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ABSTRACT

We develop expressions for the power to detect associations between parental genotypes and offspring
phenotypes for quantitative traits. Three different ‘‘indirect’’ experimental designs are considered: full-sib,
half-sib, and full-sib–half-sib families. We compare the power of these designs to detect genotype–phenotype
associations relative to the common, ‘‘direct,’’ approach of genotyping and phenotyping the same
individuals. When heritability is low, the indirect designs can outperform the direct method. However, the
extra power comes at a cost due to an increased phenotyping effort. By developing expressions for optimal
experimental designs given the cost of phenotyping relative to genotyping, we show how the extra costs
associated with phenotyping a large number of individuals will influence experimental design decisions. Our
results suggest that indirect association studies can be a powerful means of detecting allelic associations in
outbred populations of species for which genotyping and phenotyping the same individuals is impractical
and for life history and behavioral traits that are heavily influenced by environmental variance and therefore
best measured on groups of individuals. Indirect association studies are likely to be favored only on purely
economical grounds, however, when phenotyping is substantially less expensive than genotyping. A web-
based application implementing our expressions has been developed to aid in the design of indirect
association studies.

PREDICTIONS of the evolutionary dynamics of quan-
titative traits are highly sensitive to the genetic

architecture assumed to underlie them (Barton and
Turelli 1989). Accordingly, in recent times, a large
amount of empirical attention has been paid to the
dissection of quantitative traits at the genomic level
(Barton and Keightley 2002). Classical methods for
trait dissection such as quantitative trait locus (QTL)
analysis by linkage rely upon linkage disequilibrium
between marker loci and functional polymorphisms
within pedigrees and, although useful for determining
whether a particular genomic region may affect a trait,
suffer undesirable properties such as narrow sampling
of naturally occurring allelic variation and a limited
scope for distinguishing physical linkage from pleiot-
ropy (Mackay 2001). As these weaknesses all concern
critical aspects of genetic architecture (Hansen 2006),
they must be overcome if we are to better understand
the genetic architecture of quantitative traits. A com-
mon alternative to analysis via linkage is to test for
direct association between single-nucleotide polymor-
phisms (SNPs) in candidate gene regions (or the entire
genome) and quantitative traits. For example, when
linkage disequilibrium is weak, an association study may

be more useful for distinguishing linkage from pleio-
tropy (e.g., Carbone et al. 2006).

Typically, association studies are conducted on a
sample of individuals that are both phenotyped and
genotyped (Long and Langley 1999); we refer to this
as the direct approach. Although requiring large sample
sizes, direct approaches have identified candidate poly-
morphisms contributing to quantitative trait variation
in a wide range of organisms including humans
(Lettre et al. 2008; Weedon et al. 2008) and in model
organisms such as Drosophila (Dworkin et al. 2003,
2005; Long et al. 1998, 2000; Robin et al. 2002),
Arabidopsis (Aranzana et al. 2005), and mice (Liu

et al. 2006). However, independent replication of sig-
nificant results appears vital to eliminate false positives
and population-specific effects (e.g., Macdonald and
Long 2004; Gruber et al. 2007). The direct approach is
suitable when a candidate gene’s contribution to nat-
urally occurring phenotypic variance is of interest (via
the use of field-sampled individuals) and for traits that
can be measured with minimal error, such as morphol-
ogy. However, many fitness-related traits such as behav-
ioral and life-history traits can be heavily influenced by
environmental variance (Houle 1992), making them
difficult to measure on single field-caught individuals.
Such traits are often impossible to measure under field
conditions and are more reliably measured on groups of
individuals.
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For some organisms, performing association studies
in a panel of inbred lines (ILs) or doubled haploid lines
(DHLs) can be one solution to the requirement of
phenotyping multiple individuals and or traits per
genotype (e.g., Dworkin et al. 2003). The IL approach
has some disadvantages: the genetic structure of an IL
panel does not accurately reflect that of an outbred
population, the variance of quantitative traits is altered
by inbreeding (Hill and Caballero 1992; Van Buskirk

and Willi 2006), and for many species inbreeding is
impractical. Clearly, flexible approaches are required
that can be implemented in outbred natural populations.

One potential solution is an indirect approach where-
by a set of parents are genotyped and multiple progeny
are phenotyped. Associations are then tested between
parental genotype and progeny mean phenotype. This
approach was recently used to detect associations in
natural populations of Drosophila (Weeks et al. 2002;
Kennington et al. 2007; Rako et al. 2007). Indirect
methods have also been suggested and applied be-
fore in the case of linkage analysis, i.e., the associa-
tion between phenotypes and identity-by-descent (IBD)
within pedigrees, in particular in livestock (Weller et al.
1990; Van Der Beek et al. 1995) and experimental
populations (Hill 1998). The motivations for indirect
approaches in linkage studies are similar to those for
association studies. First, it may be impossible to
measure the phenotype or genotype in certain individ-
uals, for example, for sex-limited traits or when it is
necessary to kill individuals to be genotyped before
their phenotype can be measured. Second, due to the
increased sample size per genotype, measuring pheno-
types on relatives can increase the precision of estimat-
ing QTL effects, thereby increasing the power of
detection. However, the extra precision can come at a
cost due to incomplete linkage between marker and
QTL (Van Der Beek et al. 1995). Moreover, linkage
analyses require very large sample sizes, lack power to
detect QTL that explain only a few percent of popula-
tion variance, and have poor map resolution (Visscher

and Goddard 2004).
While the practical utility of indirect approaches is

obvious, within the context of association studies, what
remains less clear is the cost one pays in statistical power
by indirectly associating parental genotypes with off-
spring phenotypes. Past investigations of the power of
indirect methods have focused on the case of linkage
rather than association (Weller et al. 1990; Van Der

Beek et al. 1995). Here, we derive analytical expressions
for the power to detect associations between candidate
polymorphisms and quantitative traits, in four breeding
designs that involve genotyping different configurations
of parents and phenotyping their offspring, comparing
the performance of each with the direct approach of
genotyping and phenotyping the same set of individu-
als. We then derive expressions for the optimal exper-
imental designs given the relative costs of genotyping

and phenotyping. Our results demonstrate that these
designs can provide levels of power equal to, and in
some cases better than, the direct approach, indicating
that indirect association may be a potentially powerful
tool for detecting quantitative trait nucleotides (QTNs)
in outbred populations.

MATERIALS AND METHODS

We assume random mating, no segregation distortion, and
a general model of gene action that may or may not include
dominance. For the direct approach, we consider a number of
unrelated individuals with a genotype and a phenotype. For
the indirect approach, we consider a balanced design of k
dams per sire and m progeny per dam. We assume a phe-
notypic standard deviation of unity and that a proportion, q2,
of the phenotypic variance is due to additive genetic effects at
the QTL. This quantity is sometimes called the (additive) QTL
heritability (e.g., Almasy and Blangero 1998). For a biallelic
QTL in Hardy–Weinberg equilibrium, with allele frequency of
p and additive effect of a and dominance deviation of d, q2 ¼
2p(1 � p)[a 1 d(2p � 1)]2 (Falconer and Mackay 1996). In
practice, the specific values of a, d, and p do not matter but
their combination does, because power of detection using an
additive model for analysis depends on q2 (Neimann-Sorensen

and Robertson 1961; Lynch and Walsh 1998) . We note that
although dominance can be present in this model (i.e., d 6¼ 0),
for reasons outlined below (see Modeling dominance effects), we
model only the power to detect the additive genetic effect at the
QTL. For the direct approach, the model for a phenotype is

y ¼ m 1 g 1 e; ð1Þ

with g the QTL and e the residual and var(y)¼ var(g) 1 var(e)¼
q2 1 (1 � q2). For the indirect approach, the model is

y ¼ m 1 s 1 m 1 g 1 e; ð2Þ

with s and m the sire and dam effects and var(y) ¼ s2 1 m2 1
q2 1 (1 � s2 � m2 � q2) (Falconer and Mackay 1996). The
(intraclass) correlation between full-sibs (FS) is tFS ¼
s2 1 m2 1 1

2 q2 and that between half-sibs (HS) is tHS ¼
s2 1 1

4 q2 (via extension from Equations 18.33a,b in Lynch

and Walsh 1998, p. 573). If all resemblance between relatives
is due to additive genetic factors, then tFS ¼ 1

2 h2 and tHS ¼ 1
4 h2,

where h2 is the narrow sense heritability that includes the effect
of the QTL.

Power calculations: We test associations by regressing the
individual (direct approach) or family mean phenotype (in-
direct approach) on the individual or expected genotype,
which is coded by an indicator variable (x) as the number of
‘‘A’’ alleles for a biallelic locus with alleles ‘‘A’’ and ‘‘B.’’ For
individual genotypes (e.g., sires), x can have the value of 0, 1, or
2. The variance of x in the population is 2p(1 � p), with p the
frequency of allele A. For the expected mean genotype in the
progeny, x can have values 0, 0.5, 1, 1.5, and 2 for full-sib
families, reflecting the different types of parental matings
possible. For example, E(x) in the progeny is 2 if both parents
have genotype AA.

We take an analytical approach to the analysis of power, a
key feature of which is that our derivations focus on the
noncentrality parameter (NCP) of the test of association
rather than statistical power (1 � b) per se. The NCP of a
particular design can be thought of as the amount of variation
attributable to the model treatment effects (Lynch and
Walsh 1998), which in our case is the additive effect of the
polymorphism. There are several advantages to the NCP-based
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approach. First, unlike statistical power, the NCP does not
depend upon any arbitrary choice of type 1 (a) error
threshold, which is often contingent upon the type of study
being conducted. Second, NCPs scale in a linear fashion with
sample size, whereas power does not, making it far simpler to
recalculate power for any variation in sample size without
having to recalculate the NCP itself. The calculation of power
itself remains straightforward under this approach. Once an
NCP has been calculated, it can be used with the desired
critical P-value to calculate statistical power.

The test statistic for association is the square of a simple
t-test (i.e., an F-test). We assume that the sample size is large
enough (N $ 60, Severo and Zelen 1960) so that the test
statistic is approximately distributed as a central x2 with 1 d.f.
under the null hypothesis of no association. Under the
alternative hypothesis, the test statistic is distributed as a
noncentral x2 (Searle 1971) with a NCP of l. If a and b are
the type-I and type-II error rates, then the power (¼ 1 � b) to
detect an association is

1� b ¼ PrðZ , zða=2Þ �
ffiffiffi
l
p
Þ1 PrðZ . zð1�a=2Þ �

ffiffiffi
l
p
Þ

� PrðZ . zð1�a=2Þ �
ffiffiffi
l
p
Þ; ð3Þ

with Z a standard normal variate and z(1�a/2) the threshold
of a normal distribution corresponding to a type-I error rate
of a [Pr(Z , z(a)) ¼ a and Pr(Z . z(1�a)) ¼ a] (e.g., Lynch

and Walsh 1998, p. 870) The relationship between type-I
error rate, power, and the NCP is

l ¼ ðzð1�a=2Þ1 zð1�bÞÞ2: ð4Þ

General expression for the NCP: When linear regression is used
to estimate the effect of the marker on the quantitative trait,
y ¼ m 1 bx 1 e, the general form of the NCP is l ¼ b2=varð̂b Þ
(Lynch and Walsh 1998, p. 881). From standard regres-
sion theory, varð̂b Þ ¼ varðeÞ=Sðx � �xÞ2 (Kendall and Stuart

1977). Treating the x as random, varð̂b Þ ¼ varðeÞ=½ðN �
1ÞvarðxÞ� � varðeÞ=½N varðxÞ� when N is large (Visscher and
Hopper 2001; Visscher and Duffy 2006). Hence, l ¼
Nb2var(x)/var(e) ¼ Nb2var(x)/[var(y) � b2var(x)], since
b2var(x) is the variance removed by the regression. In our
regression on the genotype indicator variable, this quantity is
�cq2, with c the proportion of the QTL variance detected for a
given design. A general expression of the NCP across our
designs is then

l ¼ Nb2varðxÞ=varðeÞ ¼ Ncq2=varðeÞ ¼ Ncq2=½varðyÞ � cq2�:
ð5Þ

For example, for the direct approach, var(y)¼ 1 and c¼ 1. For
the indirect approach, both c and var(y) , 1 and their ratio
determines the efficiency of the design. If cq2 is small (i.e.,
assuming that 0 , q2 ,�0.05) relative to var(y), then l�Ncq2/
var(y).

Direct method: Individual genotypes and individual pheno-
types: The model for detecting an association is simply y¼ m 1
x 1 e, with x the indicator variable for the genotype. If there are
2N individuals phenotyped and genotyped, then

l ¼ 2Nq2=ð1� q2Þ � 2Nq2: ð6Þ
This is a standard expression for the NCP of association
between a SNP and a quantitative trait (Lynch and Walsh

1998). The NCP per genotyped individual is �q2. This is also
the NCP per phenotyped individual.

Indirect designs: Full-sib families (FS)–sire and dam genotyped
and full-sib progeny phenotyped: The model for the family mean

(Y) is Y ¼ m 1 b E(xo) 1 en, with E(xo) the expected genotype
indicator variable in the progeny. The variance of the family
mean is var(Y) ¼ [(1 � tFS)/m 1 tFS], with tFS the intraclass
correlation of full-sibs (appendix a, Equation A2). E(xo) is
simply the average of the parents,

EðxoÞ ¼
1

2
ðxsire 1 xdamÞ and var½EðxoÞ� ¼

1

2
varðxÞ: ð7Þ

The regression of Y on x0 is b ¼ a, and therefore c, the
proportion of QTL variance detected is 1

2 and var(y) is [(1 �
tFS)/m 1 tFS]. The NCP for the test of association is, per full-sib
family,

lFS ¼
1

2
q2= ð1� tFSÞ=m 1 tFS �

1

2
q2

� �

� 1

2
q2=½ð1� tFSÞ=m 1 tFS�: ð8Þ

The NCP per genotyped individual is � 1
4 q2=½ð1� tFSÞ=

m 1 tFS�. The NCP per phenotyped individual is � 1
2 q2=

½1 1 tFSðm � 1Þ�. For the limiting case of m ¼ 1, the NCP per
genotyped individual is one-quarter that of the direct ap-
proach and the NCP per phenotyped individual is one-half
that of the direct approach because the ratio of genotypes to
phenotypes is 2.

Full- and half-sib families (HS and FSHS1 designs)—sires
genotyped, full- and half-sib offspring phenotyped: If a sire is mated
to k dams and each dam has m progeny (i.e., n¼ km), then the
variance of the progeny average phenotype is (appendix a,
Equation A1)

varðY Þ ¼ ð1� tFSÞ=ðkmÞ1 ðtFS � tHSÞ=k 1 tHS: ð9Þ

Only one-quarter of the QTL variance is detected by using the
expected genotype in the progeny, so c ¼ 1

4 . The noncentrality
parameter per sire family (and per genotyped individual) is

lsire ¼
1

4
q2= ð1� tFSÞ=ðkmÞ1 ðtFS � tHSÞ=k 1 tHS �

1

4
q2

� �

� 1

4
q2=½ð1� tFSÞ=ðkmÞ1 ðtFS � tHSÞ=k 1 tHS� ð10Þ

and the NCP of an experiment with N sires is N lsire. A special
case of Equation 10 is the classical HS design in which sires are
mated to k dams with a single progeny per dam (m¼ 1 and k¼
n). The NCP per genotyped sire for this design is

lHS ¼
1

4
q2= ð1� tHSÞ=n 1 tHS �

1

4
q2

� �

� 1

4
q2=½ð1� tHSÞ=n 1 tHS�: ð11Þ

The expression for the NCP in the full-sib and the half-sib case
is very similar, the difference being the value of c (¼ 1

2 for the
full-sib design and 1

4 for the half-sib design) and the variance of
the family mean.

Full- and half-sib families (FSHS2 design)—sires and dams
genotyped, full- and half-sib offspring phenotyped: When dams are
nested within sires and all parents are genotyped, then the
contribution of dams and sires to the NCP can be treated
separately, taking account of the data structure. For a sire
family with k dams, the contribution from each of the dams is
(from Equation 8 but with c ¼ 1

4 )

ldams ¼
1

4
q2= ð1� tFSÞ=m 1 tFS �

1

2
q2

� �

� 1

4
q2=½ð1� tFSÞ=m 1 tFS�: ð12Þ

The contribution from the half-sibs is (Equation 10)
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lsire ¼
1

4
q2= ð1� tFSÞ=ðkmÞ1 ðtFS � tHSÞ=k 1 tHS �

1

4
q2

� �

� 1

4
q2=½ð1� tFSÞ=ðkmÞ1 ðtFS � tHSÞ=k 1 tHS�: ð13Þ

And the total NCP per sire family is

lFSHS ¼ lsire 1 kldams

� 1

4
q2½fð1� tFSÞ=ðkmÞ1 ðtFS � tHSÞ=k 1 tHSg�1

1 kfð1� tFSÞ=m 1 tFSg�1�: ð14Þ

When k¼ 1, the expression is equivalent to that for the full-sib
design (Equation 8). When m¼ 1 (and therefore k¼ n), i.e., a
half-sib design but all dams genotyped, the NCP is 1

4 q2=
½ð1� tHSÞ=n 1 tHS�1 1

4 q2n, the two terms corresponding to
the contribution of the half-sib family (Equation 11) and n
parent-offspring pairs, respectively.

If all dams are genotyped, then there are k 1 1 genotypes
per sire family and km phenotypes per family. Hence, the
NCPs per genotype and per phenotype are (lsire 1 kldams)/
(k 1 1) and [lsire/(km) 1 ldams/m], respectively.

Validation of equations: We performed a simulation study
to verify our analytical results for the indirect design (Equa-
tions 8, 10, 11, and 14). Phenotypes for progeny were
simulated as y¼m 1 s 1 m 1 g 1 e, for a given QTL heritability
and a model in which all family resemblance was due to
additive genetic factors. Input parameters were the numbers
of sires, dams, and progeny, the proportion of variance
explained by the QTL, the sire and dam intraclass correla-
tions, the degree of dominance, and the allele frequency at the
QTL. Sire and dam genotypes were simulated by sampling
alleles from the population, using the binomial distribution
(assuming Hardy–Weinberg equilibrium). Genotypes of prog-
eny were simulated by sampling from the parental gametes,
assuming Mendelian inheritance. Sire, dam, and residual
random effects were simulated from a normal distribution
with the appropriate standard deviation. Phenotypic observa-
tions on progeny were calculated by summation of the
individual-specific terms (i.e., sire, dam, QTL, and residual).
Data were analyzed using linear regression of the progeny
means on SNP genotype. A total of 10,000 replicates were run
for many combinations of parameters, and the average test
statistic was recorded. The mean test statistic was found to be
extremely close to our predictions (results not shown) and
therefore simulations were not pursued further.

Modeling dominance effects: Our coding for the indicator
variable x reflects the expected value of the transmitted allele
from the parent and therefore models the additive effects of
alleles. An alternative parameterization is to code the expected
dosage of the a and d effects in the progeny, given the observed
genotype in the parents and the allele frequency in the
population. For example, for parents with genotypes BB, AB,
and AA, the expected mean values in the progeny due to the
QTL are {�(1 � p)a 1 pd }, fðp � 1

2 Þa 1 1
2 dg, and {pa 1 (1 �

p)d }, respectively (Falconer and Mackay 1996). However,
the coefficients for a and d are linear combinations of each
other, so additive and dominance effects cannot be separated
when genotypes are observed on a single parent and progeny
are phenotyped, for example, in the case of half-sib designs.
Therefore, only an allele substitution effect can be estimated,
as coded, for example, by 0, 1

2 , and 1 for these genotypes. This
makes sense because twice the expected value of the mean
progeny phenotype is, when deviated from the population
mean, the additive breeding value of the parent.

There are therefore qualitative differences in the ability to
model dominance effects between the different indirect

designs. As it is possible to fit a model parameter for dom-
inance only when all parents are genotyped, we confine our
results to the 1-d.f. model that detects only additive effects. A
possible consequence of this is that when designing a study,
one may make design decisions on the assumption that all
genetic effects are additive. Although the loss in additive
genetic variance due to dominance is simple to estimate for
a given genetic variance due to a QTL, it is important to verify
that the indirect designs perform in line with these theoretical
expectations when dominance is nonzero. We considered
this issue using simulations and results are presented in
appendix b.

Efficiency of designs: The direct and indirect designs can
differ greatly in the number of genotyped and phenotyped
individuals. To compare the efficiency of the different designs
when the cost of genotyping and phenotyping varies, we
express the power (NCP) as a proportion of the cost of the
experiment. If the cost per genotype is 1.0 unit and the relative
cost of phenotyping to genotyping is Cp, then the total cost is

C ¼ Ng 1 CpNp; ð15Þ

with Ng and Np the number of individuals genotyped and
phenotyped, respectively. For a given design we can express
the cost-corrected noncentrality parameter (CNCP) as the
NCP per ‘‘QTL heritability’’ and per dollar. That is,

CNCP ¼ NCP=ðq2CÞ ¼ NCP=ðq2ðNg 1 CpNpÞÞ: ð16Þ

Taking the approximate expressions for the NCP (i.e., assum-
ing that 0 , q2 ,�0.05), then the q2 drops out of the equation.
The resulting CNCPs are then simple expressions of all these
parameters.

For the direct approach,

CNCP ¼ Nq2=ðq2ðN 1 CpN ÞÞ ¼ 1=ð1 1 CpÞ: ð17Þ

For the classic HS design,

CNCP ¼ 1

4
=½ð1 1 CpnÞðð1� tHSÞ=n 1 tHSÞ�: ð18Þ

For a given value of the heritability (and therefore tHS if all
family resemblance is due to additive genetic factors), the
optimum value of n is

nopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1� tHSÞ=ðCptHSÞ�

q
: ð19Þ

Similarly for the FS design,

CNCP ¼ 1

2
=½ð1 1 CpmÞðð1� tFSÞ=m 1 tFSÞ�; ð20Þ

and the optimum value of m is

mopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1� tFSÞ=ðCptFSÞ�

q
: ð21Þ

For the nested design with only sires genotyped (FSHS1),

CNCP ¼ 1

4
=½ð1 1 CpkmÞðð1� tFSÞ=km 1 ðtFS � tHSÞ=k 1 tHSÞ�:

ð22Þ
If m is fixed, then the optimal value for k isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1� tHSÞ=ðmCptHSÞ�

p
.
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RESULTS

Statistical power: Common genotyping effort: It can be
seen from the per genotype and per phenotype approx-
imations (Table 1) that the powers of the indirect
approaches relative to that of the direct approach are
simple functions of two factors: first, the degree to which
phenotypes within families are correlated (i.e., the
intraclass correlations), which, in the absence of non-
genetic and nonadditive genetic causes of family re-
semblance, is the narrow-sense heritability of the trait,
and second, the numbers of progeny phenotyped per
family when using an indirect design. There is no
difference in the relative power of direct and indirect
approaches as the QTN effect size varies. Thus, we
explore performance of the indirect approaches due to
variation in the narrow-sense heritability and progeny
phenotyping effort, for an arbitrary QTN effect size
while holding genotyping effort constant.

The power for three indirect designs (FS, HS, and
FSHS1) and that for the corresponding direct design
are plotted for different progeny numbers and narrow-
sense heritabilities in Figure 1. For all three designs
there are combinations of progeny number and herita-
bility for which the power exceeds that of the corre-
sponding direct design, with the indirect approach
performing better as heritability declines (Figure 1, A–
C). We investigated the FSHS2 design for a wide range of
parameters but found that genotyping both sires and
dams is not efficient because the additional information
from the progeny of the dams is not compensated by the
increase in the number of genotypes. Thus we do not
consider this design further.

Due to its effect on the phenotypic correlation among
full- and half-sibs, heritability has a strong impact on the
power of the indirect designs. While there is little
difference in performance of the different indirect
designs when heritability is low, all methods suffer
reduced power when heritability is high. This is because
the variance in progeny mean is relatively large, a factor
that is particularly important for the performance of the
full-sib design. Equating (6) and (8) for a particular

value of tFS gives the number of progeny that need to be
phenotyped to give equal power of the direct and
indirect designs. That number is m ¼ 4(1 � tFS)/(1 �
4tFS). Thus, for small values of tFS, four progeny per full-
sib family need to be phenotyped to have equal power.
Relative to the direct approach in which 2N individuals
are phenotyped this is an increase of a factor of 2. For
large values of tFS (tFS . 0.25, e.g., h2 . 1

2 ) there is no
number of phenotyped progeny that can compensate
for the loss of information. Thus, for highly heritable
traits there will always be a higher genotyping effort for
the full-sib design compared with the direct method.
This limitation is not as severe for the half-sib case due to
a lower expected correlation between half-sibs over a
much wider range of heritabilities.

The FSHS1 design requires a choice of both the
number of dams, k, and the number of offspring per
dam, m. For a given value of km it appears that there are
marginal gains in power by increasing the number of
dams rather than increasing the number of offspring
per dam. For example, Figure 1C illustrates this point
with km¼ 10. With sires mated to five dams and two full-
sib progeny phenotyped per dam, power was always
higher compared with the alternative situation in which
a sire is mated to two dams and five progeny are
phenotyped.

Common phenotyping effort: The indirect designs can
result in a large variation in the number of phenotyped
progeny; thus we also analyzed the performance of the
designs on a per phenotype basis. Under no circum-
stances is power better than that of the direct approach
for a common phenotyping effort (Figure 2). The per
phenotype NCP of each indirect design tends to plateau
well below the corresponding NCP for the direct design.
On a per phenotype basis, the full-sib design always
performs better than the half-sib designs regardless of
whether a nested design is used or not.

Relative efficiency and economy: Because cost is
often the major limiting factor in an association study
and the indirect designs can lead to a very large
phenotyping effort compared with the direct method,
we also modeled how the cost of phenotyping relative to

TABLE 1

Approximate NCP/q2 per genotype and per phenotype for different indirect breeding designs

Design NCP per genotype NCP per phenotype

Direct 1 1

Half-sib families (HS) 1
4 =½ð1� tHSÞ=n 1 tHS� 1

4 =½1 1 ðn � 1ÞtHS�
Full-sib families (FS) 1

4 =½ð1� tFSÞ=m 1 tFS� 1
2 =½1 1 ðm � 1ÞtFS�

Dams nested within
sires; dams not
genotyped (FSHS1)

1
4 =½ð1� tFSÞ=ðkmÞ1 ðtFS � tHSÞ=k 1 tHS� 1

4 =½1 1 ðm � 1ÞtFS 1 mtHSðk � 1Þ�

Dams nested within
sires; dams
genotyped (FSHS2)

1
4 ½1=ðk 1 1Þ�½kfð1� tFSÞ=m 1 tFSg�1

1 fð1� tFSÞ=ðkmÞ1 ðtFS � tHSÞ=k 1 tHSg�1�
1
4 ½1=km�½kfð1� tFSÞ=m 1 tFSg�1

1 fð1� tFSÞ=ðkmÞ1 ðtFS � tHSÞ=k 1 tHSg�1�
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Figure 1.—Effect of narrow-sense heritabil-
ity and progeny number on the power (1 � b)
of the full-sib (FS) (A), classic half-sib (HS)
(B), and nested half-sib design in which only
sires are genotyped (FSHS1) (C). In all cases,
a QTN is assumed to explain 5% of the phe-
notypic variance (i.e., q2 ¼ 0.05), the genotyp-
ing effort is set at 100 individuals, and a ¼
0.05. In all plots the solid horizontal line is
the power for the direct design with identical
genotyping effort and QTN effect size. For the
full- and half-sib designs (A and B), m and n
were fixed at the following values: 2, 4, 10,
and 20. For the FSHS1 design different com-
binations of k and m were used (2, 2; 2, 5; 5, 2;
and 4, 5).
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genotyping affects the efficiency of different designs.
Figure 3 illustrates the CNCPs for the two simplest cases,
the full-sib and classic half-sib designs with each opti-
mized for m and n, respectively, using (21) and (19). The
full-sib design provides a much larger contribution to
power per unit expenditure when Cp ¼ 0.1, which
represents a 10-fold lower cost of phenotyping relative
to genotyping. For all other cases considered, equal
costs and when genotyping is 10 times cheaper than
phenotyping, the direct design is favored on econom-
ical grounds.

DISCUSSION

We have provided analytical solutions for the power to
detect genotype–quantitative trait associations using an
indirect approach, in which parents are genotyped and
different configurations of offspring are phenotyped in
an outbred population. Inspired by the possibility that

indirect approaches may represent a flexible and cost-
effective strategy for traits that are difficult to measure
on single individuals, our goal was to determine whether
an indirect approach could provide power equal to or
better than the direct approach of genotyping and
phenotyping the same individuals. Upon finding that
there are regions of parameter space for which the
indirect approaches perform well, we explored how
the cost of phenotyping relative to genotyping affects
the efficiency of the designs.

Power considerations: It is immediately apparent
from the per genotype noncentrality parameter expres-
sions and their approximations (Table 1) that the QTN
heritability, q2, does not affect the power of indirect
approaches relative to the direct method. Thus our
discussion concerning the performance of different
indirect designs has generality across the entire range of
effect sizes. However, the power of indirect approaches
is heavily influenced by the narrow-sense heritability of
the trait, decreasing in all designs as heritability in-
creases. When heritability is high, the contribution of
environmental variance to trait values is low. Thus the
benefit achieved via the indirect design, due to a
decrease in the contribution of environmental variance
to family means, is also diminished. By contrast, herita-
bility has the opposite effect on the power of indirect
linkage analysis, in full- and half-sib families (Van Der

Beek et al. 1995). The likely source of this discrepancy is
that, for linkage analysis, the power depends on the
proportion of within-family variance explained by the
QTL, so for a fixed QTL effect size, a larger heritability
implies a larger proportion of within-family variance
explained and therefore more power (Visscher and
Hopper 2001).

Although any ‘‘best’’ design is likely to depend on the
reproductive biology of the organism studied, heritabil-
ity, and budget, four guiding principles emerge from
our analyses. First, half-sib designs are more powerful on
a per genotype basis than full-sib designs. Second, when
using the FSHS1 design, it is always better to increase the
number of dams rather than the number of offspring
per dam. Because there are more independent half-sib
families in this design, the power contribution to the test
statistic comes from half- rather than full-sibs (see
Equation 14). Third, on a per phenotype basis no
indirect approach can match the power of the direct
approach. Finally, there may be little to be gained from
genotyping both dams and sires in a full-sib–half-sib
design. The poor performance of the FSHS2 design is
partially a consequence of the fact that, within a group
of half-sibs, the genotyping effort allocated to the dams
delivers little power gain compared with the alterna-
tive of genotyping more independent sires from the
population.

One key difference between our approach and other
considerations of the power of association studies is that
we have assumed that the causal SNP is genotyped. For

Figure 2.—Effect of the number of full- and half-sib fami-
lies on the power (1 � b) of the full-sib (FS) (A) and classic
half-sib (HS) (B) designs for a common phenotyping effort of
1000 individuals where a ¼ 0.05. As family number varies, the
numbers of m and n have been scaled to reflect the common
phenotyping effort; thus an analysis involving 100 families im-
plies a value of m¼ 10 and so on. The QTN explains 5% of the
phenotypic variance (i.e., q2 ¼ 0.05). Corresponding power
for the direct approach is 1.0 in both cases and profiles for
three narrow-sense heritability values are shown.
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example, Long and Langley (1999) investigated the
power of direct association studies to detect QTL in
outbred populations as a function of sample size, the
QTL heritability, and recombination rate between the
causal and genotyped variants that are in linkage dis-
equilibrium with the causal variant. Our power calcu-
lations can be easily adjusted for imperfect linkage
disequilibrium by multiplying the noncentrality param-
eter of the test statistic by r2, the squared correlation
between alleles at the causal and genotyped variant
(Hill and Robertson 1968). In other words, if there is
not perfect linkage disequilibrium between the causal
and the genotyped variant, then the experimental
sample size needs to increase by a factor of 1/r2 to
achieve the same power.

Considerations due to dominance: In our analyses we
have fitted an additive model and therefore our power
calculations are relevant for the proportion of additive
genetic variance due to the QTN. The predictable
degree to which parental genotype reflects progeny
mean phenotype is altered by dominance. Dominance
has been shown to influence the power of tests of
association and linkage and in general terms can either
increase or decrease power depending upon the mag-
nitude of dominance variance relative to the cost of
fitting an extra model parameter to account for it (Sham

et al. 2000). Although it has been argued from theoret-
ical grounds and empirical observations that domi-
nance effects may be generally relatively weak (Hill

et al. 2008), in the indirect case, as we have considered
here, we model only the ability to detect additive effects,
so it is likely that power will be compromised by
dominance, an issue we consider below.

We first considered the question of whether the
decrease in power as a consequence of dominance is
any worse than when using the equivalent direct
method (i.e., a 1-d.f. model). From theory, power loss
due to dominance can be substantial for both designs
when dominance is strong (a ¼ d) and the common

allele is dominant (appendix b). Simulations suggest,
however, that the direct and indirect approaches do not
differ systematically in their sensitivity to this effect
(appendix b). However, one has the option of fitting a
model with a specific coding variable for d (i.e., a 2-d.f.
model) when using the direct approach, an option
available only for indirect designs in which both parents
are genotyped. For the indirect FS design, dominance
can be separated from additive effects because the
progeny genotype can be predicted, in some cases
without error. For example, AA 3 AA matings always
give AA progeny and AA 3 BB matings always give AB
progeny. Progeny from AB 3 AB matings have the same
expectation for a as progeny from AA 3 BB matings but
differ in their expectation for d (1

2 and 1, respectively).
In practice, however, the power to detect dominance will
be lower than that of the direct approach for two
reasons. First, the variance of the indicator variable for
d is lower for the indirect case in a manner that depends
upon allele frequency. For the direct approach this is
Var(xddirect

) ¼ H(1 � H) whereas for the indirect full-sib
case Varðxdindirect

Þ ¼ H ð1�H Þ � 1
2 H ð1� 1

2 H Þ, where H
is the heterozygosity (¼ 2p(1� p)). Second, when allele
frequencies are nonsymmetrical, the coding variables
for a and d become correlated with each other. This has
the effect of significantly reducing the amount of
dominance that is recoverable after fitting an additive
term. Thus, although it is theoretically possible to recover
some information on dominance using the full-sib
design, it is likely to be small unless moderate-frequency
SNPs are being tested. In summary, it appears that the
main impact on power between the direct and indirect
methods due to dominance will be a function of the
limited ability to fit a 2 d.f.-model in some cases rather
than any systematic difference between the approaches
in their ability to detect additive effects.

Relative efficiency and economy: As power relative to
the direct approach is a function of the phenotyping
effort, the indirect designs can require considerable

Figure 3.—Efficiency, expressed as the cost-
corrected noncentrality parameter (CNCP), of
the direct (Equation 17), full-sib (FS, Equation
20), and classic half-sib designs (HS, Equation
18), when the cost of phenotyping varies relative
to the cost of genotyping. For each indirect de-
sign, we first estimated the optimal values of m
and n for the relative cost of phenotyping vs. gen-
otyping (CP), using Equations 21 and 19, respec-
tively. For this example, the narrow-sense
heritability was set at 0.2 and the QTN explained
5% of the phenotypic variance.
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phenotyping effort to gain equal or better power than
the direct approach. Thus, by developing expressions
for the noncentrality parameter per dollar (CNCP) and
optimal sizes for the three simplest indirect designs, we
were able to investigate how variability in the relative
costs of genotyping and phenotyping may influence
design choice. Only when phenotyping is cheaper than
genotyping (i.e., Cp , 1) is it possible for the indirect
approach to be more economical. In fact, often pheno-
typing may have to be considerably cheaper than
genotyping. For the limit of Cp / 0, i.e., very cheap
phenotyping relative to genotyping, the comparison
between designs is for the same number of genotypes
(see Table 1). For the case considered in Figure 3, where
heritability is 0.2, CNCP(HS) / 1/h2 ¼ 5 and
CNCP(FS) / 1/2h2 ¼ 2.5, both for a large (strictly
infinite) number of progeny.

Conclusion: We have developed exact expressions
and approximations for the statistical power of tests of
association, in which parental genotypes are associated
with progeny mean phenotypes, and compared their
performance with a direct approach in which associa-
tions are tested between genotypes and phenotypes
from the same individuals. For situations in which both
direct and indirect approaches are feasible, our results
suggest that the indirect approaches are more powerful
when traits have low heritability but are more econom-
ical to implement only when genotyping costs far
outweigh phenotyping costs. For studies in which the
specific trait or study organism precludes a direct
association study, the indirect approach nonetheless
remains a viable option. We have implemented power
calculations for both the direct method and the indirect
designs considered here on a web-based application,
power calculator for indirect association studies (PIAS),
which can be accessed by the wider community (http://
www.chenowethlab.org/pias/index.html).
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APPENDIX A: DERIVATION OF VARIANCE AMONG
FAMILY MEANS

From Falconer and Mackay (1996, p. 167), the
variance of sire means is given by

VarðY Þ ¼ MSSIRE=km ¼ s2
w=km 1 s2

D=k 1 s2
S :

But assuming VP ¼ 1,

s2
S ¼ covðHSÞ ¼ tHS

s2
D ¼ covðFSÞ � covðHSÞ ¼ tFS � tHS

s2
w ¼ 1� covðFSÞ ¼ 1� tFS:

Hence,

varðY Þ ¼ ð1� tFSÞ=ðkmÞ1 ðtFS � tHSÞ=k 1 tHS: ðA1Þ

For the full-sib case, k¼ 1 and there is no contribution
from half-sibs; thus, tHS ¼ 0. Hence,

VarðY Þ ¼ ð1� tFSÞ=m 1 tFS: ðA2Þ

TABLE A1

Examples of power loss due to dominance when fitting an
additive (1-d.f.) model using the direct approach

NCP (N ¼ 100)

p k q2

1-d.f. fit
(a)

2-d.f. fit
(a 1 d)

0.1 0.0 0.050 5.26 5.26
0.5 0.049 5.13 5.26
1.0 0.047 4.97 5.26

0.5 0.0 0.050 5.26 5.26
0.5 0.044 4.65 5.26
1.0 0.033 3.45 5.26

0.7 0.0 0.050 5.26 5.26
0.5 0.042 4.39 5.26
1.0 0.023 2.36 5.26

Note that the power of the 2-d.f. model is unaffected by
dominance when using this approach.

APPENDIX B: ASSOCIATION WITH DOMINANCE

For a standard quantitative genetic model, with mean
values of �a, d, and a for genotypes AA, AB, and BB,
using k¼ d/a as the degree of dominance, p as the allele
frequency of allele B, and H as the heterozygosity
(2p(1 � p)),

varðAÞ ¼ Ha2½1 1 kð1� 2pÞ�2 ðB1Þ

varðDÞ ¼ ðHkaÞ2 ðB2Þ

(Falconer and Mackay 1996; Lynch and Walsh

1998). Let the phenotypic variance be 1 and the total
proportion of variance due to the QTL be Q 2¼ var(A) 1

var(D). As before, the proportion of phenotypic vari-
ance due to additive variance at the QTL is q2 ¼ var(A).
For a direct design, the NCP for an additive (1-d.f.)
model is�Nq2/(1� q2) and the NCP for a 2-d.f. model is
�NQ 2/(1�Q 2) (e.g., Sham et al. 2000). Some examples,
keeping the total proportion of variance due to the QTL
constant (Q 2 ¼ 0.05), are given in Table A1.

Only if there is strong dominance and the common
allele is dominant (e.g., p ¼ 0.1, k ¼ �1) is there
substantial loss in power by fitting an additive model.
If Q 2 is small, then the ratio of the NCP for fitting a or
fitting a 1 d is �q2/Q 2. This ratio can be expressed as

ð1 1 kð1� 2pÞÞ2=½ð1 1 kð1� 2pÞÞ2 1 Hk2� ðB3Þ

and depends on k and p.
In the indirect model we detect 1

2 q2 or 1
4 q2 when we fit

an additive model; thus apart from this reduction in the
amount of q2 detected, there is no theoretical reason for
expecting the performance of a 1-d.f. test to be different
from that of the direct approach. We tested this pre-
diction using simulations.
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TABLE A2

Theory and simulation results for power loss due to
dominance in an indirect FS design

p k a D

Predicted mean
test statistic:

F-ratio

Simulation mean
test statistic:

F-ratio

0.1 0.0 0.527 0.000 5.90 5.98
0.5 0.372 0.186 5.79 5.93
1.0 0.285 0.285 5.63 5.85

0.5 0.0 0.316 0.000 5.90 6.01
0.5 0.298 0.149 5.33 5.50
1.0 0.258 0.258 4.21 4.34

0.7 0.0 0.345 0.000 5.90 6.09
0.5 0.400 0.200 5.18 5.15
1.0 0.391 0.391 3.20 3.20

A 1-d.f. model is fitted for all tests of association. Simulation
details are given in the text. SEs from runs of 10,000 replicates
ranged from 0.4 to 0.5.

We simulated a quantitative trait according to a model
in which the trait was influenced by both additive and
dominance effects. Phenotypes for progeny were simu-
lated as y ¼ m 1 s 1 m 1 g 1 e, for a given QTL
heritability and a model in which all family resemblance
was due to both additive and dominance effects (given
by a value of k). Data were analyzed using linear
regression of the progeny means on SNP genotype. A
total of 10,000 replicates were run for each combination
of parameters, and the average test statistic was re-
corded. We considered both the FS and the classic HS

TABLE A3

Theory and simulation results for power loss due to
dominance in an indirect HS design

p k a D

Predicted mean
test statistic:

F-ratio

Simulation mean
test statistic:

F-ratio

0.1 0.0 0.527 0.000 8.04 8.18
0.5 0.372 0.186 7.87 8.05
1.0 0.285 0.285 7.65 7.78

0.5 0.0 0.316 0.000 8.04 8.13
0.5 0.298 0.149 7.21 7.22
1.0 0.258 0.258 5.59 5.62

0.7 0.0 0.345 0.000 8.04 8.10
0.5 0.400 0.200 6.99 7.09
1.0 0.391 0.391 4.13 4.16

A 1-d.f. model is fitted for all tests of association. Simulation
details given in the text. SEs from runs of 10,000 replicates
ranged from 0.4 to 0.6.

designs with parameter values similar to those in Figure
1, A and B: that is, a sample of 100 genotypes, total QTL
variance of 0.05, and trait heritability of 0.4. We
considered three allele frequencies (p ¼ 0.1, 0.5, and
0.7) for the cases of no (k ¼ 0), partial (k ¼ 0.5), and
complete (k ¼ 1) dominance. We then compared
predicted (theory) test statistics with simulated values
for each set of parameter values. For both designs,
simulated results were very similar to theory and in no
case did theoretical test statistics significantly exceed
simulated ones (Tables A2 and A3).
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