 8, and thus using p̂C to
solve for m.

Comparison of likelihood scores from different
models allows the testing of demographic hypotheses.
Test 1 compares the maximum-log-likelihood score
from the migration rate change model (with m1 and
m2 allowed to vary) against the null hypothesis of a sin-
gle, constant migration rate (with m inferred from p̂C ).
Test 2 compares the maximum-log-likelihood score of
the migration rate change model against a model where
either (A) m1 is constrained to be zero or (B) m2 is
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constrained to be zero. Generally, test 2A is performed
when m1 , m2, and test 2B is performed if m1 . m2.
Because the distributions of likelihood ratios are not
well modeled by standard asymptotic theory for any of
these tests, critical values are obtained using data simu-
lated under the null hypothesis. For computational rea-
sons, we obtain critical values using Nem¼ 0.1 for test 1,
the true values of m2 and T for test 2A, and true m1 and
T for test 2B (rather than using the estimated parameter
values for each simulated replicate). In the analysis of
empirical data, we use the estimated null model pa-
rameter values instead.

Simulation: A forward simulation program was writ-
ten to allow the generation of migrant tract data. This
program simulates each chromosome present in two
populations and models the processes of genetic drift,
migration, and recombination under a Wright–Fisher
model (Fisher 1930; Wright 1931). It does not
generate polymorphism data; instead it directly mon-
itors migrant tract status along chromosomes. When an
individual migrates, all previously nonmigrant chromo-
some sections become migrant tracts, and any previous
migrant tracts become nonmigrant. Tracts are ‘‘forgot-
ten’’ when recombination breaks them down to a size
below the threshold length. The program initializes
with no migrant tracts present, but goes through a
‘‘burn-in’’ period with migration at rate m2. For the
analyses shown here, using a threshold tract length of
C ¼ 0.5 cM, the burn-in time was 2000 generations
(results and theory indicated this was more than enough
time to reach an equilibrium migrant tract length
distribution) and Ne was 10,000. At the end of the
burn-in, the migration rate switches to m1 and the
program records all migrant tracts present in each
population at a series of time points (T) after this
change. An extension to this program allows migrant
tracts to be sampled from a specific number of individ-
uals. In testing the performance of the likelihood
method, we simulated ‘‘genomes’’ containing 35 chro-
mosomes, each 100 cM in length (3500 cM is close to
the genetic map size of humans and many other mam-
mals; Kong et al. 2002), and we sampled 100 haploid
individuals from one population.

Application to empirical data: The likelihood
method was applied to genomewide single-nucleotide
polymorphism (SNP) data from two hybridizing sub-
species of the house mouse, Mus musculus domesticus
and M. m. musculus. These data were produced by the
Wellcome Trust Center for Human Genetics and are
available at http://www.well.ox.ac.uk/mouse/INBREDS/.
The strains examined here consist of seven from M. m.
domesticus and eight from M. m. musculus, with varying
geographic origins (see Harr 2006 for a summary). The
data come from wild-derived, inbred mouse strains and
are effectively haploid. The few apparently heterozy-
gous sites were recoded as missing data, and invariant
SNPs were removed. Since the X chromosome is

expected to have a different history, all of the 9935
SNPs analyzed here were autosomal. The vast majority of
these SNPs have inferred genetic map positions
( Jensen-Seaman et al. 2004), and all analyses were done
in terms of genetic distance, rather than physical
position. These SNPs had been ascertained in labora-
tory lines of mixed origin and could be biased in terms
of diversity levels and allele frequencies (Boursot and
Belkhir 2006), but we do not expect a particular bias
for the inference and analysis of migrant tracts.

In general, our likelihood inference method allows
the user to decide how migrant tracts should be defined.
The sample sizes of the mouse SNP data set seemed too
small for published methods for identifying ancestry
along recombining chromosomes (e.g., Falush et al.
2003). However, the task of tract identification is
simplified by the high level of genetic differentiation
between the two subspecies, which diverged perhaps
1 million generations ago and show very high levels of
genetic differentiation (Baines and Harr 2007; Salcedo

et al. 2007). We were therefore able to use a very simple set
of criteria for defining migrant tracts in these data. Given
the small sample sizes, an individual’s SNP allele was
deemed to provide evidence for a migrant tract only if it
was otherwise absent from the individual’s subspecies,
but present in the in other subspecies (we call this a
‘‘positive SNP’’). If an individual’s SNP allele is otherwise
present in both subspecies, this is a ‘‘neutral SNP’’ neither
favoring nor opposing migrant tract status. And if an
individual’s SNP allele is not present in the other sub-
species, it is taken as evidence against migrant tract
status (a ‘‘negative SNP’’). Migrant tracts consisted of
two or more positive SNPs with no negative SNPs be-
tween them. The minimum tract length was considered
to be the genetic distance spanning only the positive
SNPs at each end of the tract. The maximum tract
length included all sites up to the first negative SNPs
flanking the tract.

Given the minimum and maximum length of a mi-
grant tract, we were interested in estimating how far
beyond the positive SNPs this tract is expected to ex-
tend. To do this we assume that the length of a tract is
exponentially distributed with parameter l. If marker
Mi is in a tract, the probability that the next marker,
Mi11, is also in the same tract is e�lDi;i11 , where Di,i11 is
the genetic distance between markers Mi and Mi11. A
log-likelihood function for l is then given by

LðlÞ ¼
Y

j :Mj2Z ;Mj112Z

e�lDj ;j11

Y
j :Mj2Z ;Mj11;Z

ð1� e�lDj ;j11Þ;

ð12Þ

where Z is the set of all markers in a migration tract. By
entering the lengths of all SNP intervals (Di,i11) where we
remain in a migrant tract or leave one and then maxi-
mizing this function, we obtain a maximum-likelihood
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estimate of l. Now the expected distance to add to a tract
on the right side is

E ½dj ;j11 jMj 2 Z ;Mj11;Z � ¼
ðDj ;j11

0

tle�lt

ð1� e�lDj ;j11Þ dt

¼ Dj ;j11

1� elDj ;j11
1

1

l

ð13Þ

and we similarly add

E ½dj�1;j jMj 2 Z ;Mj�1;Z � ¼ Dj�1;j

1� elDj�1;j
1

1

l
ð14Þ

to the left side.
Applying this method to the mouse SNP data, the

resulting tract lengths were then used in the likelihood
inference method described above. To ensure that
undetected tracts did not lead to spurious rejection of
the null model, migrant tracts from simulated data were
subjected to the constraints of the mouse SNP data set.
The probability that any given SNP allele is informative
concerning migrant ancestry was estimated by replacing
each SNP allele in one subspecies with each possible
SNP allele from the other subspecies and monitoring
the proportion of transplanted alleles that yielded
positive evidence for migrant history under the criteria
detailed above. Average SNP informativeness was esti-
mated in this way for each subspecies separately. Tract
lengths from constant migration rate simulations were
randomly placed on the mouse SNP map, and each tract
was detected only if two or more informative SNPs fell
within it. This process was repeated until the number of
tracts observed in the empirical data was matched.

RESULTS

Above, we described a theoretical framework for the
distribution of migrant tract lengths and a forward
whole-population simulation tool to generate migrant
tract data. The simulation program enables several
assumptions of the theory to be violated: by allowing
back migration, recombinational joining of migrant
tracts, and effects of the ends of chromosomes. In all
cases examined, including those shown in Figure 1,
simulated data closely matched theoretical predictions.
Figure 1 depicts the migrant tract length distributions
generated by a constant migration rate model and by
admixture beginning 100, 200, or 300 generations ago.
The contrasting migrant tract lengths generated by
these histories suggested that such data could be
informative for demographic inference. But Figure 1
is based on a large number of simulated replicates, and
we were interested in testing whether individual data
sets would contain enough information for demo-
graphic hypothesis testing and parameter inference.

Large, genome-scale data sets were generated for
population samples under various demographic histo-

ries, using the migrant tract simulation method de-
scribed above. Genomes 3500 cM in size were generated
for a sample size of 100, and a minimum tract length of
0.5 cM was used. Likelihood optimization was per-
formed for each simulated data set under the migration
rate change model, yielding estimates of m1, m2, and
T. The highest log-likelihood value obtained for this
model was compared against the log-likelihood score
for the constant migration rate model, and the signif-
icance of likelihood ratios was assessed via comparison
with data sets simulated under the constant rate model.
Results are presented in Figure 2, A and B.

The method was found to have high power to reject a
constant rate model for a range of histories. The highest
power often occurred within the first few hundred
generations after a migration rate change—this is not
surprising, as only tracts .0.5 cM are considered here,
and recombination will typically break down migrant
chromosomes to this size within �200 generations. In
some cases, particularly for strong decreases in migra-
tion rate, the method’s power lasted well beyond this
expectation. Even for the most subtle migration rate
changes considered (from Nem¼ 0.1 to Nem¼ 0.04 and
vice versa), power was fairly high, particularly around
the T ¼ 200 to T ¼ 500 time window.

For histories involving a migration rate decrease, a
similar procedure was applied to test whether a model
with no current migration (m1 ¼ 0) could be rejected
(test 2A). Here, power was often a bit lower than for test
1, but generally still quite high (Figure 2C). Conversely,

Figure 1.—The distribution of migrant tract lengths after
the advent of admixture. Models where previously isolated
populations begin exchanging migrants at rate Nem ¼ 0.1
100, 200, or 300 generations ago are compared against the
case in which populations exchange migrants at a constant
rate Nem ¼ 0.1 with no prior isolation (the single migration
rate, ‘‘equilibrium’’ model). Depicted here is the relative
abundance of migrant tracts for 0.01-cM histogram bins be-
tween 0.5 (the minimum/threshold tract length) and 5 cM.
Also shown is the agreement between theoretical predictions
(lines) and tracts from 1000 simulated replicates with Ne ¼
10,000 (shapes).
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for histories involving a migration rate increase, we
tested whether a model with no migration before the
rate change (m2¼ 0) could be rejected (test 2B). Power
for this test was high for very recent migration rate
changes (i.e., 100–200 generations ago), but declined
quickly from there (Figure 2D).

Accuracy of parameter estimation under the migra-
tion rate change model is shown in Figure 3. For a
variety of demographic histories involving isolation,
migration rate decreases, migration rate increases, and
admixture, estimates of m1 and m2 were often quite
precise. Although the method cannot always distinguish
low migration rates from zero, higher migration rates of
1E�5 (Nem¼ 0.1) were estimated quite accurately, often
with 95% confidence intervals extending only �30%
above and below the true value. A similar degree of
accuracy was observed for T, with confidence intervals
spanning a factor of 2 or considerably less. Parameter
estimates for migration rate changes beyond 500 gen-
erations ago typically became less precise (data not
shown), which makes sense as these data sets become
less informative, with few tracts .0.5 cM having arisen
before the migration rate change.

Given the generally favorable performance of the
likelihood inference method on simulated migrant
tract data, we then sought to apply it to empirical data.
Because a prerequisite for this method is a set of migrant
tracts inferred with reasonable confidence, it is most
applicable to populations or taxa that show a high degree
of genetic differentiation. One such case is represented by
the hybridizing house mouse subspecies M. m. domesticus
and M. m. musculus in Europe. We used a simple set of
criteria to define migrant (hybrid) tracts in genomewide

SNP data from both subspecies and then applied the
likelihood inference method. Due to the limited size of
the data set, relatively small numbers of migrant tracts
were found: 75 in M. m. domesticus and 60 in M. m. musculus.
However, the length distributions seemed to contain an
excess of long tracts relative to equilibrium expectations
(Figure 4), and the inference method detected a signal
for an increase in the rate of introgression for both
subspecies (Table 1).

In spite of having a larger likelihood-ratio statistic
against the constant rate model than for M. m. musculus,
test 1 was only marginally significant for M. m. domesticus,
while being significant for M. m. musculus and for a
combined analysis of tracts from both subspecies. The
weaker result for M. m. domesticus is due to a lower level
of SNP informativeness in this subspecies: only 18% of
M. m. musculus alleles would be detected as migrant in
M. m. domesticus, compared to 38% in the opposite
direction. Therefore, smaller tracts more frequently went
undetected in the simulations used to assess signifi-
cance in M. m. domesticus (see models and methods for
details), and likelihood ratios from these simulations
were higher. We also confirmed that the combined tract
length data set for both subspecies showed the same
signal for increased hybridization when each tract was
required to have a minimum of three SNPs favoring
migrant ancestry, rather than two (P , 0.01; results not
shown).

M. m. domesticus had an estimate of zero for m2, while
the estimate for M. m. musculus was nonzero (Table 1),
but in neither case were the data sufficient to differen-
tiate between no hybridization vs. low hybridization
prior to the inferred rate change. The estimated timing

Figure 2.—Power to test demo-
graphic hypotheses. Shown here
first are tests comparing the mi-
gration rate change model to
the null model of a constant mi-
gration rate, for histories involving
decreasing (A) or increasing (B)
migration rates. For histories in-
volving decreasing migration rates,
power to reject a model with m1

constrained to be zero is shown
(C). For histories involving increa-
sing migration rates, power to re-
ject a model with m2 constrained
to be zero is shown (D). Signifi-
cance was gauged by comparing
the difference in log-likelihood
scores between models to data
simulated under the null model.
Each data set consisted of 100
simulated haploid genomes, and
a threshold tract length of 0.5
cM was used.
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of the rate change was similar in both taxa (202 and 234
generations ago) and in the combined analysis (206
generations ago). The two subspecies’ estimates of m1

differ by only about a factor of 2 (Table 1), and both
suggest a high contemporary population migration rate
between these subspecies.

DISCUSSION

The specific demographic parameter estimates ob-
tained from the house mouse SNP data should be inter-
preted with caution in light of limitations in the data set.
Sample sizes are small—seven and eight haploid ge-
nomes. Samples originate from various geographic
locations (Harr 2006), and our quantitative estimates
might depend on the proximity of samples to the hybrid
zone. Thus, it would be worthwhile to confirm our
conclusions and refine parameter estimates using full-
genome sequence data from reasonably large popula-
tion samples of both subspecies.

Still, it is interesting that both taxa yielded estimates
of �200 generations for the time since an increase in
hybridization rate. Particularly when using a minimum
tract length as large as 0.5 cM (which is necessitated by
the density of SNPs in this data set), the time scope of
our inference method is limited to fairly recent events
(Figure 2). Thus, the time of�200 generations may not
represent the first contact between these subspecies in
Europe, and, indeed, archaeological evidence suggests
a more ancient date for this event (reviewed in Boursot

et al. 1993). However, this timing may still represent an
increase in the rate of hybridization. If these mice have
�2 generations per year, the inference method suggests
that hybridization increased �100 years ago, which
seems generally coincident with an increased potential
for human-mediated transport in Europe.

The evolutionary trajectories of these hybridizing
house mouse subspecies will depend on a variety of
factors, but one potential predictor is the current rate of
hybridization in terms of Nem1. The true values of cur-
rent Ne for European populations of M. m. domesticus
and M. m. musculus are unknown, but long-term effec-
tive sizes on the order of 1 million have been inferred for
ancestral range populations of both subspecies (Baines

and Harr 2007). Given the successful relationship of
these mice with humans, it seems very plausible that the
current Ne is at least this large. If we therefore take
1 million as an estimate for Ne in both taxa, the m1

estimates obtained here imply that M. m. domesticus is
currently receiving�61 immigrants from M. m. musculus
each generation, while M. m. musculus is receiving �33
immigrants per generation from M. m. domesticus (on
the basis of the estimate of Nem1 for each subspecies).
Since both of these estimates give 4Nem1 ? 1, these re-
sults could indicate that M. m. domesticus and M. m.
musculus are currently on a path toward fusion rather
than speciation. However, the presence of partial in-
compatibilities between these taxa, particularly on the X

Figure 3.—Distribution of demographic parameter esti-
mates. Results from the analysis of simulated migrant tract
data are shown, including median estimates (diamonds)
and 95% confidence intervals (the 2.5 and 97.5 percentiles
of the distribution of estimates) for (A) m1, (B) m2, and
(C) T. The order of parameter sets is the same in each panel
(i.e., the far left estimates are for true values of m1 ¼ 0, m2 ¼
1E�5, and T ¼ 100).

Figure 4.—Migrant tract lengths found in M. m. domesticus
and M. m. musculus, compared to constant migration rate ex-
pectations.
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chromosome (e.g., Good et al. 2008), suggests that cer-
tain portions of the genome may resist homogenization.

Our analysis of simulated data showed that, given the
lengths of migrant tracts from a population sample of
genomes, the likelihood inference method presented
here has high power to detect historical changes in
migration (Figure 2), even for rather subtle shifts in
migration rate (i.e., 2.5-fold changes), and should be
useful in testing hypotheses and estimating parameters
related to migration rate changes. This approach is con-
ceptually related to methods that estimate the timing of
recent admixture events (Hoggart et al. 2004; Patterson

et al. 2004), but it allows for a greater variety of historical
scenarios. In terms of its temporal scale, our method falls in
between methods that identify very recent migration
events (e.g., Rannala and Mountain 1997) and those
that estimate long-term migration rates (e.g., Beerli and
Felsenstein 2001). Although the results presented here
suggest that our method is most relevant for detecting
migration rate changes within the past 1000 generations,
in many cases it may be possible to use a lower threshold
tract length (C) than the 0.5 cM used in this study, and the
temporal scope should expand with the inverse of C. The
main assumption of the method is that recombination
will break down tracts to below the threshold length before
genetic drift can lift them to high frequency. Values of C
that are ,1/Ne are therefore recommended, but the
choice of C will also depend on the level of diversity, the
degree of population differentiation, and the density of
markers (all of which constrain the inference of short
migrant tracts). For M. musculus, a smaller threshold tract
length would be a viable option with a denser SNP data set.

Our method does not address the inference of pop-
ulation ancestry along a recombining chromosome and
requires that migrant tracts be identified beforehand.
Published methods exist for this purpose (e.g., Falush

et al. 2003) and the optimal method may depend on the
data set being analyzed. Tract length data obtained from
such methods can be used as the input for our analysis,
and for methods that allow sampling from a posterior
distribution of tract lengths, uncertainty in the tract
length inference can be directly incorporated in the
likelihood method. Without the use of such methods,
the need for confident identification of migrant tracts

would make this approach difficult to apply to weakly
differentiated populations, but for more strongly differen-
tiated populations or hybridizing subspecies, this method
should be very useful in its current form.

To derive the tract length distributions, a number of
assumptions were needed. The most troublesome of
these, the lack of recombination among migrant tracts,
would be very difficult to relax in the current frame-
work. A full treatment of the problem would require
analysis of an ancestral recombination graph in a
subdivided population for whole-genome data. Another
simplifying assumption is made by ignoring the ends of
the chromosome. This assumption is much easier to
relax and can be done by considering the conditional
distribution in Equation 2. However, as this leads to a
considerably less tractable algebraic representation, and
since the current approximation performs very well for
realistic chromosome lengths, we have chosen not to
pursue this further.

The inference method described here may be appli-
cable in a number of biological contexts. As demon-
strated by our analysis of the M. musculus SNP data, the
migrant tract approach may be especially relevant in
testing hypotheses about historical trends of gene flow
across hybrid zones, perhaps shedding light on the
evolutionary trajectories of hybridizing taxa. The infer-
ences enabled by this method may also find particular
relevance in conservation: to test the effect of a new
barrier (such as a highway) on the dispersal of an
organism with a short generation time or to infer the
rate of migration over relatively recent timescales
(rather than over the past 4Ne generations) to guide
management strategies for species with fragmented
habitats. In this context it is important to note that
inferences are done at a timescale more relevant to
conservation genetics and that estimates of time in
number of generations are obtained directly and do not
rely on inferences of effective population sizes.

For optimal power, this method requires reasonably
dense, genomewide polymorphism data from moderate
to large sample sizes. It also requires information about
the genetic map position of each marker, which can be
estimated by genotyping related individuals such as
parent–offspring trios. In light of rapidly improving

TABLE 1

Parameter inference and hypothesis testing for house mouse data

No. tracts P m1 m2 T Test 1 Test 2B

Subspecies
domesticus 75 0.01095 6.08E-05 0 202 P ¼ 0.08 NA
musculus 60 0.00684 3.29E-05 1.00E-06 234 P ¼ 0.03 NS

Combined 135 0.00876 4.71E-05 7.50E-07 206 P ¼ 0.02 NS

Listed for each subspecies (and for the combined analysis) is the number of tracts .0.5 cM; the proportion of
the genome that included migrant tracts (P); parameter estimates for m1, m2, and T ; and results of hypothesis
tests. NA, test 2B is not applicable when the estimate of m2 is zero; NS, P-values not approaching significance.
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DNA sequencing technology, we are optimistic that the
inferences described here will be possible for both
model and nonmodel organisms in the near future.
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