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Abstract

Paraptosis is the programmed cell death pathway that leads to cellular necrosis. Previously, rodent and human monocytes/
macrophages killed glioma cells bearing the membrane macrophage colony stimulating factor (mM-CSF) through
paraptosis, but the molecular mechanism of this killing process was never identified. We have demonstrated that paraptosis
of rat T9 glioma cells can be initiated through a large potassium channel (BK)-dependent process initiated by reactive
oxygen species. Macrophage mediated cytotoxicity upon the mM-CSF expressing T9-C2 cells was not prevented by the
addition of the caspase inhibitor, zVAD-fmk. By a combination of fluorescent confocal and electron microscopy, flow
cytometry, electrophysiology, pharmacology, and genetic knock-down approaches, we demonstrated that these ion
channels control cellular swelling and vacuolization of rat T9 glioma cells. Cell lysis is preceded by a depletion of intracellular
ATP. Six-hour exposure to BK channel activation caused T9 cells to over express heat shock proteins (Hsp 60, 70, 90 and
gp96). This same treatment forced HMGB1 translocation from the nuclear region to the periphery. These last molecules are
‘‘danger signals’’ that can stimulate immune responses. Similar inductions of mitochondrial swelling and increased Hsp70
and 90 expressions by BK channel activation were observed with the non-immunogenic F98 glioma cells. Rats injected with
T9 cells which were killed by prolonged BK channel activation developed immunity against the T9 cells, while the injection
of x-irradiated apoptotic T9 cells failed to produce the vaccinating effect. These results are the first to show that glioma
cellular death induced by prolonged BK channel activation improves tumor immunogenicity; this treatment reproduces the
vaccinating effects of mM-CSF transduced cells. Elucidation of strategies as described in this study may prove quite valuable
in the development of clinical immunotherapy against cancer.
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Introduction

Dying or dead cells possess distinct, observable and differing

morphologies such as autophagy, paraptosis/necrosis and apopto-

sis [1]. Autophagy consists of cellular self-digestion. Very little is

known of the potential vaccinating properties of these dying and

dead cells. Paraptosis is thought to be a programmed form of cell

death that culminates in cellular necrosis. The molecular

mechanisms of paraptosis induction are not well defined.

Paraptotic cells are characterized by a process of swelling and

vacuolization that begins with physical enlargement of the

endoplasmic reticulum (ER) and the mitochondria [2]. The

appearance of swollen cells suggests ionic disregulation is followed

by water retention. The disruption of intracellular ion homeostasis

ultimately causes osmotic lysis. Such lysis releases substances that

have been labeled as ‘‘danger signals’’. These include high

mobility group B-1 (HMGB1, also known as amphoretin) [3],

heat shock proteins (HSP) [4], and various proteases. Release of

these ‘‘danger signals’’ promotes massive inflammation, ultimately

stimulating cell-mediated immunity [5]. Lastly, apoptosis is

distinguished by nuclear condensation, DNA cleavage, cell

shrinkage, membrane blebbing, and HMGB1 retention in the

nucleus resulting in apoptotic body formation [6,7]. Both

professional phagocytes and adjacent stromal/parenchymal cells

scavenge the apoptotic bodies. Apoptosis has been called the

‘‘silent death’’ because immunological responses are minimized.

Antigen presenting cells (APC), after interacting with necrotic

tumor cells, produce superior T cell immunizing responses in

comparison to apoptotic cells [reviewed in 8]. Dendritic cells (DC)

mature more rapidly when exposed to necrotic cells than when
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exposed to apoptotic cells [9]. Upon exposure to apoptotic cells,

interleukin-12 (IL-12) transcription is suppressed in APC [10].

Macrophages and DC fed apoptotic cells produce increased levels

of immunosuppressive agents such as prostaglandin E2, platelet

activating factor, transforming growth factor-b, and interleukin-10

[11]. The presence of these soluble mediators prevented co-

stimulatory molecules from being fully expressed by the ‘‘activat-

ed’’ APC.

Previously, we reported that rat T9 and human U251 glioma

cells, along with mouse Hepa1-6 hepatoma cells retrovirally

transduced with a unique, spliced variant of the membrane form of

the macrophage colony stimulating factor (mM-CSF) were killed in

vitro by monocytes/macrophages [12–17]. In vivo studies confirmed

the lack of tumorigenicity of these mM-CSF transduced tumor

cells in animals, even when 5–10 million tumor cells were injected

[18–20]. After 4 hours the mM-CSF transduced cells could be

morphologically identified as paraptotic cells; after 12–18 hours

increased HSP expression was observed [14,15]. It was hypoth-

esized that this killing process allows tumor immunity to be

stimulated via the release of various molecules that serve as

‘‘danger signals’’. This peripheral immunization resulted in

systemic immunity that induced tumor rejection in either

subcutaneous or established intracranial tumors [18,19].

In this study, a molecular mechanism is presented for the ability

of rat monocytes to kill mM-CSF expressing T9 glioma cells by

producing a disruption of ionic homeostasis in the targeted cell.

Data from the present study demonstrates that osmotic disregula-

tion of the tumor cells induced by big potassium (BK) channel

activation, provides not only the mechanism by which macro-

phage-mediated paraptosis occurs but also how immunity using

paraptotic cells is subsequently initiated.

Results

mM-CSF T9 tumor cells die of a swelling/vacuolization
process called paraptosis and reactive oxygen species
derived from macrophages can kill T9 cells

When the rat T9 glioma cells expressing mM-CSF (T9-C2

cloned cells) were injected subcutaneously, all the transduced T9

glioma cells died by a paraptotic process resulting in osmotic lysis

(Figure 1A). Paraptotic morphologies were not seen to develop

when the unmodified T9 cells were injected. The untreated T9

cells formed subcutaneous tumors. Throughout our work over the

past 10 years, no T9-C2 cells have escaped this type of destruction,

a cytolytic process mediated by the myeloid cells in vivo, by forming

a tumor. More importantly, once the animals eliminated these

paraptotic tumors at a subcutaneous site, tumor specific immunity

resulted either at subcutaneous or intracranial sites [16,18,19].

From three separate experiments, a representative illustration

emerges for the time kinetics of a rat peritoneal-derived

macrophage (pre-labeled with H2DCFDA) response to the T9

and T9-C2 cells. The response was monitored using a luminom-

eter to measure the production of reactive oxygen species (ROS)

(Figure 1B). The singly cultured macrophages or the macrophages

cultured with the T9-Viral Vector (T9-VV) cells demonstrated flat

baseline values. At 75 minutes, a significant (P,0.05) elevation of

the ROS generated by the macrophages responding solely to the

mM-CSF expressing T9 cells began. This strong degree of ROS

induction continued over the next 120 minutes until the

experiment was concluded.

To demonstrate that this cytotoxicity was not due to an

apoptotic-dependent pathway, cytotoxicity experiments were

performed in the presence of the broad-caspase inhibitor,

zVAD-fmk. In the presence of 10 mM zVAD-fmk, the cytotoxocity

of the macrophages against the T9-C2 cells was not inhibited

(Figure 1C), indicating that the killing process is not mediated via a

caspase- dependent pathway. Increasing the amount of zVAD-fmk

up to 50 mM did not change the results (data not shown). As a

control, zVAD-fmk was found to completely inhibit staurosporine

induced apoptosis of the T9 glioma cells (Figure 1C, right panel).

Cytotoxicity studies were performed using H2O2 and HOCl,

which activate H2DCFDA fluorescence, in order to prove that

these macrophage derived products directly killed T9 glioma cells.

T9 cells were effectively killed within 16 hours by the H2O2 and

hypochlorite ions (0.25 mM) produced by the macrophages in the

respiratory burst (data not shown). The ROS scavengers, N-acetyl

cysteine and methimazole, prevented the cytotoxic effects of the

macrophage derived ROS on the macrophage mediated cytotox-

icity of the mM-CSF (Figure 1D). Both of these scavengers

significantly inhibited the macrophages’ ability to kill the mM-CSF

expressing T9 cells. In summary, these data from these

experiments show that ROS are mediators of this cytotoxicity,

but do not totally explain the molecular mechanism of paraptosis

induction.

Functional BK channels are found on the membrane,
mitochondria and ER of the T9 cell

Many glioma cells express BK channels [21–23]. Oxygen has

been proposed to regulate BK channel activity [24]. In the

presence of O2, or other oxygen species, an electron is transferred

from heme by NADPH 450 reductase to hemoxygenase-2, thereby

enzymatically generating carbon monoxide (CO). The presence of

CO activates the BK ion channels permitting the efflux of K+ ions

from the intracellular pools. Since the monocytes, in response to

membrane M-CSF found on T9 glioma cells, produce a

respiratory burst containing various oxygen species, it was

hypothesized that this is the initial event inducing cell death by

activation of BK channels.

Standard patch clamping techniques demonstrated that T9

glioma cells have functional cell-surface BK channels. Cell

attached recordings of the T9 glioma cells (Figure 2, Panels A–

D) revealed large conductance channels consistent with BK

channels as previously characterized within glioma cells in other

studies [21–23]. The presence of BK channels was demonstrated

using both depolarizing (Panel A) and hyperpolarizing pulses

(Panel C). The resulting conductance currents demonstrated

strong voltage dependence and single-channel currents were

resolved in these patches. The unitary slope conductance of the

single-channel currents was 181 pSiemens (pS) when a positive

potential (Panel B) was applied, while the conductance was 187 pS

when negative potentials (Panel D) were used. The transmem-

brane potential in the cell-attached patch configuration was

measured because the membrane was intact and the actual

membrane potential was unknown. The membrane potential was

estimated by breaking the patch at the end of the experiment and

the average value from whole-cell recordings was used. These

results indicated that T9 glioma cells express functional BK

channels at the cell surface.

Co-localization studies identified the intracellular locations of

the BK channels. The results are presented in Figure 2. The cells

were pre-stained with a Mito-tracker red (Top Row of the

fluorescent micrographs, Middle Panel) to specifically identify the

mitochondria, while the BK channels were identified using the

green (FITC) fluorescent anti-BK channel antibody (Top Row,

Left Panel). The merged figure (Top Row, Right Panel) shows

yellow staining in many sites within the cells where the

mitochondria and BK channels are found to be co-localized.

Additional sites of green fluorescence were interpreted as marking

Paraptosis Induction

PLoS ONE | www.plosone.org 2 February 2009 | Volume 4 | Issue 2 | e4631



non-mitochondrial organelles such as the endoplasmic reticulum

(ER). The ER was identified with red fluorescent mouse anti-

GRP78 antibody (Lower Row, Middle Panel). BK channels and

the ER also co-localized together (Bottom Row, Right Panel).

Thus, BK channels are found within these 2 organelles as well.

This substantiates the presence of BK ion channels in multiple sites

within the T9 glioma cells.

BK channel activators induce formation of vacuoles
derived from the mitochondria and endoplasmic
reticulum in the T9 glioma cells

It was hypothesized that a forced opening of the BK channels

within the T9 glioma cells as a result of ROS from the monocytes,

disrupts the normal internal ion homeostasis of the targeted cell.

Once activated, BK channels allow an osmotic imbalance to

develop, thereby initiating the vacuolization process seen in

paraptosis. The BK channel activators, phloretin or pimaric acid,

were used to determine if cell vacuolization could be induced after

1 hour of treatment. Adherent T9 glioma cells were exposed to

BK channel activators. After 1 hour of phloretin treatment these

cells became vacuolated (Figure S1, Panel B). Similar results were

observed with the use of pimaric acid (Figure S1, Panel C). Non-

treated T9 glioma control cells remained healthy, adherent cells

(Figure S2, Panel A).

T9 cells were also stained with either Mito-Tracker (Figure S1,

Panels D, E and F) or ER- Tracker (Panels G, H and I) to

specifically stain the mitochondria or the endoplasmic reticulum,

respectively. The untreated T9 cells displayed small delicate red

mitochondria throughout the cell (Panel D). In contrast, within the

phloretin treated T9 cells (Panel E) or pimaric acid treated T9 cells

(Panel F) enlarged red mitochondria are seen. Similar swelling

effects in the ER were seen when the T9 cells were pre-labeled

with ER-Tracker and then treated with either phloretin (Panel H)

or pimaric acid (Panel I). The amount of the area of either green

or red fluorescence of the organelles was quantitated at the pixel

level using the Compix software to measure the size of the

fluorescent area. These data are presented in Panel J. Both

phloretin and pimaric acid caused significant enlargement of these

Figure 1. T9-C2 cells die in vivo via paraptosis and reactive oxygen species (ROS) derived from macrophages kill T9 cells in vitro.
Panel A: Five million T9-C2 cells were injected subcutaneously into a syngeneic rat 4 hours earlier. Magnification 3,0006. Panel B shows the kinetics of
ROS induction within cultures of rat peritoneal macrophages responding to mM-CSF expressing T9 cells (T9-C2) at Time 0. The time kinetics of the
chemiluminescence produced by H2DCFDA pre-labeled macrophages in response to the T9-VV (squares) or T9-C2 (triangles) or the macrophages
alone (circles) are demonstrated. Panel C: Macrophage-mediated cytotoxicity against the mM-CSF expressing T9-C2 cells is not prevented by a
caspase inhibitor, zVAD-fmk. Rat peritoneal macrophages were added at various macrophage:tumor ratios (20:1, 10:1, 5:1, 2.5:1) with H3 labeled T9-C2
cells in a 24 hour release assay. Ten mM zVAD-fmk was added at the start of the incubation. Ten micromolar zVAD-fmk inhibited the cytotoxicity of
staurosporine induced apoptosis of T9-C2 cells. The right subpanel shows the cytotoxicity of the glioma cells in the presence of 10 mM zVAD-fmk (z),
staurosporine (S) or the combination of both zVAD and staurosporine (z+S). Panel D: Twenty mM N-actetyl-cysteine (NAC) and 1 mM methimazole
were added to the cultures (at a 10 macrophage: 1 T9-C2 cell ratio) at time 0. The asterisks denote significant differences between experimental and
control values (P,0.05).
doi:10.1371/journal.pone.0004631.g001
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Figure 2. T9 glioma cells possess BK channels on the cell membrane and within the mitochondria and ER. T9 glioma cells possess
functional BK channels as demonstrated by patch-clamping techniques. Cell attached recordings of BK channels in T9 cells. Panel A: representative
traces from a cell-attached patch in response to depolarizing pulses. Panel B: unitary current-voltage relationship of the channels at positive

Paraptosis Induction
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organelles. Thus, it appears that BK channels are functional

within these organelles.

Ultrastructural analysis confirms that the mitochondria
and the ER are targeted by sustained BK channel
activation

Electron microscopic studies were done to confirm that the

mitochondria and the endoplasmic reticulum were indeed affected

by prolonged BK channel activation. Figure 3 shows the

ultrastructures of T9 cells treated for 1 hour with no BK channel

activation (Panel A); as well as T9 cells treated with 0.01 mM

Pimaric acid (Panel C); and those treated with 1 mM phloretin

(Panels B and D). Non-BK channel activated T9 cells display

normal mitochondria (white arrows) and normal ER (black

arrows). T9 cells treated with the pimaric acid do show that both

organelles are swollen, with the cristae of the mitochondria

becoming diffuse. The cells treated by phloretin appear to be

much more advanced in the development of pathology with

vacuoles clearly forming that have pushed the cristae up against

the inside of the swollen mitochondria. This finding suggests that

the contents of the inner mitochondria have been physically been

changed. This alteration then exerts some pressure that pushes out

the cristae. All the swollen organelles contain electron dense

material, a finding that eliminates any possibility that macro-

pinocytic bodies were the source of these vacuoles.

BK channel activators and carbon monoxide are
observed to induce T9 cells swelling; r-iberiotoxin
prevents the actions of BK channel activators on these
cells

Flow cytometry using a forward scatter (FSC) parameter

(indication of size) demonstrated that T9 cells swelled in response

to the BK channel activators. In response to phloretin, and

pimaric acid, the T9 cells quickly enlarged 6–10% within

15 minutes, and continued to enlarge by as much as 112–118%

over the next 105 minutes (Figure 4A). Size increases were also

observed when H2O2 and a hypotonic solution (0.96 PBS) were

added to the cells. During the course of this experiment, additional

experiments were performed in which r-iberiotoxin was added to

the cultures. At the 120 minute mark, representative data are

shown in which iberiotoxin (when added at Time 0) significantly

inhibited cellular swelling (Figure 4B) to both BK channel

activators: phloretin and pimaric acid. R-iberiotoxin also signif-

icantly prevented H2O2-treated T9 cells from swelling.

It has been reported that CO acts as a secondary messenger that

directly opens the BK channel. Experiments were performed in

which T9 cells were exposed to CO saturated media. Over a

period of exposure time, varying from 15 to 60 minutes, T9 cells

progressively swelled upon prolonged exposure to the CO

saturated media (Figure 4C). This data supports the hypothesis

that CO can act as a secondary messenger and directly activates

the BK channels.

Replacing Na+ ions with K+ ions prevents the T9 cells
from swelling in response to phloretin

When BK channels are opened, intracellular K+ ions are

released, permitting Na+ ions with water to enter the cell or

organelles to maintain electroneutrality. This infused water

ultimately causes the cells and organelles to swell. Experiments

were conducted using PBS, in which the Na+ ions were replaced

with an equivalent amount of K+ ions to maintain osmolarity.

Upon BK channel activation, the K+ ions will escape, while little

or no Na+ ions and water could enter the cell. Figure 5 shows that

when using standard PBS (high Na+ and low K+), T9 cells swelled

in response to phloretin. When K+ enriched PBS (low Na+ and

high K+) was substituted, the T9 cells maintained normal size for

45 minutes, with some shrinkage to 97.5% after 60 minutes.

These values were not statistically, significantly different from

those obtained at the previous time points. When the T9 cells were

exposed to phloretin in the K+ enriched PBS, very little cell

swelling occurred. These values were significantly different

(P,0.05) from those T9 cells stimulated with the phloretin while

in the normal PBS. Hence, it appears that the influx of Na+ ions is

largely responsible for T9 cell swelling in response to phloretin.

Cell cytotoxicity required 17 hours of continuous BK
channel activation and was prevented by BK gene knock-
down

The time at which cytotoxicity occurred was determined by

performing Cr51 release studies (Figure 6, Panel A). No

cytotoxicity occurred after 4 hours of exposure, even though the

cells gave the appearances that they were greatly stressed after

1 hour of treatment. Even so these data indicated that the cells’

membranes were intact and retained the radioisotope. At 8 hours,

cytotoxicity was beginning to be detected, although the amount of

cellular death was not considered significant. By 12 hours, obvious

signs of cytotoxicity were noted and were observed to be maximal

at 17 hours in cells exposed to the two highest concentrations of

phloretin (1.0 mM and 0.1 mM) and pimaric acid (0.1 mM).

Thus, actual cell death required an extended time of exposure in

addition to the initiation time for swelling and vacuolization.

Genetic methods confirmed that the BK channels were

responsible for the observed cytotoxicity. Invitrogen’s Stealth

siRNA construct was used to specifically knock-down the rat BKa
channels. Two days after siRNA transfection, quantitative real-

time PCR indicated that the amount of mRNA for BK channels

was reduced by 86% when compared to a non-specific siRNA

control (0% loss). The loss of BK channel protein expression was

confirmed by immunofluorescence (Figures 6B and 6C). When

cytotoxicity studies were carried out for 24 hours (Figure 6D),

phloretin, pimaric acid and H2O2 killed the siRNA control T9

cells; whereas, the BKa siRNA knocked-down T9 cells were

resistant to the cytolytic effects of the BK channel activators.

Hence the transient knockdown of the BK channels made the T9

cells resistant to the various cytotoxins.

potentials. Inset is an amplitude histogram (bin width is 0.5 pA) obtained at a transmembrane potential of +40 mV. The slope of this line indicates a
conductance of 181 pS. Panel C: representative traces from a cell-attached patch in response to hyperpolarizing pulses. Panel D: unitary current-
voltage relationship of the channels at mainly negative potentials. Error bars represent the mean values +/2 the SEM for 3 separately patched cells
(n = 3). Inset is an amplitude histogram (bin width is 0.5 pA) obtained at a transmembrane potential of 0 mV. The slope of this line indicates a
conductance of 187 pS. Panel E: Top row: Left panel demonstrates cells viewed with exposure to only the anti-BK channel antibody; Middle Panel: The
cells viewed have been treated with Mito-tracker Red; Right Panel: The merger of the cells in the left and middle panels. Bottom row: Left Panel
demonstrates another preparation of the T9 glioma cells stained with BK channel antibody. Middle Panel contains cells stained with anti-GRP78
antibody (to identify the ER) and PE-conjugated secondary antibody, indicative of the ER. Right Panel: The merged yellow figures represent one plane
where co-localization has occurred.
doi:10.1371/journal.pone.0004631.g002
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Figure 3. Electron microscopy reveals phloretin and pimaric acid cause the swelling of the mitochondria and the endoplasmic
reticulum. T9 cells were incubated without any BK channel activators (Panel A); 1 hour with 0.01 mM pimaric acid (Panel C); 1 hour with 1 mM
phloretin (Panels B and D). All magnifications are 15,0006, except Panel D which was 30,0006. The white arrows indicate the mitochondria, while the
black arrows show the endoplasmic reticulum.
doi:10.1371/journal.pone.0004631.g003
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Loss of intracellular ATP coincides with the time of the T9
cells death

For cells to maintain proper cation homeostasis, a Na+/H+

antiporter or a Na+/K+ exchanger is used to actively pump out

Na+ ions. Both Na+ removal transporters are ATP-dependent.

The mitochondria are the source of the required ATP production.

By targeting the mitochondria through BK disregulation, the

resultant reduced efficiency of ATP production may be seen as a

mechanism whereby cell lysis proceeds. The levels of intracellular

ATP were measured at various times to determine if ATP was

being lost as a result of prolonged BK activation. Figure 7A

illustrates that the levels of ATP remained constant for 24 hours

when T9 cells were cultured alone or if cultured with iberiotoxin.

One hour after phoretin addition a significant loss of intracellular

ATP levels was noted. When iberiotoxin was added, the loss of

ATP was almost completely mitigated, but ATP levels were not

restored to control levels. Identical results were obtained when

pimaric acid was substituted for phloretin (Figure 7B). H2O2-

treatment also produced the immediate loss of ATP (Panel C). As a

specific control, 2,4 dinitrophenol (DNP) was used as a

mitochondrial respiration inhibitor. By visual observation it is

noted that H2O2-treated cells swelled, while the DNP-treated cells

did not swell. This indicates that simple mitochondrial inhibition is

not sufficient to induce cellular swelling. Additionally, BK channel

activation is also needed in addition to ATP depletion, to fully

display the same cellular pathology.

Mitochondrial enlargement occurs when the
macrophages specifically contact the T9-C2 cells

Studies were conducted in which the T9 or T9-C2 cells were

pre-labeled with MitoTracker red and then exposed in vitro to

macrophages (not pre-labeled for identification purposes) for

4 hours. Figure S2 demonstrates that macrophages labeled with a

green nuclear dye show contact with either T9 cells (Panel A) or

T9-C2 cells (Panel B). In Panel A, two macrophages are in contact

with a T9 cell and the mitochondria retain their normal size. In

contrast, the T9-C2 cell displays enlarged red mitochondria when

Figure 4. BK channel activators and carbon monoxide induce
T9 cells to swell. T9 cells in suspension were incubated with 1 mM
phloretin, 0.01 mM pimaric acid, 1 mM H2O2 or in a hypotonic PBS
(0.96 PBS) at 37uC. At timed intervals, the samples were analyzed on
the flow cytometer. All data from the experimental groups are
significantly different (P,0.05) from the untreated cells (black circles).
Panel A shows the time kinetics; Panel B analyzes the data at
120 minutes and demonstrates the effect of 0.05 mM r-iberiotoxin in
preventing cell swelling. Panel C shows that T9 cells swell in response to
CO saturated media. All the experimental treatments in Panel A were
significantly different (P,0.05) from the control cells. The asterisks in
Panels B and C indicate a significant difference (P,0.05) between the
treated cells and their respective controls.
doi:10.1371/journal.pone.0004631.g004

Figure 5. T9 cells fail to swell in response to BK channel
activation when Na+ ions are replaced by K+ ions. T9 cells were
cultured in regular PBS (high Na+ ions and low K+ ions) and stimulated
with 1 mM phloretin (triangles). T9 cells were incubated in PBS where
the Na+ were replaced with K+ ions and then cultured alone (diamonds)
or stimulated with 1 mM phloretin (squares) at 37uC. At the times
indicated, samples were analyzed by flow cytometry for size using the
forward scatter parameter.
doi:10.1371/journal.pone.0004631.g005

Paraptosis Induction
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two macrophages interact with it. This would indicate that

mitochondria of the mM-CSF target cells are specifically affected

by the activated macrophages.

Iberiotoxin prevented macrophage-mediated death of
mM-CSF T9-C2 cells

It was demonstrated that macrophage mediated killing of mM-

CSF expressing T9-C2 glioma cells could be prevented by BK

channel inhibition of the target cells. The macrophages, at a 10:1

macrophage:tumor ratio, produced a 66.863.8% specific release

of T9-C2 cells, while the presence of the iberiotoxin reduced the

incidence of cellular death to 1664.9% (Figure S3). The presence

of iberiotoxin significantly (P,0.005) reduced lysis of the T9-C2

cells by 76%, verifying that macrophage-mediated cytotoxicity of

the mM-CSF expressing glioma cells manifests itself largely

through a BK channel-dependent pathway.

Macrophages contacting the T9-C2 cells produced a
lowered intracellular ATP level

Our model of the process by which macrophages kill the mM-

CSF expressing T9 cells postulates that the depletion of

intracellular ATP eventually leads to cell lysis. This occurs because

of the prevention of the sodium ion efflux, either by the actions of

a sodium anti-porter or a sodium/potassium ATPase exchanger,

which requires ATP for transporter function. When intracellular

ATP levels are sufficiently depleted, the cell’s membrane should

osmotically rupture due to lack of the ability to pump out the

unwanted water and Na+ ions. This proposed model then requires

a prolonged time period for cytotoxicity to occur. Hence, it is

necessary to demonstrate that the intracellular ATP levels are

depleted prior to cellular death.

The only way to conclusively prove this scenario is correct, was

to use a retroviral luciferase-based assay. Luciferase produces

luminescence when the cell-permeable substrate, luciferin, is

added and ATP is present within the cell. The T9-C2 and T9

cells were also transduced with the luciferase gene. Experiments

were done in which the T9/luc+ and T9-C2/luc+ clones were

incubated with the macrophages for various lengths of time to

determine when the intracellular ATP levels were depleted. The

kinetics of ATP depletion are shown in Figure 8. Starting at

4 hours there was a significant reduction in the intracellular ATP

levels of the T9-C2/luc cells reacting to the macrophages when

compared to those T9/luc cells responding to the macrophages.

By 8 hours there was only 44% of the initial amount of the ATP

levels within the T9-C2/luc+ cells. And by 16 hours, only 4% of

the luminescence was present in the T9-C2/luc cells reacting to

the macrophages. The loss of intracellular ATP that was observed

before cell death occurred at 16 hours may be seen in Figure 6A.

Prolonged BK channel activation induces the release of
‘‘Danger Signals’’

Previously, when mM-CSF transduced glioma cells were

injected into rodents, tumor cell growth was not observed. Tumor

cells, closely examined within 1 day after injection, were noted to

have died of paraptosis (Figure 1A). Immunohistology also

revealed an increased expression of many ‘‘danger signals’’ such

as heat shock proteins and nitrotyrosines (indicative of peroxyni-

trite) [14,15], that can stimulate inflammation and immunity. It

can be speculated that this process of tumor cell death sets up the

proper conditions in which the immune system can fully stimulate

anti-tumor immune responses [14,15,18,24]. If a paraptotic

mechanism of death for mM-CSF transduced tumor cells is

correct, then paraptotic T9 cells (without mM-CSF expression)

killed by prolonged BK channel activation should reproduce

tumor immunity.

T9 cells were exposed to prolonged BK channel activation for a

period of 6 hours and then tested by intracellular flow cytometry

Figure 6. Phloretin and pimaric acid kill the T9 cells and can be
prevented by genetic knock-down. Panel A: One million Cr51

labeled T9 glioma cells were incubated with 1.0, 0.1 or 0.01 mM
phloretin or 0.1, 0.01 or 0.001 mM pimaric acid in 24 well plates. Data
shown at the indicated times show the percent of specific release,
6standard deviation of triplicate cultures. T9 cells were transfected with
either 80 pmol BKa or siRNA control. Two days later aliquots of the cells
were immunologically stained with the anti-BK channel antibody (Panel
B: siRNA control; Panel C: BK siRNA treated). The data in Panel D
demonstrates the cytotoxicity of the T9 cells in response to 1 mM
phloretin, 0.01 mM pimaric acid, or 1 mM H2O2 for 24 hours. The
asterisks indicate significant differences (P,0.05) between the exper-
imental and their respective controls.
doi:10.1371/journal.pone.0004631.g006
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for the presence of ‘‘danger signals’’ like the heat shock proteins

(Hsp60, 70, 90 and GRP94/gp96). T9 cells were incubated in the

presence of the BK channel activators: phloretin or pimaric acid.

In addition, H2O2 was used as well to simulate macrophage ROS

responses. To demonstrate maximal heat shock responses, a set of

T9 cells that were heat-shocked for 43uC for 5 minutes were

added as a positive control. Representative data from repeated

experiments are presented in Figure 9.

For all the T9 cell populations treated with either phoretin,

pimaric acid, or H2O2, the expression of intracellular Hsp60

(Panel A), Hsp70 (Panel B), Grp94 (Panel C) and Hsp90 (Panel D)

was elevated. Most of these BK channel-activated responses were

Figure 7. BK channel activators cause a loss of intracellular ATP with the T9 cells. T9 cells were cultured in either 1 mM phloretin, 0.01 mM
pimaric acid, 0.05 mM r-iberiotoxin, 1 mM H2O2 or 0.1 mM DNP in 96 well plates. After 1, 16 or 24 hours the cells were lysed and the amount of ATP
was measured using a luciferase/luciferin-based assay. The asterisks indicate a significant difference (P,0.05) of the experimental values from those
results of either the untreated or iberiotoxin treated cells.
doi:10.1371/journal.pone.0004631.g007
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almost equivalent to those responses produced when the T9 cells

were heat-shocked for 5 minutes. The only exception was the

response of T9 cells reacting to pimaric acid for Hsp60 expression.

Another possible ‘‘danger signal’’ that can be detected in T9 cells

treated by the BK channel activation is the release of HMGB1 from

the perinuclear location with subsequent translocation to the cells’

peripheral membranes (Figure 10). This translocation was seen not

only with the permeabilized cells (Figure 10, Panels H and I), but

also in non-permeabilized cells (Panels C and D). Cell surface

expression of HMGB1 was also confirmed by doing flow cytometry

on non-permeabilized cells (Panel E).

BK channel activation produces similar results with the
F98 glioma cell

Data was generated that demonstrated that induction of

mitochondrial swelling along with enhanced Hsp70 and 90

expression could be reproduced in another rat glioma cell line,

F98. In response to phloretin, F98 cells swelled within 15–

20 minutes (data not shown), while concurrently the mitochondria

swelled within 30 minute to exposure with phloretin (Figure 11B).

When F98 cells were exposed to either phloretin or pimaric acid

for 6 hours, more Hsp 70 and 90 were expressed (Figure 11C+D).

These results indicate that BK channel activation induced-

pathology is reproducible using a different rat glioma cell line.

Dendritic cells mature in response to BK channel
activated/killed T9 cells

BK channel activated/killed T9 cells were next used to

stimulate the maturation of immature bone marrow derived

dendritic cells in vitro. Immature rat bone marrow dendritic cells

were grown for 3 days in recombinant interleukin-4 and

granulocyte-macrophage colony stimulating factor. The immature

dendritic cells were also exposed to T9 cells that were killed by

staurosporine-induced apoptosis, prolonged BK channel activation

by phloretin, or heat shocked for 43uC for 5 minutes followed by

an incubation for 18 hours in 0.96PBS. Figure 12 shows that the

dendritic cells displayed more maturation markers, MHC class II

and CD86 antigens, when the cells were treated with BK channel

activated/killed or with heat shocked T9 cells. In contrast,

apoptotic T9 cells failed to stimulate dendritic cell maturation

for MHC class II, but actually decreased CD86 expression. These

data indicates that BK channel activated/killed T9 cells produce

sufficient danger signals or other paraptosis-induced stimuli that

cause the maturation of dendritic cells.

T9 cells killed by prolonged exposure to BK channel
activation stimulate T9 specific tumor immunity

Because the prior experiments suggested that numerous

‘‘danger signals’’ were being expressed, an experiment was

designed to test the hypothesis that T9 cells killed by prolonged

BK channel activation could stimulate the immune system. In vitro,

T9 cells were killed by prolonged BK channel activation (18 hours)

using either phloretin or pimaric acid. Apoptotic, x-irradiated T9

cells were used as a negative control. T9-C2 cells were used as the

living vaccine. As expected, none of the T9 cells killed by BK

channel activation or living T9-C2 cells grew in subcutaneous sites

(Figure 13, Panel A). The untreated T9 cells formed tumors. Three

and a half weeks later the immunized rats were rechallenged

(Panel B) with the injection of unmodified T9 cells. The rats that

were immunized by exposure to T9 cells killed by BK channel

activation (pimaric acid or phloretin), or by exposure to living T9-

C2 cells demonstrated immunity. Non-immunized rats or rats

immunized with x-irradiated T9 cells (n = 8) demonstrated a lack

of immunity by the presence of growing T9 tumors. The immune

results between the paraptotic T9 (phloretin or pimaric acid)

vaccinated rats and the naı̈ve or x-irradiated T9 vaccinated rats

were significantly different (P,0.05). After this experiment was

completed, all the rats that successfully rejected the T9 tumors

were subsequently challenged with MADB106 breast cancer cells.

Every rat that was injected with these unrelated syngeneic breast

cancer cells formed subcutaneous tumors (Figure 13C). Thus, rats

that were specifically immunized by BK channel activated/killed

T9 cells produced immunity to T9 glioma cells, while the use of

apoptotic T9 cells failed to generate sufficient immunity to reject a

rechallenge with living T9 cells. This work demonstrates that

induced paraptotic T9 cells killed by prolonged BK channel

activation can reproduce the specific immunity seen when living

mM-CSF transduced T9 cells are used as the initial immunogen.

Discussion

We have hypothesized that the presence of the membrane form

of M-CSF allows prolonged physical conjugation between

transduced tumor cells and myeloid cells producing cytotoxicity

that naturally facilitates anti-tumor immunity [25]. Supporting the

development of this hypothesis are the following data from our

previous works. A number of different tumor cells (rat T9 glioma

cells [12–14], human U251 glioma cells [15,20], rat MADB106

breast cancer cells [weak immunogenic, 26] and mouse Hepa1-6

hepatocellular carcinoma cells [non-immunogenic, 17]) that

express the novel membrane form of M-CSF lack the ability to

form either subcutaneous or intracranial tumors in rodents.

Tumor cells transduced with the better known form of M-CSF,

the secreted form of M-CSF (sM-CSF), were not killed by

monocytes/macrophages in vitro [12] and were noted to form

tumors in immunocompetent animals [16].

In all of the animal tumor models, it was observed that the

animals were immunized to the unmodified parental tumor cells

after being exposed to living mM-CSF transduced cells. After

Figure 8. Macrophages cause a loss of intracellular ATP with
the T9-C2 cells. T9/luc or T9-C2/luc cells were cultured with an equal
number of macrophages in a 96 well plate, after 2, 4, 8 or 16 hours the
cultures were pulsed with luciferin and the amount of ATP was
measured using a luminometer within 15 seconds. Since the baseline
values (time 0) of the T9/luc cells had a higher value than the T9-C2/luc
cells, the data was normalized to reflect 100% of baseline values. The
asterisks indicate a significant difference (P,0.05) of the luminescence
of the T9-C2 cells responding to the macrophages from those results of
the macrophages responding to the T9/luc cells.
doi:10.1371/journal.pone.0004631.g008
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subcutaneous injection, membrane M-CSF transduced gliomas

began dying within 4 hours of the development of the swelling and

vacuolization process inherent in paraptosis [14,15]. The molec-

ular mechanism by which this cytotoxicity or immunity was

mediated was never understood.

In the current study a putative molecular mechanism was

investigated that facilitates an explanation of 1) how macrophages

produce death in cloned rat mM-CSF expressing T9-C2 glioma

cells; and 2) how tumor immunity is subsequently stimulated. In

this study it was demonstrated that after 75 minutes of exposure,

macrophages specifically responded to mM-CSF expressing tumor

cells (Figure 1B) by releasing reactive oxygen species. The use of a

broad caspase inhibitor, zVAD-fmk, failed to prevent the

macrophage-mediated cytotoxicity of the T9-C2 cells (Figure 1C),

suggesting that this death proceeds through a non-apoptotic

pathway. Two monocyte-derived reactive oxidants (H2O2 and

hypochlorite ions) proved to be effective cytolytic agents for the T9

cells. ROS scavengers also prevented the macrophages from

causing the death of the mM-CSF target cells (Figure 1D).

Others have postulated that oxygen induces NADPH450

reductase and hemoxygenase-2 to make the secondary messenger,

CO [24]. CO opens BK channels. The use of CO saturated media

(Figure 4C) confirmed that cell swelling occurred within

15 minutes. The hypothesis was tested that within mM-CSF

expressing tumor target cells prolonged activation of the BK

channels by the respiratory burst of the macrophages mimics

many of the actions of tumoricidal macrophages responding to

mM-CSF expressing T9 tumor cells. This proposed cytolytic ROS

mechanism explains how mM-CSF transduced tumor cells are

specifically killed by rat macrophages and how this mechanism

initiates anti-tumor immune responses by releasing ‘‘danger

signals’’ similar to those derived from paraptotic cells [14,15].

Within 60 minutes of treatment with two BK channel

activators, phloretin and pimaric acid, the T9 glioma cells began

swelling (Figure 3) and forming vacuoles (Figure S1). BK channels

were detected on the cell membrane by immunofluorescence

staining and confocal microscopy imaging (Figure 2E). Applied

patch-clamping techniques proved these membrane BK channels

to be functional (Figure 2A–D). With the use of co-localization

immunofluorescence techniques, BK channels were observed in

the ER and the mitochondria and these organelles were noted to

swell in response to BK channel activators (Figure 3). Thus, it has

been demonstrated for the first time that BK channels are

functional in the ER. The mitochondria and the ER are affected in

paraptosis and our findings provide a rationale for why these

organelles are specifically targeted in this cellular death pathway.

The demonstration of BK channels in the ER probably represents

the normal synthesis and transport of BK channels towards the

Figure 9. BK Channel activators stimulate a HSP response. T9 cells were incubated 1 mM phloretin, 0.01 mM pimaric acid or 1 mM H2O2. As a
positive control, T9 cells were heat shocked 43uC for 5 minutes and returned to 37 C. After 6 hours, the T9 cells were fixed, permeabilized and stained
for heat shock proteins Hsp60 (Panel A), Hsp70 (Panel B), Grp94 (Panel C) and Hsp90 (Panel D).
doi:10.1371/journal.pone.0004631.g009
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plasma membrane. The possibility also exists that targeted

disruption of ER function leads to cellular death by disruption

of protein synthesis.

When rat T9 glioma cells are compared with human U251

glioma cells, some notable differences are found. Even though

both cells possess BK channels in the same locations [27], the

U251 cells express more BK channels than T9 cells. This may

explain why the U251 cells became swollen and vacuolated within

10–15 minutes, whereas, it took longer (60 minutes) to display the

same cellular pathology in the T9 cells. The U251 cells took only

8–12 hours to die as a result of application of the phloretin or

pimaric acid, while with the T9 cells required 17 hours (Figure 6A).

These data suggests that there is a dose dependent relationship of

these BK ion channels with down-stream effects. The T9 cells

possess fewer BK channels, so a longer time is required to achieve

the morphological changes observed with the U251 cells.

The presented model of paraptosis induction contains six steps

in Figure 14, Panel A. Before macrophages come into contact with

the mM-CSF tumor cells, normal homeostasis is present.

Intracellular ATP, K+ and Na+ are at normal baseline physiolog-

ical levels; i.e., intracellular concentrations that are high in ATP

and K+ but low in Na+. When macrophages encounter the mM-

CSF cell via the M-CSF receptor, reactive oxygen species, such as

H2O2 and HOCl, are produced (Step 1). The presence of ROS

Figure 11. Phloretin induces mitochondrial swelling and Hsp70 and 90 expression within F98 gliomas. Mitotracker labeled F98 glioma
cells were exposed to culture media alone (Panel A) or exposed to 1 mM phloretin for 30 minutes (Panel B). F98 cells were exposed to 1 mM
phloretin or 0.1 mM pimaric acid for 6 hours and then stained for the presence of Hsp70 (Panel C) or Hsp90 (Panel D) by using intracellular flow
cytometry.
doi:10.1371/journal.pone.0004631.g011

Figure 10. HMGB1 translocates from the nucleus to the membrane as a result of BK channel activation or by hydrogen peroxide.
Panels A–D displays the expression of HMGB1 of non-permeablized T9 cells. T9 cells were treated under the various conditions for 6 hours. Panel A
shows untreated T9 glioma cells stained with only the secondary antibody. Panel B are control non-treated T9 cells stained for anti-HMGB1 antibody
(green). Panels C and D shows T9 cells treated for 6 hours with either 1 mM phloretin, or with 0.01 mM pimaric acid, respectively. To confirm that
HMGB1 has been translocated to an extracellular location, flow cytometry confirmed that the HMGB1 (Panel E) was on the extracellular surfaces.
Another set of T9 cells were treated under identical conditions as described above (Panels A–D). Panels F–I displays the same treatment of cells
shown in Panels A–E, except these cells were first permeabilized before the staining was done. In all cases the HMGB1 has translocated from the
nucleus/perinuclear regions through the cytoplasm towards the edge of the membranes of the effected cells.
doi:10.1371/journal.pone.0004631.g010
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allows hemoxygenase and P450 reductase to enzymatically

produce CO (Step 2) as a secondary signal. CO mediates the

opening of BK channels (Step 3) in the cell membrane, as well as

in the ER and the mitochondria thereby allowing pooled stores of

K+ to be expelled. As the cell releases K+ (Step 4), Na+ cations

enter via another inward Na+ specific channel, preserving the

electroneutrality of the cell. When Na+ enters the cell (Step 5),

water follows, producing the observed cellular swelling. Because of

the extra Na+ and water, vacuolization occurs during ER and

mitochondria swelling (Step 5). Cellular homeostatic mechanisms

are activated in an effort to expel the excess intracellular Na+

through the ATP dependent Na+/H+ antiporter [28] or the Na+/

K+ ATPase pump (Step 6). Inhibition of the Na+/H+ antiporter

induced paraptosis in cerebellar neurons [29]. When the BK

channels are fully engaged in response to the macrophage

mediators, the cell remains swollen. The cell expends more ATP

in an effort to expel the unwanted Na+ ions. Since the

mitochondria are targeted in paraptosis, functional disruption of

this organelle reduces the cell’s ability to generate sufficient levels

of ATP to maintain ionic homeostasis. Several groups have

reported that the loss of ATP within cells results in the

development of a necrosis forming pathway [30–33]. Attacking

the generation of ATP, without directly inducing apoptosis,

eventually prevents the cell from maintaining the necessary

intracellular volume. Catastrophic failure in ATP production

Figure 12. BK channel activated/killed T9 cells induce the
maturation of the immature DC. Three day old rat bone marrow
dendritic cells were exposed for 1 day to T9 cells that were killed by
exposure to: 10 mM staurosporine killed T9 cells (Staur), 1 mM phloretin
(Phlor), or heat shocking for 5 minutes followed by 18 hour exposure to
0.96 PBS (Heat). The DC were stained for cell-surface dendritic cell
maturation surface markers: MHC class II antibodies or CD86. Ten
thousand cells were analyzed on the flow cytometer and compared to
the untreated control cells (Con). The data from the mean channel peak
number6standard deviation is compared.
doi:10.1371/journal.pone.0004631.g012

Figure 13. T9 cells killed by prolonged BK channel activation
induce T9 specific immunity. Panel A: 106 T9 cells were treated with
1 mM phloretin, or 0.01 mM pimaric acid for 12 hours, or 10G irradiated
cells were injected subcutaneously into F344 rats. Tumor growth was
then monitored. All rats in each group, either showed tumor growth
(N = 8) or no tumor growth (N = 8). Panel B: The same immunized rats
were rechallenged subcutaneously with 106 T9 cells 25 days after the
initial vaccination. The animals immunized by the phloretin-killed,
pimaric acid-killed T9 cells or T9-C2 cell immunized rats were all
statistically significantly different (P,0.05) from either the naı̈ve control
rats or the x-ray-killed immunized T9 rats. Twenty-three days later, the
same rats were challenged with 105 MADB106 breast cancer cells (Panel
C). Each point represents 8 animals/group, except for the T9-C2
immunized rats (n = 4).
doi:10.1371/journal.pone.0004631.g013
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leads to decreases in function that expel Na+ with subsequent

osmotic rupture of the cell. The Cr51 release data indicated that

actual membrane rupture occurred at 17 hours (Figure 7A).

Therefore simple cellular swelling and vacuolization are insuffi-

cient to induce immediate cell death. Further downstream events

are required. This is consistent with the slow depletion of

intracellular ATP described in our predicted model. Figure 7

demonstrates that intracellular ATP levels did indeed drop as the

cells died. When the luciferase transduced T9-C2 cells were used,

intracellular ATP levels declined in a time-dependent manner, as

macrophages began attacking the target cells. This time correlated

very well with the actual time that Cr51 lysis occurred at 17 hours.

Several research groups have reported an association of

depleted intracellular ATP levels with increased heat shock

protein (HSP) transcription and expression [34,35]. Hence the

extended time required for ATP depletion by this BK mediated

paraptosis permitted the heat shock response to occur. The data in

this study proved that HSP expression occurs in response to either

phloretin, pimaric acid, or hydrogen peroxide (Figure 8). Immu-

nohistology revealed that the paraptotic mM-CSF transduced

glioma cells demonstrated an increased expression of three

different HSPs (Hsp60, 70 and GRP94/gp96) family members

after monocytes attacked these target cells in vivo [14,15]. The

works of other researchers confirmed that necrotic cells also over-

express several HSPs [4,8,36]. HSPs have been described as

possible ‘‘danger signals’’ [4] for necrotic cell death. Released

HSPs may then stimulate the immune system to become activated

against the host associated antigens presented by paraptotic cells.

Hsp70, Hsp90 and GRP94/gp96 have increased the immunoge-

nicity of tumors by increasing the synthesis of tumor antigens

recognized by the T cells [8,37]. Once the tumor cell releases these

HSPs, the host’s antigen presenting dendritic cells, can take up

these antigens via the CD14, CD91, TLR2 and 4 receptors [8,38].

Hsp70 and GRP94/gp96 enhanced dendritic cell maturation

[39,40]; Hsp70 acted as a cytokine, stimulating tumor necrosis

factor, interleukin-1 and interleukin-6 production from CD14+
monocytes and immature dendritic cells [41]. Tumor antigens

maybe released when the tumor cell lyses, or during the normal

degradation process when HSP assist in proteosomal degradation

of the peptide fragments. Gene therapy of murine RM-9 prostate

cancer cells with the nitroreductase gene (NTR), followed by

administration of the pro-drug, Hsp25 and Hsp70 expression was

induced and the targeted cells died via a necrosis-like pathway

[42]. As a result of combined NTR and HSP70 adenoviral

therapy, better CD4 and CD8 T cell immunity were stimulated.

Another danger signal that we saw becoming mobilized after

BK channel activation was HMGB1, normally a nuclear/

perinuclear protein (Figure 10). Upon stimulation with either

phloretin or pimaric acid, HMGB1 was translocated from the

perinuclear location to the membranes and was even detected on

the exterior of the treated T9 cells (Figure 10, Panel E). HMGB1

translocates from the nucleus to the membrane only during

necrosis and not during apoptosis [3].

Since many danger signals were capable of being made, T9 cells

were killed by prolonged BK channel activation and then used as a

prophylactic vaccine in rats (Figure 11). All rats that were

vaccinated with the BK channel activated/killed T9 cells or T9-

C2 cells produced specific immunity towards the T9 glioma cells

(Figure 11B) but not towards an unrelated MADB106 breast

cancer cell line (Figure 11C).

Figure 14B exemplifies the mechanism by which paraptotic cells

eventually release the ‘‘danger signals’’ as the cell swells and

eventually ruptures. Overall these released ‘‘danger signals’’ can

stimulate the APC that are needed for tumor immunity, which is

subsequently produced after mM-CSF cells are killed by the

macrophages. Thus, the paraptotic cells can release several factors

that elicit an ‘‘immunostimulatory storm’’, strongly activating the

APC and producing anti-tumor immunity.

The work reported here demonstrates for the first time, how

tumor cells killed by BK channel-induced ionic disregulation

might be used as a non-genetically modified glioma cell vaccine.

Our work explains the molecular mechanisms by which the mM-

CSF transduced cells elicited systemic immunity via multiple

danger signal production. Previously all the positive therapeutic

results produced by using mM-CSF transduced cells were

generated using live tumor cells [14–18,25,26]. Previously, when

mitomycin-c treated, x-irradiated or frozen T9-C2 cells were used

as a vaccine; little systemic immunity was demonstrable when

compared to the living T9-C2 vaccine [14]. Translating a living

mM-CSF based vaccine into a viable treatment in a human

clinical setting would be problematic, for the obvious reason of

injecting living tumor cells into humans. With the discovery of this

mechanism of mM-CSF tumor cell death, clinical trials can be

designed in which tumor cells are first killed through activation of

paraptosis-inducing pathways; i.e. BK channel activation or via

release of reactive oxygen species. The advantage of this proposed

approach is that one could easily kill the tumor cells by prolonged

BK activation in vitro and use the treated cells as a functional

killed vaccine, without any further genetic manipulation. Hence,

once freshly isolated tumor cells possessing BK channels are

produced, these cells could quickly be used as an autologous

vaccine. Such a possibility marks this finding as having immediate

and significant clinical potential for successful treatment and

vaccine development for cancer.

Materials and Methods

Cell lines and cell culture
The rat T9, MADB106 and mM-CSF transduced T9 glioma

cells have been previously described [14–16]. All culture supplies

were screened and selected on the basis of being under the limits of

detection by limulus amebeocyte lysate assay.

Chemicals
Phloretin was purchased from Sigma Chemical Corp (St. Louis,

MO). Pimaric acid and recombinant iberiotoxin were obtained

from Alomone Labs (Jerusalem, Israel). zVAD was graciously

provided to us by Dr. Kirston Koths, Chiron Corp. (Emeryville,

CA).

Animals
Fisher F344 rats were obtained from Charles River (Wilming-

ton, MA). The animals were housed in our AAALAC accredited

facility. Animal experimentation procedures were carried out

according to the Animal Studies Committee approved protocols.

Figure 14. Proposed mechanism by which paraptosis and immunity are induced by prolonged BK channel activation. Panel A shows
the mechanism by which paraptosis is induced by ionic disregulation via prolonged BK channel activation. Panel B shows the results of the ionic
disregulation that induce immune responses by stimulating antigen presenting cells (APC). The precise topology of the binding sites for the HSPs and
HMGB1 to the receptors found on the APC should not be inferred from this diagram.
doi:10.1371/journal.pone.0004631.g014
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Electron microscopy
Five thousand T9 cells were plated onto sterile gelatin coated

coverslips within 24-well plates. After an overnight incubation, the

cells were treated with either phloretin, pimaric acid or with

regular tissue culture media for 1 hour at 37uC. The cells were

fixed at room temperature in 1% glutaraldehyde in Sorensen’s

phosphate buffer pH 7.3 for 10 minutes and brought to 4uC
during fixation. The samples were rinsed by 3-one minute washes

in cold Sorensen’s buffer, followed by 15 minute post-fixation in

cold 1% OsO4, and rinsed again. Following a 2 minute

dehydration with a graded series of cold ethanol (30%, 50%,

75%, 95% and 100%), the samples were brought to room

temperature (over a 5 minute time) treated with four 15 second

changes of 100% ethanol, two 15 second changes of propylene

oxide and then transferred to a 50/50 mix of propylene oxide/

araldite 502 for 15 minutes. Coverslips were then dipped into pure

plastic until it appeared that most of the propylene oxide was gone

and then the coverslips were laid cell side down onto plastic molds

containing araldite. After 36 hours of incubation at 60uC the

coverslips were detached from the polymerized specimens by

immersion into liquid nitrogen. Areas of interest were super glued

onto plastic stud blocks and then trimmed and cut in planar

sections. The sections were stained with uranyl acetate and lead

citrate and then observed using a JEOL-1200EX II transmission

electron microscope (Peabody, MA). Digital micrographs were

taken with a Hammamatsu C4742-95 camera.

Isolation of macrophages
Rats were injected with 5 mls of sterile endotoxin-free 3%

thioglycollate solution 2 days prior to experiment induction. The

treated rats were euthanized and the peritoneum were washed

using sterile endotoxin free saline irrigational solution.

Preparation of dendritic cells
Femurs were removed from euthanized rats and flushed with

endotoxin-free PBS. Bone marrow cells were cultivated in vitro for

3 days in complete RPMI-1640 (Invitrogen, Carlsbad, CA)

supplemented with 1,000 U/ml each of recombinant rat interleu-

kin-4 (IL-4) (Biosource/Invitrogen, Carlsbad) and recombinant rat

granulocyte-macrophage colony stimulating factor (GM-CSF)

(Biosource/Invitrogen, Carlsbad). The dendritic cell cultures were

exposed for 1 day to the various preparations of killed T9 cells.

Apoptotic cells were killed by an 18 hour exposure to 10 mM

staurosporine, while paraptosis induction used 1 mM phloretin. In

addition, a positive control was generated by exposure of the

dendritic cells to 500 ng/ml lipopolysaccharide. The dendritic

cells were detached by incubating the cells in versene/phosphate

buffered saline (PBS) for 30–60 minutes at 4uC. The cells were

dislodged using a cell scraper. This procedure resulted in .95%

viability of the cells.

Dendritic cells (106 cells) were then stained for the presence of

maturation markers (CD86, and MHC class II) for 1 hour on ice.

All direct labeled antibodies were purchased from eBiosciences

(San Diego, CA). Ten thousand cells were analyzed on the Facs

Calibur (Bectin-Dickson) flow cytometer. The mean channel

number of the dendritic cells was then compared.

Cytotoxicity
Cytotoxicity studies were performed according to previously

reported methods using a radio-isotope based assay [16–20]. Ten

thousand target cells were incubated in 200 ml of media in a

humidified, 5% CO2 incubator for 24 hours. Cytotoxicity data

from quadruplicate cultures of each macrophage were collected.

% Specific killing

~
CPM experimental- CPM spontaneous release

CPM maximum release- CPM spontaneous release
X 100:

The tumor cell killing is presented as mean values6standard

deviations.

Reactive Oxygen Species (ROS) Detection
Monocytes were pre-labeled with 1 mM H2DCFDA (Molecular

Probes, Eugene, Or) for 20 minutes at 37uC using the manufac-

turer’s directions. The cells were washed three times then added at

a 1:1 monocyte:tumor concentration in sextuple replicates. The

samples were then analyzed using a Novostar Luminometer/

Fluorometer (BMG Labtech, Offenburg, Germany).

Electrophysiology
Typical patch-clamp techniques were used to record single-

channel and macroscopic membrane currents as described earlier

[27,42].

Immunofluorescence/Confocal Microscopy
Adherent T9 glioma cells on sterile cover glass were cultured in

RPMI media without serum. The cells were fixed with 2%

paraformaldehyde, permeated in 0.2% Triton-X and probed with

either rabbit anti-BK [also called: KCa1.1 (BKCa)] antibody

(Alomone Labs, Jerusalem, Israel) or anti-HMGB1 (StressGen,

Victoria, Canada). Mitochondria were stained with MitoTracker

Deep red (Molecular BioProbes/Invitrogen, Eugene, Oregon).

The endoplasmic reticulum was initially stained with goat anti-

GRP78 antibody (Santa Cruz Biotech, Santa Cruz, CA). Later

experiments used ER-tracker (Molecular BioProbes/Invitrogen,

Eugene, Oregon). The cover glass was incubated for 2 hours with

the primary antibody in a humidified chamber at 4uC. The slides

were then washed three times in PBS. After treatment with

secondary fluorescein anti-rabbit antibody or Texas Red anti-goat

antibody (Vector Labs, Burlingame CA) the slides were incubated

for sixty minutes. Finally, the cells were washed three times in PBS

and mounted with ProLong Gold antifade reagent (Invitrogen,

Carlsbad, CA). Under certain circumstances cells were counter-

stained with nuclei dyes. Molecular BioProbes/Invitrogen nuclear

counterstaining kits with Sytox Green or Hoechst 33342 blue dye

were used according to the manufacturers directions. Samples

were imaged using a Nikon two laser (HeNe and Argon) PCM

2000 Confocal System on an Eclipse E800 Microscope. The two

different fluorescent dyes in the labeled sample were simulta-

neously acquired through a single illumination and detection

pinhole using Compix Simple PCI software as previously reported

[21]. This provided exact pixel for pixel registration in both time

and space for each dye in each channel. As a result, it can be

inferred that the red emitting and green emitting probes are

colorized when yellow areas are present in the images shown.

siRNA and Real-Time Polymerase Chain Reaction Analysis
Invitrogen Stealth siRNA TM dsRNA technology was used. Two

Stealth siRNA primers (59-UUU AAG UAU ACA GAC ACA

AAC ACG G and 59-CCG UGU UUG UGU CUG UAU ACU

UAA A) were designed specifically for rat BK channels. The

control SiRNA (1027280) was purchased from Qiagen. The

primers (80 pmol) were complexed with lipofectamine and

incubated with T9 cells in six well plates (40,000 cells/well) under

serum-free and antibiotic-free culture conditions for 1 hour. The
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cells were then washed with PBS and cultured in complete RPMI

media. The kinetics of mRNA inhibition was assessed after the

transfection. On each day after transfection, the cells were lysed

and total RNA collected. The RNA was treated with DNAse and

then the DNAse was removed by a phenol extraction. The RNA

was converted into cDNA by utilizing reverse transcriptase,

followed by real-time PCR techniques using 18S and BKa channel

specific real-time primers (forward: 59 GAT TGA GGA AGA

CAC ATG G and reverse: 59 CAG CTC ACA AAC AGT AGG).

Real-time PCR reactions were performed on an iCycler iQ

detection system using a Brilliant SYBR Green kit (Stratagene,

San Diego, CA).

ATP determination
In sextuplicates, twenty thousand T9 cells were cultured in each

well of a 96 well plate under the various experimental conditions

described in the figure legends. After 1, 16 or 24 hours of

incubation the cells were collected, lysed and then the amount of

ATP present was measured. The measurement of ATP levels was

carried out using the Molecular Probes’ ATP Determination Kit

according to the manufacturer’s directions. Bioluminescence was

measured using a Novastar Luminometer/Fluorometer.

Luciferase Assay for determining intracellular ATP levels
The pDON-luciferase producing retrovirus was obtained from

Dr. W.F. Anderson (USC School of Medicine, Los Angles, CA)[43].

T9 and T9-C2 cells were transduced with this retrovirus. These

luciferase transduced cells were designated as T9/luc+ of T9-C2/

luc+, respectively. Afterwards, these cells were cloned by limiting

dilution. Clones were screened by taking 104 cells/well in a 96 well

plate format and adding in 100 ml of luciferin (Invitrogen). The

luminescence was measured in the Novostar Fluorometer (BMG

Labtech, Offenburg, Germany). T9/luc+ and T9-C2/luc+ clones

that displayed luminescence units (.106 luminescence units) were

selected for the macrophage mediated cytotoxicity. The mM-CSF

expression as detected by flow cytometry of T9-C2/luc clones was

not different from that of the parental T9-C2 cells.

Freshly isolated thioglycollate elicited macrophages were

collected and allowed to adhere onto the 96 well plates (105

cells/well) for 2 hours at 37uC. The T9/luc+ and T9-C2/luc+
(104 cells) were added to the macrophage containing wells or to

empty wells which served as controls. All assays were done in

quadruplicate cultures. Immediately after the cells were combined,

a set of cells was added with luciferin to obtain baseline values

using the Novostar Fluorometer. Then after 1, 2, 6, 12 and

18 hours, the process was repeated and the kinetics of lumines-

cence was measured. Since the T9/luc clones displayed a higher

baseline luminescence value (120,000 units/105 cells) than T9-

C2/luc clones (100,000 units/105 cells), we normalized the value

values to account for the difference in Figure 8.

Intracellular flow cytometry
Exponentially growing T9 glioma cells were prepared with the

reagents and protocols of Santa Cruz Biotechnology (Santa Cruz,

CA). The cells were either treated with the BK channel activators or

heat shocked at 43uC for 5 minutes and incubated at 37uC for

6 hours. The cells were trypsinized and washed. The fixed cells were

washed twice in ice-cold PBS. The cells were permeabilized for

15 minutes on ice. The cells were washed twice. The resuspended

cells were then divided into 106 cell aliquots and then incubated with

the primary antibody for 1 hour. The anti-HSP antibodies (Hsp60,

70, and Grp94/gp96 were obtained from (Stressgen, Victoria,

Canada), while the anti-Hsp90 antibody was purchased from Santa

Cruz Biotechnology (Santa Cruz, CA). The cells were washed twice

and the secondary antibody-conjugated with fluorescein isothiocya-

nate (FITC) (Vector Labs, Burlingame, CA) was incubated on ice for

another hour. After washing the cells twice, the cells were analyzed

with a Bectin-Dickson FacsCalibur flow cytometer. The staining

profiles were recorded at the same FL1 PMT voltage.

Tumor growth
Manually restrained rats were injected subcutaneously with 106

tumor cells in a volume of 100 ml. The resultant tumors were

measured with metric calipers three times a week. Data recorded

included the length, width and height of the tumors. Tumor volumes

were calculated using the following equation: volume = -

length6width6height6p/6. The data were expressed as the mean

tumor volume.

Statistics
A Student’s t test was used to analyze all in vitro data. The

animal data was analyzed by using a Fisher’s exact test. A P value

of ,0.05 was considered significantly different from control values.

Supporting Information

Figure S1 BK channel activators produced vacuolization of

mitochondria and ER within the T9 cells within 1 hour. Panels A,

D and G shows adherent untreated, control T9 cells. T9 cells

incubated for 1 hour in phloretin (1 mM) (Panels B, E and H).

Panels C, F and I illustrate T9 glioma cells treated for 1 hour with

0.01 mM pimaric acid. T9 cells were pre-labeled with either Mito-

Tracker (Panels D, E and F) or with ER-Tracker (Panels G, H and

I). Panel J shows the increases in pixel number of the cells derived

from 10 different cells under each condition. Asterisks indicate

significant differences (P,0.05) from their respective controls.

Found at: doi:10.1371/journal.pone.0004631.s001 (9.14 MB TIF)

Figure S2 Mitochondria within the T9-C2 cells swell in response

to the effects of the macrophages. T9 and T9-C2 cells were pre-

labeled with Mito-Tracker and then incubated with rat macro-

phages for 4 hours at 37uC. Panel A shows the macrophages

(indicated by arrows) attaching themselves to T9 cells. The T9

cells’ mitochondria appear normal. Panel B shows the T9-C2 cell

also conjugated to 2 macrophages. In contrast, the T9-C2

mitochondria appear swollen. Magnification 2006.

Found at: doi:10.1371/journal.pone.0004631.s002 (7.40 MB TIF)

Figure S3 Mouse peritoneal macrophages are prevented from

killing the mM-CSF expressing T9-C2 cells by a BK channel

inhibitor, iberiotoxin. Peritoneal macrophages elicited by thiogly-

collate after 2 days were incubated at a 10:1 macrophage:tumor

ratio (quadruplicate cultures) for 24 hours. Recombinant iberio-

toxin (0.05 mM) was added to 1 set of the macrophage: tumor cells

at time 0.

Found at: doi:10.1371/journal.pone.0004631.s003 (8.29 MB TIF)
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