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Abstract

Background: RAF kinases direct ERK MAPK signaling to distinct subcellular compartments in response to growth factor
stimulation.

Methodology/Principal Findings: Of the three mammalian isoforms A-RAF is special in that one of its two lipid binding
domains mediates a unique pattern of membrane localization. Specific membrane binding is retained by an N-terminal
fragment (AR149) that corresponds to a naturally occurring splice variant termed DA-RAF2. AR149 colocalizes with ARF6 on
tubular endosomes and has a dominant negative effect on endocytic trafficking. Moreover actin polymerization of yeast and
mammalian cells is abolished. AR149/DA-RAF2 does not affect the internalization step of endocytosis, but trafficking to the
recycling compartment.

Conclusions/Significance: A-RAF induced ERK activation is required for this step by activating ARF6, as A-RAF depletion or
inhibition of the A-RAF controlled MEK-ERK cascade blocks recycling. These data led to a new model for A-RAF function in
endocytic trafficking.
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Introduction

RAF protein kinases were originally identified as viral

oncogenes [1,2] found in murine and avian retroviruses. RAF

genes encode protein serine/threonine kinases [3,4] that mediate

transduction of extracellular mitogenic signals from activated Ras

GTPases at the plasma membrane to a MAP kinase module (RAF-

MEK-ERK), the mitogenic cascade (reviewed in [5]). As a result,

complex physiological responses to growth factor stimulation take

place at multiple cellular levels.

Insect genomes contain only a single RAF gene whereas

vertebrates have refined RAF signaling and employ three isoforms

that target ERK signalling to different subcellular compartments

[6]. Specialized functions are reflected in differential regulation of

RAF kinase activity [7] and varying phenotypes of RAF knockout

mice [8–10]. The three RAF isoforms and their splice variants

share common structural features comprising three conserved

regions, CR1, CR2, CR3. The N-terminal CR1 encompasses the

Ras binding domain (RBD) and the cysteine-rich domain (CRD),

CR2 contains a conserved 14-3-3 binding motif and the C-

terminally located CR3 encodes the kinase domain [11].

Whereas B- and C-RAF were studied extensively, little is known

about A-RAF function. A-RAF is marked by a low basal kinase

activity, which has been attributed to substitutions in its N-region,

where tyrosine 296 plays a central role [12]. In contrast to animals

with a genomic deletion of B- or C-RAF, A-RAF 2/2 mice are viable,

but die perinatally, depending on the genetic background [8].

Budding yeast Saccharomyces cerevisiae is an established eukaryotic

model organism that has played a key role in the elucidation of the

MAP kinase signaling pathway. Despite the presence of two

redundant RAS genes and at least 6 MAPK cascades [13], no

RAF kinases are present in S. cerevisiae. Nevertheless, yeast was

important for defining RAF function as an activator of a

prototypical MAP kinase cascade in experiments that involved

ectopic expression of C-RAF [14]. RAF isoforms are known to

function as homo and heterodimers in mammalian cells [6],

complicating assignment of individual function. Therefore yeast is

an attractive system for investigation of a single RAF isoform.

Endocytosis is a process essential for many aspects of cellular life,

including receptor internalization and recycling. ARF6 GTPase was

shown to regulate endocytosis at several levels [15]. The activation

state of ARF6 is determined by the bound nucleotide, GTP or GDP,

which also affects intracellular localization. Nucleotide loading is

regulated by specialized guanine nucleotide exchange factors

(GEFs) and GTPase activating proteins (GAPs) that catalyze

hydrolysis of bound GTP [16]. Endocytosis and signal transduction

are known to be functionally linked and regulating each other (Von

Zastrow and Sorkin, 2007, Polo and Di Fiore, 2006). ARF6 as a

central regulator of endocytic trafficking was shown to activate ERK

[17,18]. Based on changes in endocytosis upon inhibition of ERK

signaling Robertson et al. (2006) suggested a role of ERK signaling

in the regulation of clathrin-independent endocytosis.

Here we describe the role of A-RAF in membrane trafficking

and identify its function at a specific step of endocytosis. This work
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led to the discovery of a C-terminally truncated version of A-RAF,

AR149 that strongly interfered with cell growth and polarization

in yeast and with endocytosis and actin polymerization in

mammalian cells. As this work was in progress two splicing

isoforms of A-RAF, termed DA-RAF1,2 were described that act as

natural inhibitors of RAS-ERK signaling during myogenic

differentiation [19]. DA-RAF2 contains the first 153 aar of A-

RAF and thus is nearly identical with AR149. AR149 localized

specifically to the recycling endosomal compartments as confirmed

by colocalization and coprecipitation with ARF6. Expression of

AR149 interferes with recycling of endocytosed transferrin (Tfn)

and with actin polymerization. siRNA-mediated depletion of

endogenous A-RAF or inhibition of MEK by U0126 mimic

AR149 function, supporting a role of A-RAF regulated ERK

signaling at endosomes that is controlled by AR149/DA-RAF2

and targets ARF6.

Materials and Methods

If not otherwise stated reagents were of p.a. purity (Sigma,

USA), restriction enzymes were from New England Biolabs (USA)

and Fermentas (Lithuania).

Plasmids used in this study
Deletion mutants of A-RAF were generated by insertion of PCR

products into the pUG36 plasmid. In the case of N-terminal

mutants of A-RAF, BamHI and HindIII recognition sequences

have been attached to the sequence of forward and reverse primers

respectively. Primers for C-terminal mutants of A-RAF contained

SmaI and HindIII respectively. Doubly truncated mutants

contained BamHI and XhoI restriction sites. PCR products were

generated using primers listed in Table S1.

For expression of the GFP fusion proteins in mammalian cells

we used pEGFP-C-1 and pDS-Red2 (Invitrogen, USA). ARF6

constructs tagged with hemagglutinin (HA) in pLNCX, FLAG-

EFA6 and GST-GGA3 were generous gift from Margaret Chou,

University of Pennsylvania. GFP-tagged ARF6 was kindly

provided by Antoine Galmiche. GFP-ARF6(Q67L) and GFP-

ARF6(T27N) were generated by site directed mutagenesis

(QuikChange, Stratagene) with the primers listed in Table S1.

GFP-A-RAF in pEGFP-C1 was kindly donated by Angela Baljuls.

Cell culture and cell fractionation
Media and reagents were purchased from Invitrogen (USA).

HeLa, NIH 3T3 and COS7 cells were maintained in DMEM

supplemented with 10% fetal bovine serum (FBS), penicillin and

streptomycin. For starvation, DMEM was supplemented with

0,03% FBS. Cell transfections utilized jetPEI (Biomol).

Subcellular fractionation of HeLa cell lysates employed

‘‘ProteoExtract Subcellular Proteome Extraction Kit ‘‘(Calbio-

chem) according to manufacturer’s instructions.

Fluorescence Microscopy
Fluorescence microscopy was done with an Openlab software

(Improvision, UK) controlled inverted DMIRBE microscope

(Leica, Germany) with Leica oil immersion objective. All images

were captured and stored as Openlab LIF files. Images were

subsequently processed using Photoshop software.

Yeast live cell imaging. Yeast cells were transferred into a

self-made chamber slide for imaging.

Fixed yeast cells imaging. Cells were fixed in 3.7%

paraformaldehyde in PBS, washed and subsequently digested for

1 hour with lyticase (Sigma). After washing and mounting, samples

were either stored at 4uC or processed for imaging.

Mammalian cells imaging. Cells were grown on cover slips,

treated with growth factors or serum as indicated and subsequently

fixed in 3.7% paraformaldehyde, permeabilized with 0.1% Triton

X-100. Stainings were performed with specific antibodies and

fluorescently labeled secondary antibodies.

Indirect immunofluorescence after cytosol depletion
HeLa cells were grown on coverslips overnight. After two washes

with PBS cells were treated with 0,05% digitonin in isotonic sucrose

buffer for 4 min on ice [20]. After digitonin treatment, cells were

fixed with 3.7% paraformaldehyde in microtubule-stabilizing buffer

(MSB; 0.1 M PIPES, pH 6.9, 2 mM MgCl2, 2 mM EGTA),

washed and subsequently permeabilized with 0,1% w/v Saponin in

MSB with 0.5% BSA for 10 min. To stain non-cytosolic A-RAF,

cells were incubated with anti-A-RAF antibodies (Santa Cruz, USA)

in combination with anti b-Tubulin antibodies (Chemicon

International) at concentration of 20 mg/ml in MSB buffer with

0,5% BSA and 0,1% Saponin at room temperature for 2 h.

Unbound antibodies were removed by 3 washes with the same

buffer. The coverslips were incubated with appropriate secondary

antibody (conjugated to TRITC or CY5) diluted 1:200 for 1 h.

After three washes with MSB and brief wash with deionized water

the coverslips were mounted using MOWIOL (Calbiochem, USA).

siRNA-mediated depletion of human A-RAF
For generation of A-RAF specific siRNA we used ‘‘X-tremeGENE

siRNA Dicer Kit’’ (Roche). Prepared siRNA mix containied about 15

different siRNAs. The target sequence for human A-RAF located at

the 39end of A-RAF coding region was from ‘‘Human esiRNA

resource’’ (German Resource Center for Genome). Scrambled

siRNA was from QIAGEN. Transfection was carried out using

2 mg of siRNA mixture and 10 ml of ‘‘X-tremeGENE siRNA

Transfection Reagent’’ (Roche) for 6-well culture plates, according to

the instructions provided by the manufacturer.

Transferrin internalization
HeLa cells were grown on coverslips overnight, transfected with

either GFP or GFP-fused AR149, ARF6(Q67L), ARF6(T27N)

respectively for 48 h.

Figure 1. Differential localization of wild type and mutant forms of RAF in yeast. A. N- and C-terminal deletions or point mutations were
expressed as GFP fusions in yeast. Staining patterns of mutants are shown on the right. The largest C- and N-terminal deletions showing the ‘‘wild
type’’ localisation are 1–388 and 88–606. Lipid binding domains (see also Figure S2), are indicated by yellow boxes. B. Localization of RAF isoforms in
yeast. Only GFP-A-RAF localizes to small dots in the cell cortex, which accumulate to tips of small buds and to necks of larger buds (upper row).
Induced polarization of yeast by a-factor leads to relocation of GFP-A-RAF to the tip of mating projections called shmoos (lowermost row). C.
Localization patterns of C- and N-terminal deletion mutants. The smallest N-terminal deletion (88–606) retains wild type distribution. C-terminal
deletions that lost the presumptive PA binding motif, while retaining the PtdIns(4,5)P2 binding motif in CRD (see the scheme above) are
homogenously distributed to plasma membrane. The same magnification was used throughout.
doi:10.1371/journal.pone.0004647.g001
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The cells were pre-incubated in serum-free medium for 1 h at

37uC. For continuous Tfn uptake, the cells were incubated in

internalization medium (HBSS medium plus 1% BSA) containing

5 mg/ml Alexa Fluor 546-conjugated human Tfn (Invitrogen) at

37uC for indicated time. After Tfn internalization the cells were

extensively washed three times with ice-cold PBS and fixed with

3.7% PFA.

Yeast strains and techniques
Protease deficient strains cI3 ABYS 86, BJ 5459 (Yeast Genetic

Stock Center, University of California, Berkeley) were used in

order to prevent degradation of expressed proteins.

Standard protocols for yeast growth, transformation and

manipulations were employed [21]. Yeast transformation was

performed by a modified litihum acetate method. The following

plasmids were used in this study: pUG36 and pUG36 for detection

of GFP-fusion proteins; pEG-KT for galactose-inducible expres-

sion of GST-fusion proteins. Membrane fractionation on 20–35%

sucrose gradients and indirect immunofluorescence microscopy

were done as described previously [22].

Immunoprecipitation of GFP-AR149 and ARF6
COS7 cells were transfected with GFP-AR149 and HA-

ARF6wt, HA-ARF6(Q67L) or HA-ARF6(T27N) respectively with

jetPEI (Biomol). After 24 h, cells were lysed in ARF6 lysis buffer

(50 mM Tris-HCl pH 7.0, 2 mM MgCl2, 100 mM NaCl, 10%

Glycerol, 0.75% NP-40) containing protease inhibitors. To avoid

high signal from heavy and light chains of antibodies on the

Western blot we used Mouse IgG TruhBlot Set (NatuTec)

including beads and secondary HRP-conjugated antibody. The

clarified lysates were divided into two equilibrated parts, each of

them was incubated for 2 h at 4uC with anti-GFP or anti-HA

antibody respectively (Santa Cruz Biotechnology, USA). Next, the

probes were precipitated with mouse-TruhBlot agarose (NatuTec)

for 1 h at 4uC. Beads were washed three times in the lysis buffer

with 0.2% NP-40 and protease inhibitors.

GGA3 pulldown assay
Activated ARF6NGTP was monitored by binding to its effector

GGA3 as described previously [23]. Briefly, COS7 cells were co-

transfected with HA-ARF6 plus indicated plasmids using jetPEI

and grown for 24 h. EGF stimulation was performed after 24 h

starvation in 0.03% serum with 100 ng/ml EGF (Cell System

Biotechnologie Vertrieb) for 10 min at 37uC. Clarified lysates were

incubated with 25 mg of GST-GGA3 immobilized on glutathione-

Sepharose beads for 2 h at 4uC. The beads were washed three

times with PBS, resuspended in SDS PAGE loading buffer and

boiled. Bound proteins were size-fractionated by SDS-PAGE and

detected by immunoblotting.

Results

Isotype specific distribution of RAF proteins in yeast
All three human RAF genes were fused with the C-terminus of

green fluorescent protein (GFP) and expressed under the control of

a moderately inducible MET25 promoter in S. cerevisiae. GFP-B-

RAF and GFP-C-RAF fluorescence was evenly distributed in the

cytosol of induced cells. In contrast, A-RAF fluorescence localized

to distinct punctate cortical structures, which were polarized

toward the tips of small buds and bud necks of larger buds

(Figure 1B). Treatment with a-factor, concentrated GFP-A-RAF

at the tips of mating projections termed shmoos (Figure 1B).

Sucrose density gradient centrifugation was employed to test the

observed differences in localization of GFP-RAF proteins.

Consistent with the flourescence data, both, C- and -B-RAF

segregated with cytosolic proteins in a sucrose density gradient,

whereas A-RAF was predominantly found in the heavy membrane

fraction (Figure S1A). Taken together, of the three RAF isoforms

only A-RAF interacts with yeast membrane components or

proteins that are polarized during cell division and mating.

Multiple lipid binding motifs of A-RAF are required for its
unique localization

To test, which A-RAF domain was responsibe for its subcellular

distribution in yeast we generated a set of amino- (N-) and

carboxy-terminal (C-) A-RAF deletion mutants fused to GFP. The

localization of each construct was controlled by fluorescence

microscopy. A schematic overview of their subcellular distribution

is presented in Figure 1A, right panel. Representative micrographs

are shown in Figure 1C. Expression and correct size of the deletion

mutants was ascertained by Western blot analysis (Figure S1B).

Three types of staining patterns were observed: (i) homogeneous

cytosolic as seen with full length B- and C-RAF (see 142–606

construct in Figure 1C), (ii) a punctate pattern (see 88–606

construct in Figure 1C), and (iii) an intermediate pattern, with

intensive homogeneous labeling of plasma membranes (see

Figure 1C, 1–149 construct as an example).

Two different lipid-binding domains have previously been

identified in the structure of C-RAF. A phosphatidic acid (PA)

binding domain, located in the N-terminal part of CR3 [24,25],

and a phosphatidyl serine (PS) binding domain located in the

cysteine-rich region of CR1 [25,26]. Moreover, deletion of CR1 of

A-RAF (which encompasses RBD+CRD) led to loss of A-RAF-

specific binding to PtdIns(4,5)P2 suggesting a third lipid binding

site [27]. As these sites are well conserved among RAF isoforms,

we mutagenized their key residues, which have previously been

shown to affect the interaction of C-RAF with PA and PS (Figure

S2) [28]. Substitution of basic residues in the PS site led to

localization of mutant protein in the cytosol. This pattern strongly

resembled that of N-terminally truncated deletion mutants. In

Figure 2. Physiological effects of AR149 overexpression in yeast. A. Cells expressing high amounts of GFP-AR149 fail to form cortical actin
patches. Cells expressing GFP-A-RAF or GFP-AR149 were grown, fixed as described in ‘‘Experimental procedures’’. Polymerized actin was visualized
with Alexa Fluor 546-conjugated Phalloidin. Note that cells expressing higher levels of GFP-AR149 but not of full length A-RAF (bright green cells
marked with arrows) lost polymerized actin. B. GFP-AR149 expression inhibits /-factor induced shmoo formation. Cells transformed with pUG36-
AR149 (right) or A-RAF(303–606) (left) were treated with /-factor for 2 h. Note increased overall size and absence of shmoos in cells expressing GFP-
AR149. C. Changes in nuclear morphology of GFP-AR149 expressing cells. DNA of the nucleus and mitochondria was stained with DAPI. Morphology
of nuclei of AR149 expressors varied from fragmented (left) to completely dispersed (right). D. FM-4-64 uptake is affected in AR149-expressing yeast.
Yeast transformed with pUG36-AR149 and untransformed control were incubated with lipophilic styryl dye FM 4–64 for indicated time, washed and
observed by fluorescence microscopy. Transition of the red fluorescence from periplasmic endocytic sites to vacuoles is clearly visible at 20 minutes
in control cells, but not in GFP-AR149 expressing cells. E. Growth inhibition of AR149 expressing cells. Cells transformed with pUG36, pUG36-A-RAF or
pUG36-AR149 were grown under selective conditions in fresh selective medium. Cell proliferation was monitored by spectrophotometry.
doi:10.1371/journal.pone.0004647.g002
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contrast, mutant protein with substitution of basic residues in the

PA binding site led to homogeneous distribution in the plasma

membrane, the typical pattern for C-terminally truncated mutants

(Figure S2). We conclude that the A-RAF specific punctate pattern

requires both, the PS/PIP2 and PA lipid binding sites.

Expression of AR149 in yeast causes growth inhibition,
defects in cell polarization, in nuclear morphology and in
membrane trafficking

In the course of deletion analysis, we noted that cells expressing

several C-terminally truncated mutants showed homogenous

membrane localization, different from that of full-length protein.

In addition, a significant fraction of cells expressing the C-terminal

deletion mutants was larger and apolar (round in shape instead of

oval) as compared to GFP or GFP-A-RAF expressing cells (see

Figure 2A, B). Polarization during cell growth by directed

membrane trafficking is essential for cell division, therefore we

hypothesized that GFP-AR149 expressing cells may exhibit

retarded cell cycle progression and as a consequence loss of

viability. To test this, we grew GFP, GFP-A-RAF and GFP-

AR149 in liquid culture, under promoter de-repressing conditions.

Cells expressing GFP-AR149 showed sustained growth inhibition.

The difference of 28 minutes in duplication time confirms that

expression of GFP-AR149, but not that of GFP or full-length A-

RAF exhibits an inhibitory effect on expressing cells (Figure 2E).

We stained actin and DNA in GFP-AR149 and GFP-A-RAF

expressing cells. In agreement with the apolar phenotype, no

polymerized actin could be detected in the large round cells

expressing higher levels of GFP-AR149 (Figure 2A arrows).

Intriguingly, in the same cells (large, apolar) no intact nuclei

could be detected by DAPI staining (Figure 2C). Viability tests

showed about 20% decrease in survival rate of GFP-A-RAF149

expressing cells, which is in good agreement with the percentage of

apolar cells found in the culture. In a FM4-64 uptake assay we

found that yeasts expressing the AR-149 were affected in

endocytosis (Figure 2D) conversely endocytosis was unaffected

when GFP-A-RAF was expressed (Figure S1D).

To test the effect of the fusion partner and of high level expression

of A-RAF and of AR149 on yeasts, these proteins were expressed as

GST-fusions under the strongly inducible GAL10 promoter. Cells

were transformed with GST-A-RAF or GST-AR149, streaked on

glucose- (‘‘promoter off’’) or galactose (‘‘promoter on’’) media and

grown at 30uC. Figure S1C shows that whereas all three strains

grew well in the repressive medium, in the inductive medium the

GST-AR149 expressing strain did not grow.

Taken together, AR149, but not full-length A-RAF, localizes

homogeneously to the plasma membrane, and blocks yeast cell

polarization, actin polymerization, and endocytosis, resulting in

cell growth inhibition. Moreover cells overexpressing AR149 from

a strong GAL10 promoter were not viable (Figure S1C).

Localization of A-RAF and AR149 in human cell lines
The dramatic differences in localization between B- and C-RAF

versus A-RAF and its N-terminal fragment, AR149, observed in

yeast, prompted us to analyze the latter proteins in mammalian

cell lines. AR149 expression had a strong negative effect on actin

polymerization in yeast (Figure 2A). To test this effect in

mammalian cells, we chose NIH 3T3 cell line known for extended

fibers of polymerized actin called stress fibers. Similar to yeast,

stress fibers in NIH 3T3 cells were diminished by GFP-AR149

expression (Figure S3). This effect was also described for DA-

RAF1, 2 by Yokoyama et al. (2007).

We next examined the subcellular localization of A-RAF and

AR149 in HeLa cells. Cells were transfected with GFP-tagged A-

RAF and AR149 respectively. For control, an N-terminal

fragment of C-RAF (aar 1–256) described originally as a dominant

inhibitory RAF mutant [29] that corresponds to AR149 (named

C-RAF-C4) was included in the analysis. As observed in yeast,

AR149 was unique in that it labeled the plasma membrane.

Additionally in HeLa cells ‘‘beads on a string’’ structures

(Figure 3A, top panel) were seen, demonstrating isotype specificity

of the lipid binding site in CR1 as B- and C-RAF were reported to

localize instead to ER/Golgi complex or mitochondria respec-

tively [30,20]. Disruption of microtubules by Nocodazole

treatment separated beads from the strings (Figure 3A, top panel).

The stained vesicular tubular structures most likely represent

recycling endosomes. To test this hypothesis, we studied the

localization of RFP-AR149 and that of an established endosomal

marker, ARF6. As documented in Figure 3A, middle panel, there

is a high degree of colocalization between RFP-AR149 and GFP-

ARF6. ARF6 was reported to regulate central steps of endocytosis

and recycling of endocytosed material by early and recycling

endosomes (see [16] for review). Like nearly all GTPases, ARF6

functions as a molecular switch alternating between GTP-bound

(active) and GDP bound (inactive) states. Consequently, overex-

pressed GTP-, GDP-locked or nucleotide-free mutants of ARF6

(Q67L, T27N and N121I respectively) have distinct dominant

effects on endosomal morphology and endocytosis [31].

In co-transfected cells we found colocalization of RFP-AR149

(Figure 3A, middle panel) or wild type A-RAF (Figure 3A, bottom

panel) with GFP-ARF6 in tubular vesicular structures.

In summary, AR149 and wild type A-RAF, but not C-RAF-C4

localizes to tubular endosomes, as proven by specific colocalization

with ARF6.

Figure 3. Localization of GFP-A-RAF, GFP-AR149 and endogenous A-RAF in mammalian cells. A. Top row: HeLa cells were transiently
transfected with pEGFP bearing the indicated genes for 2 days. GFP fusion proteins were detected by fluorescence microscopy. GFP-A-RAF is present
throughout the cytoplasm and accumulates around the nucleus. In contrast, GFP-AR149 labels punctate structures often aligned on strings. Strings
were disassembled by treatment with Nocodazole. A C-RAF fragment orthologous to AR149 is GFP-C-RAF(C4). Representative images are shown.
Scale bar = 10 mm. Middle row: HeLa cells were cotransfected with RFP-AR149 and GFP-ARF6 as described above. RFP and GFP fluorescences were
recorded separately. Bottom row: HeLa cells were cotransfected with Myc-A-RAF and GFP-ARF6. After two days transfected cells were treated with
digitonin to extract cytosol and processed for detection of A-RAF and ARF6 as described in Figure 3C. Boxed areas are shown at higher magnification.
Arrows indicate vesicles with colocalization. Representative images are shown. Scale bar = 10 mm. B. Cells were fractionated using ‘‘ProteoExtract
Subcellular Proteome Extraction Kit’’ (Calbiochem) and analyzed by immunoblotting. antibodies against following proteins were used as
compartmental markers: vimentin as cytoskeletal marker, PARP as nuclear marker, 2MPK as cytosolic marker. Both A-RAF and AR149 are co-
fractionating predominantly with cytoskeleton and cytosol. Small portion of AR149 was also found in plasma membrane fraction. C. HeLa cells were
treated with digitonin to extract cytosol. After fixation and washing, immunofluorescence microscopy with antibodies against A-RAF and against b-
tubulin was carried out. The boxed area is shown at higher magnification. Small A-RAF positive vesicles are at the periphery and line microtubules
(arrows). Representative images are shown. Scale bar = 10 mm.
doi:10.1371/journal.pone.0004647.g003
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A fraction of endogenous A-RAF localizes to vesicles
located along microtubuli

Considering the dominant negative effect of AR149 on

endocytosis in yeast, we set out to determine whether endogenous

A-RAF in HeLa cells was localized on endocytic vesicles.

After cytosol depletion, fixation and immunostaining with

specific antibodies the remaining endogenous full-length A-RAF

was found associated with vesicular structures. A-RAF positive

vesicles were localized in the periplasmic area and at nearly each

plus end of microtubules (Figure 3C). A significant fraction of A-

RAF-positive punctate structures is lining the microtubular

network that extends to the perinuclear area. A-RAF siRNA

removed the punctate labeling, but not the diffuse staining over

the nucleus that was also seen with normal rabbit IgG, (Fig S4C)

and is therefore considered non-specific background. Consistently

in cell fractionation experiments a significant part of A-RAF

fractionates with cytoskeletal, but not with the nuclear fraction

(Figure 3B).

Overexpressed AR149 exhibits a dominant inhibitory
effect on transport and traps internalized transferrin in
ARF6 and RAB11 positive endosomes

We asked whether overexpression of AR149 affects endocytic

trafficking in mammalian cells. First, uptake and recycling of Tfn

was investigated. Tfn is internalized upon binding to its receptor via

a clathrin-dependent pathway and, after pH-regulated release,

recycles back from the recycling/late endosomes. These endosomes

are characterized by their accumulation in the pericentriolar space.

GFP or GFP-AR149 transfected HeLa cells were incubated with

Alexa-546 labelled Tfn for the indicated time (Figure 4). In control

cells, after 30 to 40 minutes, endocytosed Tfn accumulated in the

pericentriolar compartment (Figure 4, GFP panel). In GFP-AR149

expressing cells, relocation of endocytosed Tfn to pericentriolar

compartments was significantly inhibited (Figure 4, GFP-AR149

panel). The difference is clearly visible at the 40 min timepoint,

where transfected and non-transfected cells are next to each other.

Therefore expression of AR149 does not influence the endocytic

uptake of Tfn, but strongly inhibits its relocation to recycling

endosomes. To pinpoint the cellular endosome compartment,

which Tfn is trapped in, EEA1, RAB11 and ARF6 were used as

markers for early and recycling endosomes. The data clearly show

significant overlap between AR149, internalized Tfn and ARF6- as

well as between AR149, Tfn and RAB11-positive vesicles (Figure 5).

Consistently, EEA1 positive vesicles did not accumulate Tfn (Figure

S5). Thus we conclude that the block in endocytic trafficking is at

the level of tubular recycling endosomes.

siRNA silencing of A-RAF and MEK inhibition mimicks the
AR149 overexpression phenotype

The splice variant DA-RAF was shown to function as an

effective inhibitor of RAF-ERK signaling [19]. As AR149 is

expected to share this function, AR149 overexpression or A-RAF

depletion should have the same effect on Tfn trafficking. For

depletion we prepared a set of A-RAF specific siRNAs and

transfected them into HeLa cells. Degree of depletion and

specificity of A-RAF siRNAs were determined by immunoblotting.

As documented in Figure S4A significant depletion of A-RAF but

not of the other two RAF isoforms was achieved. Semi-

quantitative RT PCR showed that siRNA down-regulates A-

RAF mRNA selectively without affecting the mRNA levels of DA-

RAF (Figure S4B), which was expressed at a lower level than full

length A-RAF in this cell line.

To test the effect of A-RAF depletion on Tfn trafficking, A-RAF

siRNA-transfected, and control (scrambled siRNA-transfected)

cells were subjected to a Tfn uptake assay. Similar to GFP-AR149

expressing cells, defective or significantly delayed accumulation of

endocytosed Tfn in the pericentriolar space was observed

(Figure 6A) indicating that A-RAF kinase activity and thus the

activation of the mitogenic cascade is required for normal Tfn

trafficking. Consistent with a requirement of localized ERK

activation, chemical inhibition of the mitogenic cascade by U0126,

a specific inhibitor of the RAF effector MEK, prevented the

aggregation of Tfn positive endosomes in a similar way as A-RAF

depletion (Figure 6A).

As the phenotypes of A-RAF depletion and mitogenic cascade

inhibition overlap, we conclude that localized ERK signalling is

required for endosomal maturation and AR149/DA-RAF func-

tions as a dominant negative inhibitor of A-RAF on endosomes.

Expression of GDP-locked ARF6(T27N) also blocks
accumulation of Tfn in the pericentriolar endosomal
compartment

Dominant negative ARF6 has been shown previously to

interfere with internalisation of Tfn [15]. To test whether the

pattern of Tfn accumulation by ARF6(T27N) and AR149 are

comparable transfected HeLa cells were examined for co-

localization of internalized Tfn and ARF6(T27N) (Figure 6B).

Inspection of Figure 4 and Figure 6A reveals similar re-distribution

of Tfn in HeLa cells in which A-RAF has been knocked down or

inhibited (AR149 or U0126) and HeLa cells that express

ARF6(T27N). This data suggests that ARF6 may be a target for

regulation by A-RAF on endosomes.

Tfn accumulates in ARF6 positive and RAB11 positive
vesicles after A-RAF knock down

To characterize the endosome compartment in which Tfn

accumulates after A-RAF knock down ARF6 and RAB11 were

used as markers (Figure 7). Additionally we included EEA1 as

marker of early endosomes (Figure S6). Co-localisation experi-

ments in HeLa cells identify vesicles with accumulated Tfn as

RAB11- and ARF6- positive. No EEA1 Tfn double positive

vesicles were found. We conclude that the block in Tfn trafficking

in the absence of A-RAF lies between tubular- and TGN-

assotiated recycling endosome compartments.

AR149 Interacts with ARF6 independent of nucleotide
status

We have shown that AR149 and both (active and inactive)

ARF6 mutants partially colocalize on endocytic vesicles and the

plasma membrane (Figure S7). We were interested whether

interaction of these two proteins could be shown at the

biochemical level. HeLa cells were co-transfected with GFP,

Figure 4. Expression of GFP-AR149 inhibits maturation of endosomes. GFP-AR149-transfected and control (GFP-transfected) cells were
incubated with fluorescent Tfn for indicated times. Tfn containing vesicles accumulate in the pericentriolar area of control cells, but remain in the
GFP-AR149 positive vesicles scattered throughout the cytosol of GFP-AR149 transfected cells. Representative images are shown.
doi:10.1371/journal.pone.0004647.g004
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GFP-AR149 and HA-tagged ARF6 wild type, GTP-locked (Q67L)

or GDP-locked (T27N) mutants. After immunoprecipitation with

anti-GFP antibodies, the precipitates were separated by SDS

PAGE and tested for bound ARF6 by immunoblotting against

HA. In a reverse experiment ARF6 mutants were first precipitated

and the presence of GFP-A-RAF in the precipitate was

demonstrated by immunoblotting with anti-GFP antibodies.

Figure 8A documents that similar amounts of ARF6,

ARF6(Q67L) and ARF6(T27N) co-precipitated with GFP-

AR149, irrespective of which protein was precipitated first. Thus

interaction of A-RAF with ARF6 is independent of the ARF6

nucleotide status.

A-RAF and AR149 regulate ARF6 activation
Next we addressed whether overexpression of dominant

negative AR149 has an effect on activation of ARF6. ARF6

interacts specifically with its effector GGA3 in a nucleotide

dependent manner. Therefore binding of GGA3 can be used as

readout of the activation status of ARF6 [23]. In a control

experiment, cell lysates from COS7 cells transfected with wild

type, dominantly activated (Q67L) and dominant negative (T27N)

mutants of HA-ARF6 were incubated with immobilized GST-

GGA3 and washed. As shown in Figure 8B, GGA3 pulls effectively

ARF6(Q67L), and less effectively ARF6wt. In contrast, no binding

of ARF6(T27N) to GGA3 could be detected.

In subsequent experiments, COS7 cells were starved and

induced with EGF, a strong elicitor of mitogenic signalling.

Activated ARF6 was pulled-down by immobilized GGA3 as

described above. Large amounts of ARF6 were pulled-down from

EGF stimulated cells compared to non-stimulated cells (Figure 8C).

Thus, ARF6 is activated by the mitogenic cascade. This activation

is significantly diminished by the coexpression of AR149

(Figure 8E) or A-RAF knock down (Figure 8F).

Of note pulled-down ARF6 contains coexpressed AR149, which

precludes competition of AR149 and GGA3 for binding to

activated ARF6.

To pinpoint the position of AR149 action in a signalling

pathway, COS7 cells were co-transfected with HA-ARF6 and

either AR149, EFA6 or both. It has been previously described that

overexpression of the ARF6 exchange factor, EFA6, increases the

amount of ARF6 bound to GST-GGA3 beads. As depicted in

Figure 8D, less ARF6 was pulled down in the presence of AR149.

Similarly, A-RAF knock down reduced the amount of ARF6 that

could be pulled-down with GST-GGA3. EFA6 partially rescued

this effect (Figure 8F).

We conclude that AR149 co-expression or A-RAF knock down

negatively affects the activation of ARF6 by EFA6, i.e. A-RAF

functions upstream of ARF6.

Discussion

A-RAF is a distinct member of the RAF kinase family
In this work we unveil an unexpected link between A-RAF and

regulation of ARF6 activity.

A-RAF possesses several features that set it apart from the other

RAF kinases. A-RAF maps to the X chromosome and is the only

steroid hormone-regulated RAF isoform, [32]. A-RAF protein has

substitutions in a negatively charged region immediately upstream

of the kinase domain (N-region), which is at least partially

responsible for its low basal activity [12]. In contrast to C-RAF

[33,34], feedback phosphorylation of A-RAF by its downstream

effector, ERK, has an activating effect on its kinase activity [35].

Interestingly, out of 590 kinases tested, the three RAF isoforms

were among 208 kinases affecting clathrin- or caveolae-dependent

endocytosis [36]. si-RNA mediated silencing of A-RAF inhibits,

whereas that of C- and B-RAF activate SV40 uptake.

Role of lipid binding domains, identification and
properties of inhibitory A-RAF, AR149

Our initial studies on RAF distribution in a heterologous yeast

system showed that of the three RAF isoforms, only A-RAF

located to the cell cortex of yeast cells (Figure 1). This pattern

resembles that of components of the endocytic machinery, such as

Sla1p, Sla2p, clathrin light chain protein Clc1p [37]. Differences

in localization of A-RAF and AR149 can be explained by the

existence of two lipid-binding domains in the structure of A-RAF,

each domain binding to specific sets of lipids.

The unique distribution pattern of A-RAF in yeast resembles

the distribution of a PtdIns(4,5)P2 sensor, AP180 N-terminal

homology (ANTH) domain [37]. Consistently, A-RAF is the only

RAF isoform, which binds to immobilized PtdIns(4,5)P2 [27].

Using a set of point mutations, Johnson et al. (2005) located

PtdIns(4,5)P2 binding site in the RAS binding domain of A-RAF.

In contrast, we mapped PtdIns(4,5)P2 binding site to the cysteine

rich domain of A-RAF because a RAS binding domain deleted

mutant (88–606) still shows wild type distribution.

In agreement with Johnson et al (2005), replacement of arginine

52 in the RBD with leucine, which prevents binding of C-RAF

RBD to RAS [38], disturbs the membrane localization of both full-

length A-RAF and AR149 in yeast (Figure 1). We interpret this

discrepancy by an interaction between RBD and CRD. It is

known that RBD and CRD bind to RAS cooperatively [39]. The

R52L mutation in the RBD may cause structural rearrangements

disabling the interaction of the PtdIns(4,5)P2 binding site in the

CRD with membranes.

CRDs are conserved among RAF isoforms, but only the A-RAF

CRD possesses the unique property of PtdIns(4,5)P2 binding [27].

However as we show here the PtdIns(4,5)P2 binding site per se is not

sufficient to specify the A-RAF wild type localization pattern. The

wild type pattern of membrane binding requires in addition the

PA binding site in the catalytic domain. In regard to the

colocalization of A-RAF with ARF6 in mammalian cells, it is

noteworthy that ARF6 is known to regulate the PtdIns(4,5)P2

content of membrane microdomains to which it binds.

In yeast Arf3p is the functional homolog of ARF6. Arf3p

regulates PtdIns(4,5)P2 levels, endocytosis and actin polymeriza-

tion [40,41]. Therefore it is likely that the dominant lethal

phenotype of AR149 in yeast is mediated by interference with

Arf3p.

Localization of A-RAF and AR149 in mammalian cells
The differences between RAF isoforms were most pronounced

in yeast, where evidence for membrane attachment was restricted

to A-RAF. The punctate cortical structures that are sites of A-RAF

Figure 5. AR149 traps inernalized transferrin in ARF6 and RAB11 positive endosomes. HeLa cells were transfected with RFP-AR149 and
either GFP-ARF6 or RAB11 as indicated. Uptake of fluorescent Tfn was examined after 30 and 60 minutes. Representative images show that Tfn is
trapped by AR149 in GFP-ARF6 positive and in GFP-RAB11 positive vesicles. Enlarged areas are marked by boxes. Arrows indicate co-localization.
doi:10.1371/journal.pone.0004647.g005
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accumulation in yeast are known to contain proteins associated

with early steps of endocytosis such as AP180 as well as Pan1p,

that is associated with cortical actin patches. It is tempting to

speculate that in mammalian cells the localization of A-RAF not

only brings A-RAF into the neighbourhood of ARF6 on tubular

endosomes, but additionally involves interaction with mammalian

homologs of AP180/Pan1p that function at the interface of

clathrin coated vesicles and an actin cytoskeleton regulatory

complex. Such complexes are essential for endocytosis and also

linked with the microtubule network [42]. Consistently GFP-

AR149 decorated predominantly tubulo-vesicular endosomes, as

confirmed by co-localization with ARF6 (Figure 3, middle panel).

These endosomes lost their beads on the strings appearance upon

Nocodazole treatment (Figure 3, top panel).

Role of A-RAF and AR149 in endocytosis
Definitions of endocytic compartments are poorly standardized

[43]. Here we used definitions given in [44], where endocytosed

Tfn is first enclosed in small vesicles. These vesicles fuse to form

early endosomes. Further maturation of early endosomes through

tubular recycling endosomes leads to the pericentriolar TGN-

associated recycling compartment. AR149 is targeted to tubular

endosomes where it colocalizes with ARF6. Exogenous expression

of AR149 or dominant negative ARF6(T27N) mutant causes

trapping of endocytosed Tfn in tubular endosomes, which prevents

transfer to pericentriolar recycling compartment and subsequent

return to the plasma membrane. AR149 and ARF6 occur in the

same complex as demonstrated both by fluorescence microscopy

and coprecipitation experiments (Figure 8A).

A-RAF kinase was previously reported to participate in

regulation of caveolae/raft-mediated endocytosis by stabilizing

the caveolar coat [36,45]. Our discovery of a requirement for A-

RAF activity at a step subsequent to endocytosis, in the transfer to

the recycling compartment, point to a broader role of A-RAF in

membrane trafficking that additionally involves feedback regula-

tion by the inhibitory splice variants DA-RAF 1,2 [19]. Our data

suggest that DA-RAF does not necessarily work as a general

inhibitor of mitogenic signalling as initially described [19]. More

likely, due to its unique intracellular localization, AR149/DA-

RAF primarily inhibits just a specific endosome-associated branch

of mitogenic signalling, which is responsible for regulation of

receptor recycling and/or restoration of signalling molecules.

The classical mechanism of cytoskeleton dependent endocytosis

is subdivided in two parts: first, a short-distance step in the cortical

area depends on actin and second long-distance microtubule

dependent vesicular transport [42]. Our micrographs do not

provide time resolution, but considering our functional analyses, it

is conceivable that A-RAF functionally associates with the

endosomes shuttling along microtubules between plasma mem-

brane and the perinuclear recycling compartment.

From the functional analysis of Tfn endocytosis (Figure 6A), we

conclude that not only localization to endosomes but also activity

of A-RAF kinase in the mitogenic cascade on endosomes are a

prerequisite for the translocation of Tfn-positive endosomes to the

pericentriolar region.

ARF6 regulation by A-RAF and AR149
Our data suggest that A-RAF functions upstream of ARF6.

There has been an earlier report by Robertson [31], who

suggested, based on epistasis experiments with ERK and ARF6

that ERK functions upstream and downstream of ARF6.

Several other reports also suggested dependence of ERK

activation on ARF6 [17,46], which is in direct contrast with the

results of our epistasis analysis. This contradiction may be

explained by a pleiotropic effect of active ARF6, which is known

to block internalization of activated receptors [15], leading to

sustained signalling through the mitogenic cascade. Our data

additionally suggest EFA6 as a cooperation partner of A-RAF in

the activation of ARF6. Of note inspection of the primary

structure of EFA6 revealed multiple potential ERK/MAP kinase

phosphorylation sites that suggest that EFA6 is a substrate of ERK

downstream of A-RAF.

There are several examples for crosstalk between endocytosis

and signal transduction [47,48]. In addition, there is a growing

body of evidence that at least part of mitogenic signalling takes

place on endosomes: for example, the MEK partner MP1 was

isolated as a component of endosomal vesicles and associates with

MEK and participates in signal transduction [49]. Another

scaffold of the mitogenic cascade, KSR1, was also shown to

localize and mediate signalling to endosomes [31].

Model of A-RAF function in regulation of endocytosis
The novel findings on the A-RAF localization and the

interaction with ARF6 have led to a new model of A-RAF

function shown in Figure 9. Stimulation of growth factor receptors

is followed by RAS activation. RASNGTP recruits RAFs and leads

to assembly of the RAF-MEK-ERK module at membranes. The

three RAF isozymes become activated consecutively and mediate

diversification of the signal to different subcellular compartments.

A-RAF activation is delayed [50] because it has a corequirement

for ERK phosphorylation [35], which uncouples A-RAF from B-

and C-RAF that in turn are inhibited by feedback phosphorylation

[33,34]. Due to the unique localization of A-RAF to endosomes,

this delay is optimal for regulation of later endocytic events such as

recycling of receptors [51]. A-RAF function at endosomes also

involves the mitogenic cascade and triggers ARF6 activation

possibly via EFA6.

A-RAF involvement in ARF6 dependent endocytic recycling

provides a new perspective for explaining the phenotype of A-RAF

knock out mice, which exhibit severe neurological defects such as

ataxia, rigidity of the musculature and continuous tremor [8].

Intriguingly, A-RAF, ARF6 and EFA6 are strongly expressed in

Purkinje cells of mouse cerebellum [52,53]. Along this line, DA-

RAF expression is particularly strong in brain [19]. Endocytosis

and rapid recycling of synaptic vesicles is critically important for

the physiological function of neurons, which may further stress the

role of A-RAF in the nervous system.

Figure 6. siRNA mediated A-RAF depletion, MEK inhibition and expression of ARF6(T27N) also block accumulation of Tfn in the
pericentriolar endosome compartment. A. HeLa cells transfected with A-RAF siRNA, scrambled siRNA or treated with MEK inhibitor UO126 were
subjected to Tfn uptake assay. Lack of accumulation of endocytosed Tfn in the pericentriolar compartment is similar to AR149-expressing cells
(compare with Figure 4). Representative images are shown. Scale bar = 10 mm. B. HeLa cells were transfected with ARF6(T27N) before assay for
fluorescent Tfn uptake. ARF6(T27N) positive vesicles accumulate internalised Tfn. The pattern of distribution is similar to that in A-RAF siRNA and to
U0126 treated cells. Representative images are shown. Scale bar = 10 mm.
doi:10.1371/journal.pone.0004647.g006
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Supporting Information

Table S1 List of primers used in this study.

Found at: doi:10.1371/journal.pone.0004647.s001 (0.03 MB

DOC)

Figure S1 A. Fractionation of yeast lysates by sucrose gradient

centrifugation. Cell lysates were loaded on the top of sucrose

gradient and centrifuged at 100.0006g. Fractionated lysates were

loaded on SDS PAGE and immunoblotted. Proteins were

visualized with specific antibodies. A-RAF is the only RAF

protein, which segregates into heavy membrane/particle fractions.

GFP alone fused with B- and C-RAF segregated into cytosolic/

vacuolar fractions. Distribution of yeast membrane markers is

shown in the lower rows. B. Immunoblot analysis of expressed

GFP-A-RAF deletion mutants Yeast cell lysates expressing

indicated GFP-A-RAF constructs were loaded on SDS PAGE

and analyzed by Western blotting with antibodies against GFP. C.

Lethality of GST-AR149. S.cerevisiae strain BJ 5459 was

transformed with pEG-KT vehicle, pEG-A-RAF and pEG-

AR149. Obtained colonies were streaked on uracildropout

medium with glucose or galactose. Induction of protein production

by galactose was lethal for GST-AR149 expressing cells, but not

for those expressing either empty vehicle or full-length A-RAF. D.

Part of GFP-A-RAF colocalizes with sites of endocytosis Yeast

transformed with pUG36-AR149 and non-transformed control

were incubated with lipophilic styryl dye FM 4–64 at 30uC for

indicated time, washed and observed by flourescece microscopy.

Some of the GFP-A-RAF positive spots overlap with sites of FM

4–64 uptake.

Found at: doi:10.1371/journal.pone.0004647.s002 (5.70 MB TIF)

Figure S2 Mutational analysis of A-RAF with respect to its lipid

binding properties. Basic residues in two presumptive lipid binding

domains and in the RAS binding domain were replaced with

leucine (R52) or alanine and subcellular distribution of mutant

GFP fusion proteins was inspected by microscopy. Mutation of

R359 and K360 in the Cterminal lipid binding domain

(corresponding to phosphatidic acid binding domain of CRAF)

gives the same distribution as deletion mutants which lost this

domain. Mutation of R103 and K104 in CRD fully dislocated the

protein into cytosol. R52L mutation, which is known to disturb the

interaction of RAF with RAS had the same effect.

Found at: doi:10.1371/journal.pone.0004647.s003 (3.38 MB TIF)

Figure S3 Effect of AR149 expression on the cytoskeleton of

NIH 3T3 cells. NIH 3T3 cells were transfected with GFP-AR149

for 24 hours. After fixation, the polymerized actin was visualized

with Alexa-546 conjugated phalloidin. Note the remarkable

regression of actin stress fibers in the transfected cell. Scale

bar = 10 mm.

Found at: doi:10.1371/journal.pone.0004647.s004 (4.52 MB TIF)

Figure S4 Specific depletion of A-RAF protein and mRNA by

siRNA A. HeLa cells were treated with A-RAF specific or

scrambled siRNA and subjected to Western blot analysis with

antibodies against actin (loading control) and three RAF isoforms.

A-RAF is the only RAF isoform that decreased after siRNA

treatment. B. HeLa cells were first treated with two different

batches of A-RAF-specific or scrambled siRNA. Afterwards, the

RNA was reverse transcribed and used as a template for

quantitative PCR with primers specific for A-RAF, DA-RAF2

and Actin mRNAs. The ratio between the tested mRNA and actin

mRNA was calculated from the qPCR data. From the diagram it

can be concluded that A-RAF mRNA amount is decreasing

significantly. DA-RAF2 mRNA was poorly expressed in these cells

and its expression level did not change upon siRNA treatment. C.

Controls of indirect immunofluorecent staining of endogenous A-

RAF. HeLa cells were incubated with normal rabbit serum (left

panel) or with A-RAF specific antibodies after A-RAF knock-down

with siRNA (right panel). In both cases periplasmic punctate

structures (see Fig. 3) disappeared, whereas nuclear staining

remained. Scale bar = 10 mm.

Found at: doi:10.1371/journal.pone.0004647.s005 (5.98 MB TIF)

Figure S5 Tfn does not accumulate in EEA1 positive early

endosomes in AR149 expressing cells. HeLa cells were transfected

as indicated and used for Tfn uptake assays. Note that fluorescence

of Tfn and EEA1 do not mark identical vesicles. Enlarged areas

are marked by boxes. Arrows indicate co-localization. Scale

bar = 10 mm.

Found at: doi:10.1371/journal.pone.0004647.s006 (9.23 MB TIF)

Figure S6 A-RAF knock down phenocopies the AR149 effect

sparing EEA1 endosomes from Tfn accumulation. HeLa cells were

transfected as indicated and used for Tfn uptake assays. Note that

fluorescence of Tfn and EEA1 do not mark identical vesicles.

Enlarged areas are marked by boxes. Arrows indicate co-

localization. Scale bar = 10 mm.

Found at: doi:10.1371/journal.pone.0004647.s007 (8.47 MB TIF)

Figure S7 AR149 colocalizes with dominant active and

dominant negative ARF6 mutants in HeLa cells. RFP-AR149

was cotransfected with dominant active GFP-ARF6(Q67L) or

dominant negative GFP-ARF6(T27N) and inspected by fluores-

cent microscopy. High degree of colocalization with both ARF6

mutants is documented in overlay figures. Scale bar = 10 mm.

Found at: doi:10.1371/journal.pone.0004647.s008 (9.78 MB TIF)
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